The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Evaluation
2.3. Lipid Profiles and Subfractions of LDL-C
2.4. Apolipoprotein E Genotype
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimers Dis. Other Demen. 2018, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Bjorkhem, I.; Meaney, S. Brain cholesterol: Long secret life behind a barrier. Arter. Thromb. Vasc. Biol. 2004, 24, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Pfrieger, F.W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci. 2003, 60, 1158–1171. [Google Scholar] [CrossRef]
- Sun, J.H.; Yu, J.T.; Tan, L. The role of cholesterol metabolism in Alzheimer’s disease. Mol. Neurobiol. 2015, 51, 947–965. [Google Scholar] [CrossRef]
- Grimm, M.O.; Grimm, H.S.; Tomic, I.; Beyreuther, K.; Hartmann, T.; Bergmann, C. Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J. Biol. Chem. 2008, 283, 11302–11311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feringa, F.M.; van der Kant, R. Cholesterol and Alzheimer’s Disease; From Risk Genes to Pathological Effects. Front. Aging Neurosci. 2021, 13, 690372. [Google Scholar] [CrossRef]
- Kojro, E.; Gimpl, G.; Lammich, S.; Marz, W.; Fahrenholz, F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc. Natl. Acad. Sci. USA 2001, 98, 5815–5820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Callaghan, D.; Jones, A.; Walker, D.G.; Lue, L.F.; Beach, T.G.; Sue, L.I.; Woulfe, J.; Xu, H.; Stanimirovic, D.B.; et al. Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol. Dis. 2008, 29, 422–437. [Google Scholar] [CrossRef] [Green Version]
- Marquer, C.; Laine, J.; Dauphinot, L.; Hanbouch, L.; Lemercier-Neuillet, C.; Pierrot, N.; Bossers, K.; Le, M.; Corlier, F.; Benstaali, C.; et al. Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes. Mol. Neurodegener. 2014, 9, 60. [Google Scholar] [CrossRef]
- Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 2003, 160, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Sharman, M.J.; Moussavi Nik, S.H.; Chen, M.M.; Ong, D.; Wijaya, L.; Laws, S.M.; Taddei, K.; Newman, M.; Lardelli, M.; Martins, R.N.; et al. The Guinea Pig as a Model for Sporadic Alzheimer’s Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes. PLoS ONE 2013, 8, e66235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramov, A.Y.; Ionov, M.; Pavlov, E.; Duchen, M.R. Membrane cholesterol content plays a key role in the neurotoxicity of beta-amyloid: Implications for Alzheimer’s disease. Aging Cell 2011, 10, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, P. Cholesterol and late-life cognitive decline. J. Alzheimers Dis. 2012, 30, S147–S162. