Genetic Variants Determine Treatment Response in Autoimmune Hepatitis
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Laboratory Evaluation and SNP Genotyping
2.3. Liver Biopsy Workup
2.4. Statistical Analysis
3. Results
3.1. Patient Cohort Baseline Characteristics
3.2. Prevalence of Risk Alleles
3.3. Activity and Stage of Liver Disease at Diagnosis
3.4. Response to Therapy
3.5. Elderly Patients
3.6. Polygenic Risk Score
3.7. Risk Factor Analysis for Non-Response
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Werner, M.; Prytz, H.; Ohlsson, B.; Almer, S.; Bjornsson, E.; Bergquist, A.; Wallerstedt, S.; Sandberg-Gertzen, H.; Hultcrantz, R.; Sangfelt, P.; et al. Epidemiology and the initial presentation of autoimmune hepatitis in Sweden: A nationwide study. Scand. J. Gastroenterol. 2008, 43, 1232–1240. [Google Scholar] [CrossRef]
- Gronbaek, L.; Vilstrup, H.; Jepsen, P. Autoimmune hepatitis in Denmark: Incidence, prevalence, prognosis, and causes of death. A nationwide registry-based cohort study. J. Hepatol. 2014, 60, 612–617. [Google Scholar] [CrossRef]
- Floreani, A.; Niro, G.; Rosa Rizzotto, E.; Antoniazzi, S.; Ferrara, F.; Carderi, I.; Baldo, V.; Premoli, A.; Olivero, F.; Morello, E.; et al. Type I autoimmune hepatitis: Clinical course and outcome in an Italian multicentre study. Aliment. Pharmacol. Ther. 2006, 24, 1051–1057. [Google Scholar] [CrossRef]
- Keating, J.J.; O’Brien, C.J.; Stellon, A.J.; Portmann, B.C.; Johnson, R.D.; Johnson, P.J.; Williams, R. Influence of aetiology, clinical and histological features on survival in chronic active hepatitis: An analysis of 204 patients. Q. J. Med. 1987, 62, 59–66. [Google Scholar]
- Soloway, R.D.; Summerskill, W.H.; Baggenstoss, A.H.; Geall, M.G.; Gitnick, G.L.; Elveback, I.R.; Schoenfield, L.J. Clinical, biochemical, and histological remission of severe chronic active liver disease: A controlled study of treatments and early prognosis. Gastroenterology 1972, 63, 820–833. [Google Scholar] [CrossRef]
- Feld, J.J.; Dinh, H.; Arenovich, T.; Marcus, V.A.; Wanless, I.R.; Heathcote, E.J. Autoimmune hepatitis: Effect of symptoms and cirrhosis on natural history and outcome. Hepatology 2005, 42, 53–62. [Google Scholar] [CrossRef]
- Tan, P.; Marotta, P.; Ghent, C.; Adams, P. Early treatment response predicts the need for liver transplantation in autoimmune hepatitis. Liver Int. 2005, 25, 728–733. [Google Scholar] [CrossRef]
- Werner, M.; Wallerstedt, S.; Lindgren, S.; Almer, S.; Bjornsson, E.; Bergquist, A.; Prytz, H.; Sandberg-Gertzen, H.; Hultcrantz, R.; Sangfelt, P.; et al. Characteristics and long-term outcome of patients with autoimmune hepatitis related to the initial treatment response. Scand. J. Gastroenterol. 2010, 45, 457–467. [Google Scholar] [CrossRef]
- Kirstein, M.M.; Metzler, F.; Geiger, E.; Heinrich, E.; Hallensleben, M.; Manns, M.P.; Vogel, A. Prediction of short- and long-term outcome in patients with autoimmune hepatitis. Hepatology 2015, 62, 1524–1535. [Google Scholar] [CrossRef]
- Montano-Loza, A.J.; Carpenter, H.A.; Czaja, A.J. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology 2007, 46, 1138–1145. [Google Scholar] [CrossRef]
- Czaja, A.J. Rapidity of treatment response and outcome in type 1 autoimmune hepatitis. J. Hepatol. 2009, 51, 161–167. [Google Scholar] [CrossRef]
