Hiccup-like Contractions in Mechanically Ventilated Patients: Individualized Treatment Guided by Transpulmonary Pressure
Abstract
:1. Introduction
2. Detailed Cases Description
2.1. Case 1
2.2. Case 2
2.3. Case 3
3. Discussion
3.1. Hiccups-like Contractions and Dynamic Lung Stress and Strain
3.2. Hiccup-like Contractions and Static Lung Stress
3.3. Hiccup-like Contractions and Patient-Ventilator Synchrony
3.4. Hiccup-like Contractions and Diaphragm
3.5. Unanswered Questions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Pes | Esophageal pressure |
Pgas | Gastric pressure |
Pdi | Transdiaphragmatic pressure |
PL | Transpulmonary pressure |
Paw | Airway pressure |
ΔPes | Esophageal pressure swings |
ΔPL | Transpulmonary pressure swings |
VT | Tidal volume |
References
- Rajagopalan, V.; Sengupta, D.; Goyal, K.; Dube, S.K.; Bindra, A.; Kedia, S. Hiccups in Neurocritical Care. J. Neurocritical Care 2021, 14, 18–28. [Google Scholar] [CrossRef]
- Remtulla, H.; Bolton, C.F.; Chen, R. Electrophysiological Study of Diaphragmatic Myoclonus. J. Neurol. Neurosurg. Psychiatry 1995, 58, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Rigatto, M.; De Medeiros, N.P. Diaphragmatic Flutter Report of a Case and Review of Literature. Am. J. Med. 1962, 32, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.-Y.; Lu, C.-L. Hiccup: Mystery, Nature and Treatment. J. Neurogastroenterol. Motil. 2012, 18, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Espay, A.J.; Fox, S.H.; Marras, C.; Lang, A.E.; Chen, R. Isolated Diaphragmatic Tremor: Is There a Spectrum in “Respiratory Myoclonus”? Neurology 2007, 69, 689–692. [Google Scholar] [CrossRef]
- Iliceto, G.; Thompson, P.D.; Day, B.L.; Rothwell, J.C.; Lees, A.J.; Marsden, C.D. Diaphragmatic Flutter, the Moving Umbilicus Syndrome, and “Belly Dancer’s” Dyskinesia. Mov. Disord. 1990, 5, 15–22. [Google Scholar] [CrossRef]
- Hahn, A.; Neubauer, B.A. Epileptic Diaphragm Myoclonus. Epileptic Disord. 2012, 14, 418–421. [Google Scholar] [CrossRef]
- Phillips, J.R.; Eldridge, F.L. Respiratory Myoclonus (Leeuwenhoek’s Disease). N. Engl. J. Med. 1973, 27, 1390–1395. [Google Scholar] [CrossRef]
- Mauri, T.; Bellani, G.; Confalonieri, A.; Tagliabue, P.; Turella, M.; Coppadoro, A.; Citerio, G.; Patroniti, N.; Pesenti, A. Topographic Distribution of Tidal Ventilation in Acute Respiratory Distress Syndrome: Effects of Positive End-Expiratory Pressure and Pressure Support. Crit. Care Med. 2013, 41, 1664–1673. [Google Scholar] [CrossRef]
- Fredericks, A.S.; Bunker, M.P.; Gliga, L.A.; Ebeling, C.G.; Ringqvist, J.R.; Heravi, H.; Manley, J.; Valladares, J.; Romito, B.T. Airway Pressure Release Ventilation: A Review of the Evidence, Theoretical Benefits, and Alternative Titration Strategies. Clin. Med. Insights Circ. Respir. Pulm. Med. 2020, 14, 117954842090329. [Google Scholar] [CrossRef] [Green Version]
- Su, P.-L.; Zhao, Z.; Ko, Y.-F.; Chen, C.-W.; Cheng, K.-S. Spontaneous Breathing and Pendelluft in Patients with Acute Lung Injury: A Narrative Review. J. Clin. Med. 2022, 11, 7449. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Kallet, R.H.; Ware, L.B.; Matthay, M.A. Negative-Pressure Pulmonary Edema. Chest 2016, 150, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Fujino, Y.; Amato, M.B.P.; Kavanagh, B.P. FIFTY YEARS OF RESEARCH IN ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am. J. Respir. Crit. Care Med. 2017, 195, 985–992. [Google Scholar] [CrossRef]
- Yoshida, T.; Roldan, R.; Beraldo, M.A.; Torsani, V.; Gomes, S.; De Santis, R.R.; Costa, E.L.V.; Tucci, M.R.; Lima, R.G.; Kavanagh, B.P.; et al. Spontaneous Effort During Mechanical Ventilation: Maximal Injury with Less Positive End-Expiratory Pressure*. Crit. Care Med. 2016, 44, e678–e688. [Google Scholar] [CrossRef]
- Katira, B.H.; Engelberts, D.; Bouch, S.; Fliss, J.; Bastia, L.; Osada, K.; Connelly, K.A.; Amato, M.B.P.; Ferguson, N.D.; Kuebler, W.M.; et al. Repeated Endo-Tracheal Tube Disconnection Generates Pulmonary Edema in a Model of Volume Overload: An Experimental Study. Crit. Care 2022, 26, 47. [Google Scholar] [CrossRef]
