Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,426)

Search Parameters:
Keywords = TLR signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3801 KB  
Review
Molecular Signature in Focal Cortical Dysplasia: A Systematic Review of RNA and Protein Data
by Jalleh Shakerzadeh, Radim Jaroušek, Zita Goliášová and Milan Brázdil
Int. J. Mol. Sci. 2025, 26(20), 9909; https://doi.org/10.3390/ijms26209909 (registering DOI) - 11 Oct 2025
Abstract
Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy, yet its molecular basis remains poorly understood. Numerous studies have analyzed RNA, protein, and microRNA alterations, but results are often inconsistent across subtypes and methodologies. To address this gap, we conducted a [...] Read more.
Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy, yet its molecular basis remains poorly understood. Numerous studies have analyzed RNA, protein, and microRNA alterations, but results are often inconsistent across subtypes and methodologies. To address this gap, we conducted a systematic review integrating transcriptomic, proteomic, and microRNA data from 117 human studies of FCD subtypes I–III. Differentially expressed factors were extracted, categorized by subtype, and analyzed using pathway enrichment and network approaches. Our integrative analysis revealed convergent dysregulation of neuroinflammatory, synaptic, cytoskeletal, and metabolic pathways across FCD subtypes. Consistently altered genes, including IL1B, TLR4, BDNF, HMGCR, and ROCK2, together with dysregulated microRNAs such as hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-132-3p, were linked to PI3K–Akt–mTOR, Toll-like receptor, and GABAergic signaling, emphasizing shared pathogenic mechanisms. Importantly, we identified overlapping transcript–protein patterns and subtype-specific molecular profiles that may refine diagnosis and inform therapeutic strategies. This review provides the first cross-omics molecular framework of FCD, demonstrating how convergent pathways unify heterogeneous findings and offering a roadmap for biomarker discovery and targeted interventions. Full article
(This article belongs to the Section Macromolecules)
58 pages, 1997 KB  
Review
Immunomodulatory Activities of Emerging Rare Ginsenosides F1, Rg5, Rk1, Rh1, and Rg2: From Molecular Mechanisms to Therapeutic Applications
by Chang-Eui Hong and Su-Yun Lyu
Pharmaceuticals 2025, 18(10), 1529; https://doi.org/10.3390/ph18101529 (registering DOI) - 11 Oct 2025
Abstract
Ginsenosides, the primary bioactive components of Panax ginseng, have demonstrated significant immunomodulatory potential. While major ginsenosides have been extensively studied, rare ginsenosides produced through deglycosylation, heating, and steaming show enhanced biological activities with improved bioavailability. This review aimed to comprehensively analyze the [...] Read more.
Ginsenosides, the primary bioactive components of Panax ginseng, have demonstrated significant immunomodulatory potential. While major ginsenosides have been extensively studied, rare ginsenosides produced through deglycosylation, heating, and steaming show enhanced biological activities with improved bioavailability. This review aimed to comprehensively analyze the immunomodulatory mechanisms, structure-activity relationships (SARs), therapeutic applications, and clinical translation strategies of five emerging rare ginsenosides: F1, Rg5, Rk1, Rh1, and Rg2. We conducted a comprehensive literature review examining the production methods, immunological effects, molecular mechanisms, pharmacokinetics, safety profiles, and clinical applications of these five compounds. Analysis focused on chemical structures, immune cell modulation, signaling pathways, disease model efficacy, and bioavailability enhancement strategies. Ginsenoside F1 uniquely demonstrated immunostimulatory effects, enhancing natural killer (NK) cell cytotoxicity and macrophage phagocytosis through mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) activation. Conversely, Rg5, Rk1, Rh1, and Rg2 exhibited anti-inflammatory properties via distinct mechanisms: Rg5 through Toll-like receptor 4 (TLR4)/NF-κB inhibition, Rk1 via triple pathway modulation (NF-κB, p38 MAPK, signal transducer and activator of transcription (STAT)), Rh1 by selective p38 MAPK and STAT1 inhibition, and Rg2 through modulation of both central nervous system (neuroinflammation) and peripheral organ systems. Structure-activity analysis revealed that sugar moiety positions critically determine immunological outcomes. Crucially, advanced delivery systems including nanostructured lipid carriers, self-microemulsifying systems, and specialized liposomes have overcome the major translational barrier of poor bioavailability, achieving up to 2.6-fold improvements and enabling clinical development. Safety assessments demonstrated favorable tolerability profiles across preclinical and clinical studies. These five rare ginsenosides represent promising immunomodulatory agents with distinct therapeutic applications. F1’s unique immunostimulatory properties position it for cancer immunotherapy, while the complementary anti-inflammatory mechanisms of Rg5, Rk1, Rh1, and Rg2 offer opportunities for precision medicine in inflammatory diseases. Advanced formulation technologies and optimized production methods now enable their significant clinical translation potential, providing promising therapeutic options for immune-related disorders pending further development. Full article
Show Figures