- de Boer, Y.S.; van Gerven, N.M.; Zwiers, A.; Verwer, B.J.; van Hoek, B.; van Erpecum, K.J.; Beuers, U.; van Buuren, H.R.; Drenth, J.P.; den Ouden, J.W.; et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 2014, 147, 443–452.e5. [Google Scholar] [CrossRef] [Green Version]
- van Gerven, N.M.; de Boer, Y.S.; Zwiers, A.; Verwer, B.J.; Drenth, J.P.; van Hoek, B.; van Erpecum, K.J.; Beuers, U.; van Buuren, H.R.; den Ouden, J.W.; et al. HLA-DRB1*03:01 and HLA-DRB1*04:01 modify the presentation and outcome in autoimmune hepatitis type-1. Genes Immun. 2015, 16, 247–252. [Google Scholar] [CrossRef]
- Strettell, M.D.; Donaldson, P.T.; Thomson, L.J.; Santrach, P.J.; Moore, S.B.; Czaja, A.J.; Williams, R. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology 1997, 112, 2028–2035. [Google Scholar] [CrossRef]
- Muratori, P.; Czaja, A.J.; Muratori, L.; Pappas, G.; Maccariello, S.; Cassani, F.; Granito, A.; Ferrari, R.; Mantovani, V.; Lenzi, M.; et al. Genetic distinctions between autoimmune hepatitis in Italy and North America. World J. Gastroenterol. 2005, 11, 1862–1866. [Google Scholar] [CrossRef]
- Muratori, P.; Czaja, A.J.; Muratori, L.; Granito, A.; Guidi, M.; Ferri, S.; Volta, U.; Mantovani, W.; Pappas, G.; Cassani, F.; et al. Evidence of a genetic basis for the different geographic occurrences of liver/kidney microsomal antibody type 1 in hepatitis C. Dig. Dis. Sci. 2007, 52, 179–184. [Google Scholar] [CrossRef]
- Ma, Y.; Okamoto, M.; Thomas, M.G.; Bogdanos, D.P.; Lopes, A.R.; Portmann, B.; Underhill, J.; Durr, R.; Mieli-Vergani, G.; Vergani, D. Antibodies to conformational epitopes of soluble liver antigen define a severe form of autoimmune liver disease. Hepatology 2002, 35, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Zachou, K.; Weiler-Normann, C.; Muratori, L.; Muratori, P.; Lohse, A.W.; Dalekos, G.N. Permanent immunosuppression in SLA/LP-positive autoimmune hepatitis is required although overall response and survival are similar. Liver Int. 2020, 40, 368–376. [Google Scholar] [CrossRef]
- Mederacke, Y.S.; Kirstein, M.M.; Grosshennig, A.; Marhenke, S.; Metzler, F.; Manns, M.P.; Vogel, A.; Mederacke, I. The PNPLA3 rs738409 GG genotype is associated with poorer prognosis in 239 patients with autoimmune hepatitis. Aliment. Pharmacol. Ther. 2020, 51, 1160–1168. [Google Scholar] [CrossRef] [Green Version]
- Janik, M.K.; Smyk, W.; Kruk, B.; Szczepankiewicz, B.; Gornicka, B.; Lebiedzinska-Arciszewska, M.; Potes, Y.; Simoes, I.C.M.; Weber, S.N.; Lammert, F.; et al. MARC1 p.A165T variant is associated with decreased markers of liver injury and enhanced antioxidant capacity in autoimmune hepatitis. Sci. Rep. 2021, 11, 24407. [Google Scholar] [CrossRef]
- Stickel, F.; Buch, S.; Lau, K.; Meyer zu Schwabedissen, H.; Berg, T.; Ridinger, M.; Rietschel, M.; Schafmayer, C.; Braun, F.; Hinrichsen, H.; et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 2011, 53, 86–95. [Google Scholar] [CrossRef]
- Buch, S.; Stickel, F.; Trepo, E.; Way, M.; Herrmann, A.; Nischalke, H.D.; Brosch, M.; Rosendahl, J.; Berg, T.; Ridinger, M.; et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 2015, 47, 1443–1448. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011, 53, 1883–1894. [Google Scholar] [CrossRef]
- Liu, Y.L.; Reeves, H.L.; Burt, A.D.; Tiniakos, D.; McPherson, S.; Leathart, J.B.; Allison, M.E.; Alexander, G.J.; Piguet, A.C.; Anty, R.; et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 2014, 5, 4309. [Google Scholar] [CrossRef] [Green Version]