- Yoshida, T.; Grieco, D.L.; Brochard, L.; Fujino, Y. Patient Self-Inflicted Lung Injury and Positive End-Expiratory Pressure for Safe Spontaneous Breathing. Curr. Opin. Crit. Care 2020, 26, 59–65. [Google Scholar] [CrossRef]
- Yoshida, T.; Amato, M.B.P.; Kavanagh, B.P.; Fujino, Y. Impact of Spontaneous Breathing during Mechanical Ventilation in Acute Respiratory Distress Syndrome. Curr. Opin. Crit. Care 2019, 25, 192–198. [Google Scholar] [CrossRef]
- Coppadoro, A.; Grassi, A.; Giovannoni, C.; Rabboni, F.; Eronia, N.; Bronco, A.; Foti, G.; Fumagalli, R.; Bellani, G. Occurrence of Pendelluft under Pressure Support Ventilation in Patients Who Failed a Spontaneous Breathing Trial: An Observational Study. Ann. Intensive Care 2020, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ning, Y.; He, L.; Pan, K.; Xiong, X.; Jing, S.; Hu, J.; Luo, J.; Ye, D.; Mei, Z.; et al. Pendelluft as a Predictor of Weaning in Critically Ill Patients: An Observational Cohort Study. Front. Physiol. 2023, 14, 1113379. [Google Scholar] [CrossRef]
- Cornejo, R.A.; Arellano, D.H.; Ruiz-Rudolph, P.; Guiñez, D.V.; Morais, C.C.A.; Gajardo, A.I.J.; Lazo, M.T.; Brito, R.E.; Cerda, M.A.; González, S.J.; et al. Inflammatory Biomarkers and Pendelluft Magnitude in Ards Patients Transitioning from Controlled to Partial Support Ventilation. Sci. Rep. 2022, 12, 20233. [Google Scholar] [CrossRef]
- Protti, A.; Andreis, D.T.; Monti, M.; Santini, A.; Sparacino, C.C.; Langer, T.; Votta, E.; Gatti, S.; Lombardi, L.; Leopardi, O.; et al. Lung Stress and Strain During Mechanical Ventilation: Any Difference Between Statics and Dynamics? Crit. Care Med. 2013, 41, 1046–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiumello, D.; Carlesso, E.; Cadringher, P.; Caironi, P.; Valenza, F.; Polli, F.; Tallarini, F.; Cozzi, P.; Cressoni, M.; Colombo, A.; et al. Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2008, 178, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goligher, E.C.; Jonkman, A.H.; Dianti, J.; Vaporidi, K.; Beitler, J.R.; Patel, B.K.; Yoshida, T.; Jaber, S.; Dres, M.; Mauri, T.; et al. Clinical Strategies for Implementing Lung and Diaphragm-Protective Ventilation: Avoiding Insufficient and Excessive Effort. Intensive Care Med. 2020, 46, 2314–2326. [Google Scholar] [CrossRef] [PubMed]
- Akoumianaki, E.; Maggiore, S.M.; Valenza, F.; Bellani, G.; Jubran, A.; Loring, S.H.; Pelosi, P.; Talmor, D.; Grasso, S.; Chiumello, D.; et al. The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. Am. J. Respir. Crit. Care Med. 2014, 189, 520–531. [Google Scholar] [CrossRef]
- Grieco, D.L.; Chen, L.; Brochard, L. Transpulmonary Pressure: Importance and Limits. Ann. Transl. Med. 2017, 5, 285. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Amato, M.B.P.; Grieco, D.L.; Chen, L.; Lima, C.A.S.; Roldan, R.; Morais, C.C.A.; Gomes, S.; Costa, E.L.V.; Cardoso, P.F.G.; et al. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am. J. Respir. Crit. Care Med. 2018, 197, 1018–1026. [Google Scholar] [CrossRef]
- Beitler, J.R.; Sands, S.A.; Loring, S.H.; Owens, R.L.; Malhotra, A.; Spragg, R.G.; Matthay, M.A.; Thompson, B.T.; Talmor, D. Quantifying Unintended Exposure to High Tidal Volumes from Breath Stacking Dyssynchrony in ARDS: The BREATHE Criteria. Intensive Care Med. 2016, 42, 1427–1436. [Google Scholar] [CrossRef] [Green Version]
- Pohlman, M.C.; McCallister, K.E.; Schweickert, W.D.; Pohlman, A.S.; Nigos, C.P.; Krishnan, J.A.; Charbeneau, J.T.; Gehlbach, B.K.; Kress, J.P.; Hall, J.B. Excessive Tidal Volume from Breath Stacking during Lung-Protective Ventilation for Acute Lung Injury. Crit. Care Med. 2008, 36, 3019–3023. [Google Scholar] [CrossRef]