Figure 1

32 pages, 1390 KB  
Review
Discovery of Personalized Treatment for Immuno-Metabolic Depression—Focus on 11beta Hydroxysteroid Dehydrogenase Type 2 (11betaHSD2) and Toll-like Receptor 4 (TLR4) Inhibition with Enoxolone
by Harald Murck
Pharmaceuticals 2025, 18(10), 1517; https://doi.org/10.3390/ph18101517 - 10 Oct 2025
Abstract
Treatment options for major depression are limited: only about one-third of patients achieve remission with first line treatments with no established predictive markers. Parameters associated with treatment refractory depression, including metabolic markers (increased BMI, increased triglyceride levels), inflammation markers (C-reactive protein, CRP), autonomic [...] Read more.
Treatment options for major depression are limited: only about one-third of patients achieve remission with first line treatments with no established predictive markers. Parameters associated with treatment refractory depression, including metabolic markers (increased BMI, increased triglyceride levels), inflammation markers (C-reactive protein, CRP), autonomic disturbances (reduced blood pressure, reduced heart rate variability), and brain morphology changes (increased volume of the choroid plexus and brain ventricle volumes), may serve such purpose. These features can be linked mechanistically to an increase in aldosterone plasma concentration due to a reduced mineralocorticoid receptor (MR) sensitivity. The primary CNS target of aldosterone is the nucleus of the solitary tract (NTS), which is also the entry point of the vagus nerve. This nucleus integrates signals from endocrine, inflammatory, chemoreceptive, and physiological parameters, including blood pressure. In search of a mechanism to overcome this pathology, we identified a molecule which is derived from the licorice plant glycyrrhiza glabra, namely glycyrrhizin and its biologically active metabolite enoxolone. These molecules potentially reverse the above-described pathology. They inhibit the enzyme 11beta hydroxysteroid-dehydrogenase type 2 (11betaHSD2) and the toll-like receptor 4 (TLR4). 11betaHSD2 regulates the activity of the mineralocorticoid receptor (MR) by degrading cortisol/corticosterone, which allows aldosterone to bind to the MR. TLR4 is the ligand for lipopolysaccharide (LPS, endotoxin) and trigger of innate immunity. Consequently, patients with increased inflammation markers, increased aldosterone, or low blood pressure may preferentially benefit from the treatment with glycyrrhizin/enoxolone. Importantly, these patients can be identified BEFORE treatment is initiated. Clinically, patients sharing these biological indicators are primarily young females or patients with a history of childhood trauma. A combination of enoxolone with standard antidepressants may therefore avoid a trial-and-error approach and allow to achieve recovery faster. Full article
(This article belongs to the Special Issue Discovery of Novel Antidepressants and Anxiolytics)
Show Figures