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Zhou, F.; Cao, Y.; Liang, X.; Wu, W.; Xiao, Z.; Zhao, Q.; Deng, W. Cholesterol profiles and incident cognitive decline among older adults: The Shanghai Aging Study. Age Ageing 2021, 50, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Ashby-Mitchell, K.; Peters, R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J. Alzheimers Dis. 2017, 56, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Yin, Z.; Zhu, P.; Luo, J.; Shi, X.; Gao, X. Blood cholesterol in late-life and cognitive decline: A longitudinal study of the Chinese elderly. Mol. Neurodegener. 2017, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Avogaro, P.; Bon, G.B.; Cazzolato, G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988, 8, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Raya, J.L.; Chen, H.H.; Chen, C.H.; Abe, Y.; Pownall, H.J.; Taylor, A.A.; Smith, C.V. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arter. Thromb. Vasc. Biol. 2003, 23, 1083–1090. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Jiang, T.; Yang, J.H.; Jiang, W.; Lu, J.; Marathe, G.K.; Pownall, H.J.; Ballantyne, C.M.; McIntyre, T.M.; Henry, P.D.; et al. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 2003, 107, 2102–2108. [Google Scholar] [CrossRef]
- Yu, L.E.; Lai, C.L.; Lee, C.T.; Wang, J.Y. Highly electronegative low-density lipoprotein L5 evokes microglial activation and creates a neuroinflammatory stress via Toll-like receptor 4 signaling. J. Neurochem. 2017, 142, 231–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.Y.; Lai, C.L.; Lee, C.T.; Lin, C.Y. Electronegative Low-Density Lipoprotein L5 Impairs Viability and NGF-Induced Neuronal Differentiation of PC12 Cells via LOX-1. Int. J. Mol. Sci. 2017, 18, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Backman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment--beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Chou, P.; Lin, K.N.; Wang, S.J.; Fuh, J.L.; Lin, H.C.; Liu, C.Y.; Wu, G.S.; Larson, E.B.; White, L.R.; et al. Assessing cognitive abilities and dementia in a predominantly illiterate population of older individuals in Kinmen. Psychol. Med. 1994, 24, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Hasegawa, K.; Homma, A.; Imai, Y.; Larson, E.; Graves, A.; Sugimoto, K.; Yamaguchi, T.; Sasaki, H.; Chiu, D.; et al. The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia. Int. Psychogeriatr. 1994, 6, 45–58. [Google Scholar] [CrossRef]
- Chu, C.S.; Law, S.H.; Lenzen, D.; Tan, Y.H.; Weng, S.F.; Ito, E.; Wu, J.C.; Chen, C.H.; Chan, H.C.; Ke, L.Y. Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis. Biomedicines 2020, 8, 254. [Google Scholar] [CrossRef]
- Chu, C.S.; Chan, H.C.; Tsai, M.H.; Stancel, N.; Lee, H.C.; Cheng, K.H.; Tung, Y.C.; Chan, H.C.; Wang, C.Y.; Shin, S.J.; et al. Range of L5 LDL levels in healthy adults and L5’s predictive power in patients with hyperlipidemia or coronary artery disease. Sci. Rep. 2018, 8, 11866. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.L.; Hsu, C.Y.; Liou, L.M.; Hsieh, H.Y.; Hsieh, Y.H.; Liu, C.K. Effect of cholesterol and CYP46 polymorphism on cognitive event-related potentials. Psychophysiology 2011, 48, 1572–1577. [Google Scholar] [CrossRef]