- Mancina, R.M.; Dongiovanni, P.; Petta, S.; Pingitore, P.; Meroni, M.; Rametta, R.; Boren, J.; Montalcini, T.; Pujia, A.; Wiklund, O.; et al. The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent. Gastroenterology 2016, 150, 1219–1230.e6. [Google Scholar] [CrossRef] [Green Version]
- Pirola, C.J.; Garaycoechea, M.; Flichman, D.; Arrese, M.; San Martino, J.; Gazzi, C.; Castano, G.O.; Sookoian, S. Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease. J. Lipid Res. 2019, 60, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Abul-Husn, N.S.; Cheng, X.; Li, A.H.; Xin, Y.; Schurmann, C.; Stevis, P.; Liu, Y.; Kozlitina, J.; Stender, S.; Wood, G.C.; et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N. Engl. J. Med. 2018, 378, 1096–1106. [Google Scholar] [CrossRef]
- Brissot, P.; Pietrangelo, A.; Adams, P.C.; de Graaff, B.; McLaren, C.E.; Loreal, O. Haemochromatosis. Nat. Rev. Dis. Primers 2018, 4, 18016. [Google Scholar] [CrossRef]
- Schaefer, E.A.; Chung, R.T. The impact of human gene polymorphisms on HCV infection and disease outcome. Semin. Liver Dis. 2011, 31, 375–386. [Google Scholar] [CrossRef]
- Chang, I.J.; Hahn, S.H. The genetics of Wilson disease. Handb. Clin. Neurol. 2017, 142, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Hennes, E.M.; Zeniya, M.; Czaja, A.J.; Pares, A.; Dalekos, G.N.; Krawitt, E.L.; Bittencourt, P.L.; Porta, G.; Boberg, K.M.; Hofer, H.; et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008, 48, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Muratori, P.; Ferri, S.; Pappas, G.; Quarneti, C.; Lenzi, M.; Bianchi, F.B.; Muratori, L. Diagnosis and therapy of autoimmune hepatitis. Mini Rev. Med. Chem. 2009, 9, 847–860. [Google Scholar] [CrossRef]
- Pape, S.; Snijders, R.; Gevers, T.J.G.; Chazouilleres, O.; Dalekos, G.N.; Hirschfield, G.M.; Lenzi, M.; Trauner, M.; Manns, M.P.; Vierling, J.M.; et al. Systematic review of response criteria and endpoints in autoimmune hepatitis by the International Autoimmune Hepatitis Group. J. Hepatol. 2022, 76, 841–849. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar] [CrossRef] [PubMed]
- Mack, C.L.; Adams, D.; Assis, D.N.; Kerkar, N.; Manns, M.P.; Mayo, M.J.; Vierling, J.M.; Alsawas, M.; Murad, M.H.; Czaja, A.J. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology 2020, 72, 671–722. [Google Scholar] [CrossRef] [Green Version]
- Granito, A.; Muratori, L.; Pappas, G.; Muratori, P.; Ferri, S.; Cassani, F.; Lenzi, M.; Bianchi, F.B. Clinical features of type 1 autoimmune hepatitis in elderly Italian patients. Aliment. Pharmacol. Ther. 2005, 21, 1273–1277. [Google Scholar] [CrossRef]
- Balcar, L.; Semmler, G.; Oberkofler, H.; Zandanell, S.; Strasser, M.; Datz, L.; Niederseer, D.; Feldman, A.; Stickel, F.; Datz, C.; et al. PNPLA3 is the dominant SNP linked to liver disease severity at time of first referral to a tertiary center. Dig. Liver Dis. 2022, 54, 84–90. [Google Scholar] [CrossRef]
- Thabet, K.; Chan, H.L.Y.; Petta, S.; Mangia, A.; Berg, T.; Boonstra, A.; Brouwer, W.P.; Abate, M.L.; Wong, V.W.; Nazmy, M.; et al. The membrane-bound O-acyltransferase domain-containing 7 variant rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hepatology 2017, 65, 1840–1850. [Google Scholar] [CrossRef] [Green Version]
- Thabet, K.; Asimakopoulos, A.; Shojaei, M.; Romero-Gomez, M.; Mangia, A.; Irving, W.L.; Berg, T.; Dore, G.J.; Gronbaek, H.; Sheridan, D.; et al. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C. Nat. Commun. 2016, 7, 12757. [Google Scholar] [CrossRef] [Green Version]