Graphical abstract

17 pages, 4515 KB  
Article
Investigating the Effects of Gardenia Polysaccharides on LPS-Induced Immune Injury in Mice and Exploring the Molecular Mechanisms Underlying Its Regulatory Effect on the Immune Function of Macrophages
by Pingdong Lin, Wen Yue, Han Xiang, Jing Liu and Xinzhu Chen
Foods 2025, 14(20), 3455; https://doi.org/10.3390/foods14203455 - 10 Oct 2025
Abstract
This study investigated the protective effects of Gardenia jasminoides Ellis polysaccharides (GP) on lipopolysaccharide (LPS)-induced immunosuppression and oxidative stress in mice and explored how GP modulates macrophage polarization through the TLR4/NF-κB signaling axis. The results showed that GP notably restored thymus and spleen [...] Read more.
This study investigated the protective effects of Gardenia jasminoides Ellis polysaccharides (GP) on lipopolysaccharide (LPS)-induced immunosuppression and oxidative stress in mice and explored how GP modulates macrophage polarization through the TLR4/NF-κB signaling axis. The results showed that GP notably restored thymus and spleen indices in LPS-treated mice, markedly decreased the serum concentrations of malondialdehyde, and enhanced superoxide dismutase activity and total antioxidant capacity. In RAW 264.7 macrophage cultures, GP displayed immunostimulatory effects by improving phagocytic activity, promoting NO synthesis, and enhancing the secretion of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. These effects were observed in cells not pretreated with TAK-242 or PDTC; however, they were not observed in cells pretreated with these inhibitors. At 300 µg/mL concentration, GP markedly enhanced the transcriptional levels of iNOS and cytokine genes. Protein analysis revealed significant upregulation of TLR4, MyD88, TRAF6, NF-κB RelA/p65, and phosphorylated p65. Fluorescence imaging confirmed the nuclear translocation of p65. Collectively, these findings indicated that GP reversed systemic immunosuppression and oxidative stress, offering foundational insights for developing natural immune regulators. The observed immunomodulatory properties of GP are likely mediated through the TLR4/NF-κB signaling pathway. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 4925 KB  
Article
Bacterial Infections and Their Cell Wall Ligands Differentially Modulate Doxorubicin Sensitivity in Triple-Negative Breast Cancer Cells
by Sima Kianpour Rad, Runhao Li, Kenny K. L. Yeo, Fangmeinuo Wu, Yoko Tomita, Timothy J. Price, Wendy V. Ingman, Amanda R. Townsend and Eric Smith
Microorganisms 2025, 13(10), 2317; https://doi.org/10.3390/microorganisms13102317 - 7 Oct 2025
Viewed by 189
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and poor clinical outcomes. Emerging evidence suggests that the tumor-associated microbiome may influence disease progression and therapy response. Methods: We investigated how the Gram-negative bacterium Pseudomonas aeruginosa and Gram-positive bacterium [...] Read more.
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and poor clinical outcomes. Emerging evidence suggests that the tumor-associated microbiome may influence disease progression and therapy response. Methods: We investigated how the Gram-negative bacterium Pseudomonas aeruginosa and Gram-positive bacterium Staphylococcus aureus, together with their cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA), modulate doxorubicin (DOX) efficacy in TNBC cells. Using gentamicin protection combined with flow cytometry of eFluor 450-labeled bacteria and CFU quantification, we assessed bacterial uptake, persistence, and effects on drug response in MDA-MB-468, MDA-MB-231, and MDA-MB-453 cells. Results: Both bacteria entered TNBC cells and survived for several days in a cell line-dependent manner. Notably, bacterial infection and purified cell wall ligands (LPS and LTA) significantly increased DOX accumulation and enhanced cytotoxicity in MDA-MB-468 and MDA-MB-231, but not in MDA-MB-453. The similar effects of LPS and LTA implicate Toll-like receptor signaling (TLR2 and TLR4) in modulating drug uptake. Conclusions: These findings demonstrate that bacterial infection and associated ligands can enhance doxorubicin uptake and cytotoxicity in TNBC cells, implicating TLR signaling as a potential contributor. Our results highlight the importance of host–microbe interactions in shaping chemotherapy response and warrant further investigation into their therapeutic relevance. Full article
(This article belongs to the Collection Microbiomes and Cancer: A New Era in Diagnosis and Therapy)
Show Figures

Figure 1

15 pages, 1567 KB  
Article
Porphyromonas gingivalis Lysate Induces TLR-2/4-Dependent NF-κB Activation and Inflammatory Damage in the Human Placental Barrier
by Sebastián Araneda-Rojas, Christian Castillo, Ana Liempi, Alejandro Fernández-Moya, Jesús Guerrero-Muñoz, Sebastián Alfaro, Christian Gallardo, Rocío Arregui, Anilei Hoare, Maria Alejandra Gleisner, Marcela Hernández and Ulrike Kemmerling
Int. J. Mol. Sci. 2025, 26(19), 9558; https://doi.org/10.3390/ijms26199558 - 30 Sep 2025
Viewed by 343
Abstract
Periodontitis has been associated with adverse pregnancy outcomes, but the effect of oral pathogens on placental tissue and local immunity remains unclear. In this study, we investigated the response of human placental explants (HPEs) to lysates of Porphyromonas (P.) gingivalis, a keystone [...] Read more.
Periodontitis has been associated with adverse pregnancy outcomes, but the effect of oral pathogens on placental tissue and local immunity remains unclear. In this study, we investigated the response of human placental explants (HPEs) to lysates of Porphyromonas (P.) gingivalis, a keystone periodontal pathogen. Exposure to P. gingivalis induced significant histological damage and extracellular matrix degradation in placental tissue. The lysate activated the canonical NF-κB pathway, as demonstrated by increased phosphorylation of IκBα, particularly in the trophoblast. This activation was predominantly mediated by Toll-like receptor 2 (TLR-2), with partial contribution from TLR-4. Notably, TLR-2 protein levels decreased upon stimulation, while soluble (s) TLR-2 was markedly elevated in culture supernatants, suggesting receptor cleavage as a regulatory mechanism. P. gingivalis also triggered a robust proinflammatory cytokine secretion, including IL-1β, IL-6, IL-8, and TNF-α, with variable dependence on TLR-2 and TLR-4 signaling. These findings reveal that P. gingivalis components elicit a complex innate immune response in the placenta, driven by TLR-mediated NF-κB activation and modulated by sTLR-2. This study provides mechanistic insight into how periodontitis may contribute to placental inflammation and highlights potential pathways linking maternal oral health to pregnancy complications. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