- De Leeuw, F.A.; Tijms, B.M.; Doorduijn, A.S.; Hendriksen, H.M.A.; van de Rest, O.; de van der Schueren, M.A.E.; Visser, M.; van den Heuvel, E.; van Wijk, N.; Bierau, J.; et al. LDL cholesterol and uridine levels in blood are potential nutritional biomarkers for clinical progression in Alzheimer’s disease: The NUDAD project. Alzheimers Dement. 2020, 12, e12120. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, F.; Yang, J.; Peng, H.; Li, Y.; Li, B.; Wang, S. Revealing a Novel Landscape of the Association Between Blood Lipid Levels and Alzheimer’s Disease: A Meta-Analysis of a Case-Control Study. Front. Aging Neurosci. 2019, 11, 370. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, Y.; Zhang, X.; Xu, J.; Lin, J.; Zhang, R.; Kang, K.; Liu, C.; Zhao, C.; Zhao, M. Low-Density Lipoprotein Cholesterol and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2020, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Li, P.; Ma, X.; Huang, X.; Liu, Z.; Ren, X.; Yang, Y.; Halm-Lutterodt, N.V.; Yuan, L. Association of Circulating Cholesterol Level with Cognitive Function and Mild Cognitive Impairment in the Elderly: A Community-based Population Study. Curr. Alzheimer Res. 2020, 17, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Deng, W.; Ding, D.; Zhao, Q.; Liang, X.; Wang, F.; Luo, J.; Zheng, L.; Guo, Q.; Hong, Z. High Low-Density Lipoprotein Cholesterol Inversely Relates to Dementia in Community-Dwelling Older Adults: The Shanghai Aging Study. Front. Neurol. 2018, 9, 952. [Google Scholar] [CrossRef]
- Ke, L.Y.; Stancel, N.; Bair, H.; Chen, C.H. The underlying chemistry of electronegative LDL’s atherogenicity. Curr. Atheroscler. Rep. 2014, 16, 428. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.Y.; Chen, F.Y.; Hsu, J.F.; Fu, R.H.; Chang, C.M.; Chang, C.T.; Liu, C.H.; Wu, J.R.; Lee, A.S.; Chan, H.C.; et al. Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood 2016, 127, 1336–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, B.; Shi, X.; Xing, Y.; Tang, Y. Association between atherosclerosis and Alzheimer’s disease: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Quesada, J.L.; Otal-Entraigas, C.; Franco, M.; Jorba, O.; Gonzalez-Sastre, F.; Blanco-Vaca, F.; Ordonez-Llanos, J. Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with heterozygous familial hypercholesterolemia. Am. J. Cardiol. 1999, 84, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Matsunaga, A.; Rainwater, D.L.; Miura, S.; Noda, K.; Nishikawa, H.; Uehara, Y.; Shirai, K.; Ogawa, M.; Saku, K. Effects of rosuvastatin on electronegative LDL as characterized by capillary isotachophoresis: The ROSARY Study. J. Lipid Res. 2009, 50, 1832–1841. [Google Scholar] [CrossRef] [Green Version]