- Thangapandi, V.R.; Knittelfelder, O.; Brosch, M.; Patsenker, E.; Vvedenskaya, O.; Buch, S.; Hinz, S.; Hendricks, A.; Nati, M.; Herrmann, A.; et al. Loss of hepatic Mboat7 leads to liver fibrosis. Gut 2021, 70, 940–950. [Google Scholar] [CrossRef]
- Invernizzi, P.; Pasini, S.; Selmi, C.; Gershwin, M.E.; Podda, M. Female predominance and X chromosome defects in autoimmune diseases. J. Autoimmun. 2009, 33, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Quintero, O.L.; Amador-Patarroyo, M.J.; Montoya-Ortiz, G.; Rojas-Villarraga, A.; Anaya, J.M. Autoimmune disease and gender: Plausible mechanisms for the female predominance of autoimmunity. J. Autoimmun. 2012, 38, J109–J119. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Iwasaki, Y.; Sakaguchi, K.; Shiratori, Y. Clinical features of Japanese male patients with type 1 autoimmune hepatitis. Aliment. Pharmacol. Ther. 2006, 24, 519–523. [Google Scholar] [CrossRef]
- Al-Chalabi, T.; Underhill, J.A.; Portmann, B.C.; McFarlane, I.G.; Heneghan, M.A. Impact of gender on the long-term outcome and survival of patients with autoimmune hepatitis. J. Hepatol. 2008, 48, 140–147. [Google Scholar] [CrossRef]
- Donaldson, P.T.; Doherty, D.G.; Hayllar, K.M.; McFarlane, I.G.; Johnson, P.J.; Williams, R. Susceptibility to autoimmune chronic active hepatitis: Human leukocyte antigens DR4 and A1-B8-DR3 are independent risk factors. Hepatology 1991, 13, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Czaja, A.J.; Donaldson, P.T. Gender effects and synergisms with histocompatibility leukocyte antigens in type 1 autoimmune hepatitis. Am. J. Gastroenterol. 2002, 97, 2051–2057. [Google Scholar] [CrossRef]
- Teo, K.; Abeysekera, K.W.M.; Adams, L.; Aigner, E.; Anstee, Q.M.; Banales, J.M.; Banerjee, R.; Basu, P.; Berg, T.; Bhatnagar, P.; et al. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. J. Hepatol. 2021, 74, 20–30. [Google Scholar] [CrossRef]
- Freund, C.; Wahlers, A.; Begli, N.H.; Leopold, Y.; Kloters-Plachky, P.; Mehrabi, A.; Mohr, I.; Sander, J.; Rupp, C.; Gotthardt, D.N.; et al. The MBOAT7 rs641738 variant is associated with an improved outcome in primary sclerosing cholangitis. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 646–652. [Google Scholar] [CrossRef]
- Bianco, C.; Jamialahmadi, O.; Pelusi, S.; Baselli, G.; Dongiovanni, P.; Zanoni, I.; Santoro, L.; Maier, S.; Liguori, A.; Meroni, M.; et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol. 2021, 74, 775–782. [Google Scholar] [CrossRef]
- De Vincentis, A.; Tavaglione, F.; Jamialahmadi, O.; Picardi, A.; Antonelli Incalzi, R.; Valenti, L.; Romeo, S.; Vespasiani-Gentilucci, U. A Polygenic Risk Score to Refine Risk Stratification and Prediction for Severe Liver Disease by Clinical Fibrosis Scores. Clin. Gastroenterol. Hepatol. 2022, 20, 658–673. [Google Scholar] [CrossRef]
- Brunham, L.R.; Trinder, M. Polygenic risk scores for the diagnosis and management of dyslipidemia. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.K.; Shivakumar, M.; Lee, S.M.; Verma, A.; Kim, D. Dissecting the clinical relevance of polygenic risk score for obesity-a cross-sectional, longitudinal analysis. Int. J. Obes. 2022, 46, 1686–1693. [Google Scholar] [CrossRef]