13 pages, 1589 KB  
Review
BCG Immunotherapy in Equine Sarcoid Treatment: Mechanisms, Clinical Efficacy, and Challenges in Veterinary Oncology
by Mariana Martins Monteiro, Elcidimar Lucas Aleixo de Castro, Ana Júlia Moaraes Pereira, Roberto Thiesen, Roberta Martins Crivelaro Thiesen and Felipe Masiero Salvarani
Viruses 2025, 17(10), 1322; https://doi.org/10.3390/v17101322 - 29 Sep 2025
Viewed by 243
Abstract
Equine sarcoids are the most common dermatological neoplasm in horses worldwide, associated with bovine papillomavirus (BPV) infection and characterized by high recurrence rates after conventional therapies. Bacillus Calmette–Guérin (BCG) immunotherapy has historically been used for sarcoid treatment, yet its role in contemporary veterinary [...] Read more.
Equine sarcoids are the most common dermatological neoplasm in horses worldwide, associated with bovine papillomavirus (BPV) infection and characterized by high recurrence rates after conventional therapies. Bacillus Calmette–Guérin (BCG) immunotherapy has historically been used for sarcoid treatment, yet its role in contemporary veterinary oncology remains debated. This narrative review critically examines the immunological mechanisms, clinical efficacy, and limitations of BCG in equine sarcoid therapy, while integrating insights from comparative oncology and One Health perspectives. A systematic search following PRISMA-based criteria identified 55 relevant studies published over the past four decades. Evidence indicates that BCG activates innate and adaptive immunity through TLR2/4 signaling, macrophage polarization, and enhanced CD8+ T-cell responses, leading to partial or complete sarcoid regression in select cases. However, therapeutic outcomes are highly variable due to heterogeneity in protocols (dose, strain, adjuvant use) and frequent adverse inflammatory reactions. Comparative analyses highlight that modern alternatives—such as cryotherapy, cisplatin-based protocols, and topical imiquimod—achieve higher efficacy and lower recurrence rates in many clinical settings. Although BCG is now rarely considered a first-line therapy, it remains relevant in resource-limited regions, such as the Amazon Biome, where cost-effectiveness and accessibility are critical. Future directions include randomized controlled trials, standardized protocols, and innovative approaches such as checkpoint inhibition, CRISPR-Cas9 targeting of viral oncogenes, and nanoparticle delivery systems. This review provides a balanced and data-driven synthesis of BCG immunotherapy, clarifying its historical contributions, current limitations, and translational opportunities for advancing equine and comparative oncology. Full article
(This article belongs to the Special Issue Viral Diseases of Domestic Animals)
Show Figures

Figure 1

14 pages, 3871 KB  
Article
fliC Mediates Pseudomonas plecoglossicida’s Hijack of Inflammatory Immunity and Glucose Metabolism in the Large Yellow Croaker
by Xizhi Peng, Yujia Sun, Huanjiao Tan, Huanying Pang, Caiyuan Zhao and Qingpi Yan
Antioxidants 2025, 14(10), 1189; https://doi.org/10.3390/antiox14101189 - 28 Sep 2025
Viewed by 438
Abstract
The bacterial flagellum plays a crucial role in pathogenesis. However, the mechanism by which the flagellum interferes with host energy metabolism remains unclear. In this study, we confirmed that deletion of the fliC gene resulted in a 30% reduction in the virulence of [...] Read more.
The bacterial flagellum plays a crucial role in pathogenesis. However, the mechanism by which the flagellum interferes with host energy metabolism remains unclear. In this study, we confirmed that deletion of the fliC gene resulted in a 30% reduction in the virulence of Pseudomonas plecoglossicida against the large yellow croaker (Larimichthys crocea). Compared to the wild-type strain (WT) infection group, the ΔfliC infection group exhibited a 29.54% decrease in the number of vacuolar degeneration hepatocytes and a 50.83% higher liver glycogen content. Furthermore, infection led to decreased mitochondrial complex V activity, a reduced NAD+/NADH ratio, lower levels of reduced glutathione (GSH), and increased lipid peroxide levels; however, these metabolic perturbations were significantly ameliorated in the ΔfliC group compared to the WT group. Proteomic analysis revealed that the dysregulation of the complement cascade and core carbon metabolic pathways observed in the WT infection group liver was significantly alleviated in the ΔfliC infection group. Additionally, in the ΔfliC infection group, pro-inflammatory genes (such as Tlr5, Tnfα, and Il1β) were downregulated, while lipid metabolism-related genes (such as Acox1, Cpt1a, and Pparα) were upregulated, suggesting the suppression of the Tlr5/NF-κB immune signaling axis and enhanced fatty acid β-oxidation. Collectively, fliC may mediate the disruption of host glucose and lipid metabolism homeostasis through a Tlr5-triggered immunometabolic regulatory axis. In conclusion, this study demonstrates that bacterial flagella modulate host energy metabolism, expanding our understanding of flagellum-mediated pathogenesis. Full article
Show Figures