- Nakano, K.; Hasegawa, G.; Fukui, M.; Yamasaki, M.; Ishihara, K.; Takashima, T.; Kitagawa, Y.; Fujinami, A.; Ohta, M.; Hara, H.; et al. Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes. Endocr. J. 2010, 57, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, G.; Kajiyama, S.; Tanaka, T.; Imai, S.; Kozai, H.; Fujinami, A.; Ohta, M.; Obayashi, H.; Park, H.; Nakano, K.; et al. The alpha-glucosidase inhibitor acarbose reduces the net electronegative charge of low-density lipoprotein in patients with newly diagnosed type 2 diabetes. Clin. Chim. Acta 2008, 390, 110–114. [Google Scholar] [CrossRef]
- Sanchez-Quesada, J.L.; Perez, A.; Caixas, A.; Rigla, M.; Payes, A.; Benitez, S.; Ordonez-Llanos, J. Effect of glycemic optimization on electronegative low-density lipoprotein in diabetes: Relation to nonenzymatic glycosylation and oxidative modification. J. Clin. Endocrinol. Metab. 2001, 86, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Control (N = 40) | MCI (N = 22) | p-Value |
---|---|---|---|
Age, years, mean (±SD) 1 | 64.6 ± 5.2 | 66.6 ± 7.0 | 0.209 |
Sex, man, n (%) 2 | 9 (22.5%) | 8 (36.4%) | 0.242 |
Education, years, mean (±SD) 1 | 13.3 ± 3.6 | 10.5 ± 3.6 | 0.005 ** |
MMSE-CE, score, mean (±SD) 1 | 28.4 ± 1.2 | 25.4 ± 2.6 | <0.001 ** |
CASI, score, mean (±SD) 1 | 93.3 ± 3.0 | 86.4 ± 5.0 | <0.001 ** |
LTM | 10.0 ± 0.2 | 10 ± 0.0 | 0.160 |
STM | 10.2 ± 1.4 | 8.0 ± 1.9 | <0.001 ** |
ATT | 7.5 ± 0.8 | 7.3 ± 0.8 | 0.301 |
CCT | 9.7 ± 0.7 | 8.4 ± 1.3 | <0.001 ** |
ORI | 18.0 ± 0.0 | 17.6 ± 1.5 | 0.268 |
ABS | 4.6 ± 1.4 | 3.8 ± 1.7 | 0.039 * |
JUD | 5.1 ± 0.6 | 5.0 ± 0.5 | 0.262 |
LAN | 10.0 ± 0.2 | 9.4 ± 0.9 | 0.007 ** |
FLU | 8.3 ± 1.7 | 7.3 ± 1.4 | 0.010 * |
VC | 9.9 ± 0.4 | 9.6 ± 0.7 | 0.124 |
APOE-ɛ4, n (%) 2 | 26 (65.0%) | 12 (54.5%) | 0.419 |
Hypertension, n (%) 2 | 14 (35.0%) | 9 (40.9%) | 0.645 |
DM, n (%)2 | 12 (30.0%) | 10 (45.5%) | 0.224 |
Hyperlipidemia, n (%) 2 | 4 (10.0%) | 2 (9.1%) | 1.000 |
Metabolic syndrome, n (%) 2 | 17 (42.5%) | 7 (31.8%) | 0.409 |
Characteristic | Control (N = 40) | MCI (N = 22) | p-Value |
---|---|---|---|
TC, mg/dL, mean (±SD) 1 | 189.2 ± 33.6 | 187.4 ± 34.0 | 0.838 |
HDL-C, mg/dL, mean (±SD) 1 | 53.4 ± 14.4 | 51.9 ± 10.0 | 0.681 |
LDL-C, mg/dL, mean (±SD) 1 | 116.0 ± 34.8 | 112.8 ± 29.9 | 0.714 |
L5, mg/dL, mean (±SD) 1 | 2.0 ± 1.7 | 1.5 ± 0.7 | 0.197 |
L5 ≥ 1.7 mg/dL, n (%) 2 | 19 (47.5%) | 8 (36.4%) | 0.397 |
L5%, mean (±SD) 1 | 1.9 ± 1.6 | 1.5 ± 0.8 | 0.140 |
L5% ≥ 1.6%, n (%) 2 | 15 (37.5%) | 8 (36.4%) | 0.929 |
MCI | ||||||
---|---|---|---|---|---|---|
L5 ≥ 1.7 mg/dL | p-Value | L5% ≥ 1.6% | p-Value | |||
No N = 14 | Yes N = 8 | No N = 14 | Yes N = 8 | |||
Age, years, mean (±SD) 1 | 65.3 ± 6.5 | 68.9 ± 7.7 | 0.257 | 66.0 ± 7.6 | 67.6 ± 6.0 | 0.613 |
Sex, man, n (%) 2 | 5 (35.7%) | 3 (37.5%) | 1.000 | 4 (28.6%) | 4 (50.0%) | 0.386 |
Education, years, mean (±SD) 1 | 11.1 ± 3.8 | 9.4 ± 3.0 | 0.276 | 11.6 ± 3.5 | 8.6 ± 3.0 | 0.062 |
MMSE-CE, score, mean (±SD) 1 | 26.0 ± 1.6 | 24.4 ± 3.6 | 0.261 | 26.0 ± 2.0 | 24.4 ± 3.2 | 0.159 |