- Klarin, D.; Natarajan, P. Clinical utility of polygenic risk scores for coronary artery disease. Nat. Rev. Cardiol. 2022, 19, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Pennells, L.; Kaptoge, S.; Nelson, C.P.; Ritchie, S.C.; Abraham, G.; Arnold, M.; Bell, S.; Bolton, T.; Burgess, S.; et al. Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses. PLoS Med. 2021, 18, e1003498. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef] [PubMed]
Median (IQR) or n (%) | |
---|---|
Sex (m/f) | 31/82 (27.4/72.6%) |
Age (years) | 57.9 (46.6–67.8) |
Cirrhosis at BL (n) | 14/113 (12.4%) |
BMI (kg/m2) | 25.0 (22.0–27.5) |
Cholesterol (mg/dL) | 190.8 (147.5–227.0) |
CRP (mg/dl) | 0.4 (0.1–1.1) |
ALT (×ULN) | 7.6 (1.9–19.3) |
AST (×ULN) | 5.9 (1.7–16.4) |
ALP (×ULN) | 1.2 (0.8–1.8) |
GGT (×ULN) | 4.3 (1.8–7.1) |
Bilirubin (×ULN) | 1.1 (0.6–3.1) |
Prothrombin time (%) | 87.5 (71.2–100.0) |
Albumin (g/dL) | 1.2 (0.6–8.8) |
Hemoglobin (g/dL) | 13.9 (13.0–14.7) |
WBC (G/L) | 5.6 (4.7–7.2) |
Thrombocytes (G/L) | 201 (159–244) |
IgG (g/L) | 18.8 (14.1–27.3) |
Diabetes mellitus (n) | 9/113 (8.0%) |
Wildtype | Heterozygous | Homozygous | p-Value | |
---|---|---|---|---|
PNPLA3 | ||||
Mortality | 2/40 | 1/31 | 2/10 | 0.145 |
ESLD | 7/40 | 7/31 | 2/10 | 0.867 |
TM6SF2 | ||||
Mortality | 5/67 | 0/14 | 0 | 0.291 |
ESLD | 15/67 | 1/14 | 0 | 0.193 |
HSD17B13 | ||||
Mortality | 2/41 | 3/29 | 0/11 | 0.424 |
ESLD | 8/41 | 7/29 | 1/11 | 0.565 |
MBOAT7 | ||||
Mortality | 2/25 | 2/38 | 1/18 | 0.900 |
ESLD | 6/25 | 7/38 | 3/18 | 0.939 |
Polygenic Risk Score | n (%) |
---|---|
−2 | 3 (3.7%) |
−1 | 6 (7.4%) |
0 | 17 (21.0%) |
1 | 26 (32.1%) |
2 | 16 (19.8%) |
3 | 10 (12.3%) |
4 | 3 (3.7%) |
PRS (mean ± SD) | Treatment response group (n) |
0.81 ± 1.42 | complete remission (32) |
1.03 ± 1.22 | partial remission (35) |
2.14 ± 1.77 | non-response (7) |
OR | 95% CI | p-Value | |
---|---|---|---|
Age | 0.999 | 0.951–1.050 | 0.979 |
Male gender | 14.455 | 1.806–115.672 | 0.012 * |
PNPLA3-rs738409 mutant allele | 0.652 | 0.096–4.416 | 0.552 |
TM6SF2- rs58542926 K-allele | 3.340 | 0.421–26.492 | 0.254 |
HSD17B13-rs72613567 dupA | 0.245 | 0.035–1.708 | 0.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zandanell, S.; Balcar, L.; Semmler, G.; Schirmer, A.; Leitner, I.; Rosenstatter, L.; Niederseer, D.; Sotlar, K.; Schneider, A.-M.; Strasser, M.; et al. Genetic Variants Determine Treatment Response in Autoimmune Hepatitis. J. Pers. Med. 2023, 13, 540. https://doi.org/10.3390/jpm13030540
Zandanell S, Balcar L, Semmler G, Schirmer A, Leitner I, Rosenstatter L, Niederseer D, Sotlar K, Schneider A-M, Strasser M, et al. Genetic Variants Determine Treatment Response in Autoimmune Hepatitis. Journal of Personalized Medicine. 2023; 13(3):540. https://doi.org/10.3390/jpm13030540
Chicago/Turabian StyleZandanell, Stephan, Lorenz Balcar, Georg Semmler, Alex Schirmer, Isabella Leitner, Lea Rosenstatter, David Niederseer, Karl Sotlar, Anna-Maria Schneider, Michael Strasser, and et al. 2023. "Genetic Variants Determine Treatment Response in Autoimmune Hepatitis" Journal of Personalized Medicine 13, no. 3: 540. https://doi.org/10.3390/jpm13030540
APA StyleZandanell, S., Balcar, L., Semmler, G., Schirmer, A., Leitner, I., Rosenstatter, L., Niederseer, D., Sotlar, K., Schneider, A.-M., Strasser, M., Gensluckner, S., Feldman, A., Datz, C., & Aigner, E. (2023). Genetic Variants Determine Treatment Response in Autoimmune Hepatitis. Journal of Personalized Medicine, 13(3), 540. https://doi.org/10.3390/jpm13030540