Figure 1

17 pages, 2330 KB  
Article
MyD88 Contributes to TLR3-Mediated NF-κB Activation and Cytokine Production in Macrophages
by Zhuodong Chai, Yuqi Zhou, Ling Yang, Yan Zhang, Sukria Hossain, Sahelosadat Hajimirzaei, Jiaqian Qi, Guoying Zhang, Yinan Wei and Zhenyu Li
Cells 2025, 14(19), 1507; https://doi.org/10.3390/cells14191507 - 27 Sep 2025
Viewed by 581
Abstract
Toll-like receptor 3 (TLR3) initiates antiviral and inflammatory responses exclusively through the adaptor protein TRIF (TIR-domain-containing adapter-inducing interferon-β). In contrast, MyD88 (myeloid differentiation primary response 88), a central adaptor for most other TLRs, is traditionally considered dispensable for TLR3 signaling. Here, we demonstrate [...] Read more.
Toll-like receptor 3 (TLR3) initiates antiviral and inflammatory responses exclusively through the adaptor protein TRIF (TIR-domain-containing adapter-inducing interferon-β). In contrast, MyD88 (myeloid differentiation primary response 88), a central adaptor for most other TLRs, is traditionally considered dispensable for TLR3 signaling. Here, we demonstrate that MyD88 directly contributes to TLR3-mediated NF-κB activation and cytokine production in macrophages. Bone marrow-derived macrophages (BMDMs) from MyD88 deficient mice exhibited significantly attenuated NF-κB activation in response to the TLR3 agonist polyinosinic–polycytidylic acid (poly(I:C)) compared to wild-type cells, as evidenced by the reduced phosphorylation of NF-κB p65 and IκBα, as well as IκBα degradation. Consistently, pro-inflammatory cytokine production, including IL-6, TNF-α, and IFN-β, was attenuated in MyD88-deficient BMDMs in vitro following stimulation by poly(I:C) or poly(A:U), another TLR3 agonist. Blood concentrations of IL-6, TNF-α, and IFN-β were significantly reduced in both TRIF-deficient mice and MyD88-deficient mice challenged by the i.p. injection of poly(I:C). Mechanistic analyses revealed that MyD88 physically associates with activated TLR3 upon poly(I:C) stimulation, and that TLR3 engagement triggered MyD88 oligomerization, which was absent in TLR3 or TRIF deficient macrophages. Our findings highlight a previously unrecognized dual-adaptor mechanism for TLR3, wherein MyD88 recruitment amplifies NF-κB signaling dynamics by bridging TLR3 to the canonical NF-κB activation cascade and robust cytokine induction. This study expands the paradigm of TLR3 signaling by establishing MyD88 as a direct contributor to TLR3-driven innate immune responses, offering new insight into cross-talk between MyD88-dependent and -independent pathways. Full article
Show Figures