CASI, score, mean (±SD) 1 | 87.7 ± 3.7 | 84.0 ± 6.3 | 0.096 | 87.5 ± 3.9 | 84.4 ± 6.3 | 0.158 |
LTM | 10.0 ± 0.0 | 10.0 ± 0.0 | N/A | 10.0 ± 0.0 | 10.0 ± 0.0 | N/A |
STM | 8.1 ± 2.0 | 7.8 ± 2.0 | 0.750 | 8.4 ± 1.8 | 7.3 ± 2.1 | 0.196 |
ATT | 7.4 ± 0.6 | 7.0 ± 0.9 | 0.215 | 7.4 ± 0.6 | 7.1 ± 1.0 | 0.508 |
CCT | 8.6 ± 1.2 | 8.1 ± 1.6 | 0.451 | 8.6 ± 1.4 | 8.1 ± 1.1 | 0.451 |
ORI | 18.0 ± 0.0 | 17.0 ± 2.4 | 0.286 | 17.9 ± 0.3 | 17.1 ± 2.5 | 0.390 |
ABS | 4.0 ± 1.9 | 3.4 ± 1.3 | 0.417 | 3.9 ± 1.9 | 3.5 ± 1.3 | 0.579 |
JUD | 5.1 ± 0.5 | 4.8 ± 0.5 | 0.139 | 4.9 ± 0.6 | 5.0 ± 0.0 | 0.671 |
LAN | 9.7 ± 0.5 | 8.9 ± 1.2 | 0.025 * | 9.7 ± 0.5 | 8.9 ± 1.2 | 0.025 * |
FLU | 7.3 ± 1.3 | 7.3 ± 1.5 | 0.954 | 7.0 ± 1.4 | 7.8 ± 13 | 0.219 |
VC | 9.6 ± 0.8 | 9.8 ± 0.7 | 0.592 | 9.7 ± 0.6 | 9.5 ± 0.9 | 0.519 |
Pearson Correlation Coefficient | MCI (N = 22) | |||||||
---|---|---|---|---|---|---|---|---|
TC | p-Value 1 | LDL-C | p-Value 1 | L5 | p-Value 1 | L5% | p-Value 1 | |
MMSE-CE | 0.182 | 0.416 | 0.137 | 0.542 | −0.409 | 0.059 | −0.434 * | 0.044 |
CASI | 0.188 | 0.403 | 0.142 | 0.528 | −0.431 * | 0.045 | −0.484 * | 0.023 |
LTM | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
STM | 0.179 | 0.426 | 0.169 | 0.452 | −0.290 | 0.191 | −0.325 | 0.140 |
ATT | 0.058 | 0.798 | 0.055 | 0.807 | −0.165 | 0.463 | −0.161 | 0.474 |
CCT | 0.107 | 0.637 | 0.047 | 0.835 | −0.075 | 0.739 | −0.133 | 0.556 |
ORI | 0.184 | 0.412 | 0.175 | 0.435 | −0.418 | 0.053 | −0.470 * | 0.027 |
ABS | 0.179 | 0.426 | 0.131 | 0.562 | −0.286 | 0.198 | −0.262 | 0.239 |
JUD | −0.120 | 0.595 | −0.199 | 0.374 | −0.196 | 0.383 | −0.036 | 0.872 |
LAN | 0.284 | 0.200 | 0.302 | 0.171 | −0.438 * | 0.042 | −0.533 * | 0.011 |
FLU | −0.257 | 0.248 | −0.286 | 0.196 | 0.089 | 0.695 | 0.154 | 0.492 |
VC | −0.031 | 0.891 | 0.003 | 0.990 | 0.057 | 0.802 | −0.173 | 0.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, P.-S.; Chen, S.C.-J.; Hsu, C.-Y.; Liou, L.-M.; Juan, C.-H.; Lai, C.-L. The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment. J. Pers. Med. 2023, 13, 192. https://doi.org/10.3390/jpm13020192
Chou P-S, Chen SC-J, Hsu C-Y, Liou L-M, Juan C-H, Lai C-L. The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment. Journal of Personalized Medicine. 2023; 13(2):192. https://doi.org/10.3390/jpm13020192
Chicago/Turabian StyleChou, Ping-Song, Sharon Chia-Ju Chen, Chung-Yao Hsu, Li-Min Liou, Chi-Hung Juan, and Chiou-Lian Lai. 2023. "The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment" Journal of Personalized Medicine 13, no. 2: 192. https://doi.org/10.3390/jpm13020192
APA StyleChou, P. -S., Chen, S. C. -J., Hsu, C. -Y., Liou, L. -M., Juan, C. -H., & Lai, C. -L. (2023). The Association between Electronegative Low-Density Lipoprotein Cholesterol L5 and Cognitive Functions in Patients with Mild Cognitive Impairment. Journal of Personalized Medicine, 13(2), 192. https://doi.org/10.3390/jpm13020192