Figure 1

26 pages, 1089 KB  
Review
Phytochemicals from Brazilian Red Propolis: A Review of Their Anti-Inflammatory Potential
by Thaise Boeing, Rodolfo Moresco and Priscila de Souza
Plants 2025, 14(19), 2961; https://doi.org/10.3390/plants14192961 - 24 Sep 2025
Viewed by 442
Abstract
Brazilian red propolis (BRP) has emerged as a promising source of multifunctional phytochemicals with potent anti-inflammatory activity. This review provides a comprehensive analysis of the anti-inflammatory effects of BRP’s bioactive compounds, their molecular targets, and their mechanisms of action. Isolated compounds from BRP [...] Read more.
Brazilian red propolis (BRP) has emerged as a promising source of multifunctional phytochemicals with potent anti-inflammatory activity. This review provides a comprehensive analysis of the anti-inflammatory effects of BRP’s bioactive compounds, their molecular targets, and their mechanisms of action. Isolated compounds from BRP (such as formononetin, biochanin A, daidzein, calycosin, medicarpin, vestitol, and neovestitol) have demonstrated the ability to modulate critical pro-inflammatory signaling pathways, including NF-κB, TLR4, JAK/STAT, and PI3K/AKT, while concurrently activating antioxidant and cytoprotective responses via the Nrf2/HO-1 axis. These effects are further supported by the suppression of pro-inflammatory cytokines, regulation of immune cell infiltration and activation, inhibition of inflammasome components such as NLRP3, induction of autophagy, and polarization of macrophages and microglia from a pro-inflammatory (M1) to an anti-inflammatory (M2) phenotype. Collectively, these findings reinforce the potential of BRP as a rich source of multifunctional phytochemicals with broad therapeutic relevance for chronic inflammation and related pathologies. Future research should address the identified knowledge gaps by employing rigorous in vitro and in vivo toxicity assessments, exploring structure–activity relationships, and leveraging advanced delivery systems to optimize bioavailability. Such methodological approaches will be essential for translating the promising biological activities of BRP compounds into clinically viable therapeutic agents. Full article
Show Figures

Figure 1

21 pages, 3526 KB  
Article
Neuroprotective Effects of Vesatolimod in EAE: Modulating Immune Balance and Microglial Polarization
by Xueyu Chen, Jian Zhang and Shuhua Mu
Int. J. Mol. Sci. 2025, 26(19), 9297; https://doi.org/10.3390/ijms26199297 - 23 Sep 2025
Viewed by 313
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by sustained neuroinflammation and demyelination within the central nervous system (CNS). Vesatolimod (VES), a selective Toll-like receptor 7 (TLR7) agonist, has demonstrated both antiviral and immunomodulatory properties; however, its potential therapeutic value in neuroinflammatory [...] Read more.
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by sustained neuroinflammation and demyelination within the central nervous system (CNS). Vesatolimod (VES), a selective Toll-like receptor 7 (TLR7) agonist, has demonstrated both antiviral and immunomodulatory properties; however, its potential therapeutic value in neuroinflammatory contexts remains poorly understood. In this study, we evaluated the efficacy of VES in the experimental autoimmune encephalomyelitis (EAE) model of MS and elucidated its mechanisms of action. EAE was induced in mice by immunization with myelin oligodendrocyte glycoprotein (MOG35–55). The therapeutic effects of VES were assessed through clinical scoring, body weight monitoring, histopathology, flow cytometry, quantitative proteomics, and Western blot analysis. Additionally, an in vitro model of lipopolysaccharide (LPS)-induced microglial activation was employed to investigate cell-autonomous mechanisms. Results showed that VES administration significantly ameliorated disease severity, reduced weight loss, and enhanced neurological function in EAE mice. Treatment with VES inhibited the differentiation of pro-inflammatory Th1 and Th17 cells while expanding regulatory T cell (Treg) populations. It also preserved blood–brain barrier (BBB) integrity, attenuated demyelination, and modulated microglial activation phenotypes within the CNS. At the molecular level, VES activated the Nrf2/HO-1 antioxidant pathway, thereby enhancing the expression of cytoprotective proteins. Proteomic profiling further revealed the downregulation of inflammation-related proteins, specifically those associated with TNF, IL-17, and NOD-like receptor signaling pathways. Collectively, these findings demonstrate that VES alleviates neuroinflammation in EAE through multimodal mechanisms—including peripheral and central immune regulation, BBB protection, and activation of endogenous antioxidant defenses—supporting its further development as a promising therapeutic candidate for MS. Full article
(This article belongs to the Special Issue Molecular Advances and Perspectives in Multiple Sclerosis)
Show Figures

Figure 1

22 pages, 5519 KB  
Article
Saponin from Tea (Camellia sinensis) Seed Meal Attenuates Cortisol-Induced Lipogenesis and Inflammation in Human Cells
by Jian Li, Lu-Yao Zhang, Yuan-Cheng Huang, Jian-Ming Deng, Min Yu, Christos C Zouboulis, Jin-Hua Li, Guang-Li Wang and Jing Wang
Molecules 2025, 30(19), 3844; https://doi.org/10.3390/molecules30193844 - 23 Sep 2025
Viewed by 357
Abstract
A fast-paced lifestyle contributes to heightened emotional stress, driving the demand for milder and safer cosmetic ingredients that can counteract stress-induced skin damage—a focus of cutting-edge research in the field. Aim: The aim was to elucidate the role and mechanistic basis of tea [...] Read more.
A fast-paced lifestyle contributes to heightened emotional stress, driving the demand for milder and safer cosmetic ingredients that can counteract stress-induced skin damage—a focus of cutting-edge research in the field. Aim: The aim was to elucidate the role and mechanistic basis of tea (Camellia sinensis) seed meal saponin (Sap) in regulating stress-induced sebum overproduction and inflammatory responses. Methods: The composition and chemical structure of Sap were analyzed using UV-vis absorption spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). In vitro models of cortisone-induced excessive lipid accumulation and the tumor necrosis factor-alpha (TNF-α)-stimulated inflammatory models were established on sebaceous gland cells (SZ95) and normal human epidermal keratinocytes (NHEKs), respectively. Cortisol and inflammatory cytokine secretion levels in cells were detected using ELISA. Additionally, the signaling pathways were revealed by Western blot (WB) and real-time quantitative polymerase chain reaction (RT-PCR). Results: Five saponins were identified in the Sap extract, all belonging to the oleanolic-acid-type pentacyclic triterpenes. Sap treatment significantly attenuated cortisone-induced cortisol secretion and lipid accumulation in SZ95 sebocytes. Mechanistically, Sap inhibited the 11β-HSD1/SREBP-1 pathway, which mediates its sebosuppressive effects, while concurrently down-regulating the mRNA expression of key downstream transcription factors and enzymes, including SREBP-1, FAS, and ACC. Additionally, Sap treatment significantly attenuated TNF-α-stimulated cortisol secretion and inflammatory cytokine (IL-1β, IL-6, and IL-8) production in NHEK cells through the inhibition of the 11β-HSD1/TLR2/NF-κB signaling pathway. Conclusion: Sap demonstrated dual inhibitory effects, suppressing both emotional-stress-induced sebum overproduction and inflammatory cytokines secretion. Full article
(This article belongs to the Special Issue Functional Molecules as Novel Cosmetic Ingredients)
Show Figures

Figure 1

20 pages, 3916 KB  
Article
LMT2368 (1-(4-Chlorophenyl)-3-(3-fluoro-5-(trifluoromethyl)phenyl)urea) Negatively Regulates Inflammation by Inhibiting NLRP3 Inflammasome Activation
by Thai Uy Nguyen, Su Jeong Kwon, Sunghoon Hurh, Ashok Kale, Jae Min Cho, Hossam Nada, Chang Seong Kim, Peela Induvadana, Beom Jin Park, Kyeong Lee, Yongseok Choi and Jong-Ik Hwang
Pharmaceutics 2025, 17(10), 1241; https://doi.org/10.3390/pharmaceutics17101241 - 23 Sep 2025
Viewed by 325
Abstract
Background/Objectives: The dysregulation of NLRP3 inflammasome activation has been established as a key driver of inflammatory disease pathology, which marks NLRP3 as an attractive therapeutic target. However, the clinical development of NLRP3 inhibitors such as MCC950 has been hampered by their associated [...] Read more.
Background/Objectives: The dysregulation of NLRP3 inflammasome activation has been established as a key driver of inflammatory disease pathology, which marks NLRP3 as an attractive therapeutic target. However, the clinical development of NLRP3 inhibitors such as MCC950 has been hampered by their associated toxicity profiles, highlighting an unmet clinical need. Methods: Herein, we present LMT2368, a novel urea-based NLRP3 inhibitor identified through screening of urea-based derivatives from our in-house compound library. Results: Biolayer interferometry confirmed direct binding of LMT2368 to the NLRP3 NACHT domain with a (KD = 27.4 ± 1.2 μM which was superior to MCC950. Molecular docking studies predicted enhanced binding interactions for LMT2368, consistent with its improved biological activity. In LPS-primed macrophages, LMT2368 dose-dependently suppressed IL-1β secretion (IC50 = 0.8 μM in J774A.1 cells) and caspase-1 activation without affecting NF-κB signaling. Importantly, LMT2368 inhibited ASC oligomerization and pyroptosis while maintaining excellent safety margins (CC50 > 50 μM). In a murine model of LPS-induced acute lung injury, LMT2368 (10 mg/kg) reduced bronchoalveolar lavage fluid immune cell infiltration by 68% (p < 0.001), suppressed pro-inflammatory cytokine release (IL-1β/IL-6/TNF-α), and preserved lung histoarchitecture. Notably, LMT2368 showed selectivity for NLRP3 inhibition without affecting TNF-α/IL-6 production during TLR4 priming in monocytic cell lines. Conclusions: Together, these findings establish LMT2368 as a promising lead compound for developing safer NLRP3 inhibitors with therapeutic potential for inflammasome-driven diseases. Full article
(This article belongs to the Special Issue Recent Advances in Inhibitors for Targeted Therapies)
Show Figures

Figure 1

33 pages, 2619 KB  
Review
Precision Adjuvant Strategies in Vaccine Development for Substance Use Disorders: Variability and Mechanistic Insights
by Yuanzhi Bian, Qiaoqiao Ci, Xin M. Luo and Chenming Zhang
Pharmaceutics 2025, 17(9), 1223; https://doi.org/10.3390/pharmaceutics17091223 - 20 Sep 2025
Viewed by 594
Abstract
Substance use disorders (SUDs) remain a major global health challenge with limited treatment options and high relapse rates. Vaccines that induce drug-sequestering antibodies have shown promise, but their efficacy is hindered by the poor immunogenicity of small-molecule haptens. Adjuvants, substances that enhance immune [...] Read more.
Substance use disorders (SUDs) remain a major global health challenge with limited treatment options and high relapse rates. Vaccines that induce drug-sequestering antibodies have shown promise, but their efficacy is hindered by the poor immunogenicity of small-molecule haptens. Adjuvants, substances that enhance immune responses, are critical for overcoming this limitation and improving vaccine efficacy. This review synthesizes over two decades of preclinical and clinical research to guide rational adjuvant design for SUD vaccines. Five major adjuvant classes are examined: aluminum-salt adjuvants, emulsion adjuvants, toll-like receptor (TLR) agonists, protein immunopotentiators, and cytokine modulators. Their physicochemical properties, innate immune activation profiles, and applications in nicotine, stimulant, and opioid vaccines are discussed. Comparative analyses reveal pronounced drug-specific and carrier-specific variability. Case studies illustrate the superior performance of a complementary TLR-agonist pair in a nicotine nanovaccine versus its limited effect in oxycodone vaccines. They also reveal the differential efficacy of an oil-in-water emulsion adjuvant across antigen types. Four principles emerge: (i) no adjuvant is universally optimal; (ii) drug pharmacology influences immune signaling; (iii) adjuvant-carrier compatibility is important; (iv) complementary adjuvant pairings often outperform single agents. These insights support a precision-vaccinology paradigm that tailors adjuvant strategies to each drug class and the delivery vehicle, advancing the development of next-generation SUD vaccines. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

17 pages, 10303 KB  
Article
Curcumin Alleviates HMGB1-Mediated Inflammation Through the Signaling Pathway of TLR2-NF-κB in Bovine Ovarian Granulosa Cells
by Siqi Liu, Yingying Xie, Lei Wang, Jingyan Zhang, Xiaoliang Chen, Xiaowei Feng, Junyan Wang, Kang Zhang and Jianxi Li
Int. J. Mol. Sci. 2025, 26(18), 9180; https://doi.org/10.3390/ijms26189180 - 19 Sep 2025
Viewed by 422
Abstract
Curcumin, the principal bioactive compound derived from turmeric, possesses a wide range of therapeutic properties such as anti-inflammatory, antioxidant, and wound-healing properties. Recent studies suggest that curcumin may alleviate HMGB1-mediated inflammation in ovarian cells. However, its role in modulating dysfunction in HMGB1-driven ovarian [...] Read more.
Curcumin, the principal bioactive compound derived from turmeric, possesses a wide range of therapeutic properties such as anti-inflammatory, antioxidant, and wound-healing properties. Recent studies suggest that curcumin may alleviate HMGB1-mediated inflammation in ovarian cells. However, its role in modulating dysfunction in HMGB1-driven ovarian granulosa cells (OGCs) remains to be elucidated. In the present study, curcumin suppresses the HMGB1-induced overexpression of toll-like receptor 2 (TLR2) and ovulation-related factors such as EGFR, VEGF, STAR, and TIMP1/2 genes. Additionally, the elevated levels of TLR2, TLR1, TLR6, and phospho-NF-κB p65 proteins were significantly inhibited by curcumin. Further mechanistic analysis reveals that the interaction between HMGB1 and the TLR1-TLR2/TLR6 complex, as well as phospho-NF-κB p65, was restrained. This resulted in the suppression of the pro-inflammatory cytokine IL-6 production and the alleviation of the HMGB1-induced inflammation response in OGCs. Collectively, our findings demonstrate that curcumin modulates the upregulation of ovulation-related genes and pro-inflammatory cytokines in OGCs by inhibiting the TLR2-NF-κB pathway, providing a mechanistic basis for its potential application as a therapeutic agent against OGC inflammation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

Back to TopTop