- Sousa, M.L.E.A.; Magrans, R.; Hayashi, F.K.; Blanch, L.; Kacmarek, R.M.; Ferreira, J.C. Clusters of Double Triggering Impact Clinical Outcomes: Insights from the EPIdemiology of Patient-Ventilator ASYNChrony (EPISYNC) Cohort Study. Crit. Care Med. 2021, 49, 1460–1469. [Google Scholar] [CrossRef]
- Menga, L.S.; Cammareri, G.; Jovanovic, T.; Dell’Anna, A.M.; Grieco, D.L.; Antonelli, M. Diaphragm Myoclonus-Induced Autotriggering during Neurally Adjusted Ventilatory Assist. Intensive Care Med. 2018, 44, 2309–2311. [Google Scholar] [CrossRef]
- Dres, M.; Goligher, E.C.; Heunks, L.M.A.; Brochard, L.J. Critical Illness-Associated Diaphragm Weakness. Intensive Care Med. 2017, 43, 1441–1452. [Google Scholar] [CrossRef]
- Goligher, E.C.; Fan, E.; Herridge, M.S.; Murray, A.; Vorona, S.; Brace, D.; Rittayamai, N.; Lanys, A.; Tomlinson, G.; Singh, J.M.; et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am. J. Respir. Crit. Care Med. 2015, 192, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Van Haren, F.; Pham, T.; Brochard, L.; Bellani, G.; Laffey, J.; Dres, M.; Fan, E.; Goligher, E.C.; Heunks, L.; Lynch, J.; et al. Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights from the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study. Crit. Care Med. 2019, 47, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic Variation and Exercise-Induced Muscle Damage: Implications for Athletic Performance, Injury and Ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-C.; Ebihara, S.; Dwairi, Q.E.; Hussain, S.N.A.; Yang, L.; Gottfried, S.B.; Comtois, A.; Petrof, B.J. Diaphragm Sarcolemmal Injury Is Induced by Sepsis and Alleviated by Nitric Oxide Synthase Inhibition. Am. J. Respir. Crit. Care Med. 1998, 158, 1656–1663. [Google Scholar] [CrossRef] [Green Version]
- Orozco-Levi, M.; Lloreta, J.; Minguella, J.; Serrano, S.; Broquetas, J.M.; Gea, J. Injury of the Human Diaphragm Associated with Exertion and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 164, 1734–1739. [Google Scholar] [CrossRef]
- Reid, W.D.; Belcastro, A.N. Time Course of Diaphragm Injury and Calpain Activity During Resistive Loading. Am. J. Respir. Crit. Care Med. 2000, 162, 1801–1806. [Google Scholar] [CrossRef]
- Reid, W.D.; Huang, J.; Bryson, S.; Walker, D.C.; Belcastro, A.N. Diaphragm Injury and Myofibrillar Structure Induced by Resistive Loading. J. Appl. Physiol. 1994, 76, 176–184. [Google Scholar] [CrossRef]
- Reid, W.D.; Belcastro, A.N. Chronic Resistive Loading Induces Diaphragm Injury and Ventilatory Failure in the Hamster. Respir. Physiol. 1999, 118, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Shimatani, T.; Shime, N.; Nakamura, T.; Ohshimo, S.; Hotz, J.; Khemani, R.G. Neurally Adjusted Ventilatory Assist Mitigates Ventilator-Induced Diaphragm Injury in Rabbits. Respir. Res. 2019, 20, 293. [Google Scholar] [CrossRef] [Green Version]
- Goligher, E.C.; Dres, M.; Patel, B.K.; Sahetya, S.K.; Beitler, J.R.; Telias, I.; Yoshida, T.; Vaporidi, K.; Grieco, D.L.; Schepens, T.; et al. Lung- and Diaphragm-Protective Ventilation. Am. J. Respir. Crit. Care Med. 2020, 202, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Vaporidi, K.; Akoumianaki, E.; Telias, I.; Goligher, E.C.; Brochard, L.; Georgopoulos, D. Respiratory Drive in Critically Ill Patients. Pathophysiology and Clinical Implications. Am. J. Respir. Crit. Care Med. 2020, 201, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Akoumianaki, E.; Lyazidi, A.; Rey, N.; Matamis, D.; Perez-Martinez, N.; Giraud, R.; Mancebo, J.; Brochard, L.; Richard, J.-C.M. Mechanical Ventilation-Induced Reverse-Triggered Breaths. Chest 2013, 143, 927–938. [Google Scholar] [CrossRef]
- Blanch, L.; Villagra, A.; Sales, B.; Montanya, J.; Lucangelo, U.; Luján, M.; García-Esquirol, O.; Chacón, E.; Estruga, A.; Oliva, J.C.; et al. Asynchronies during Mechanical Ventilation Are Associated with Mortality. Intensive Care Med. 2015, 41, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Hedenstierna, G.; Roneus, A.; Segelsjö, M.; Larsson, A.; Perchiazzi, G. The Diaphragm Acts as a Brake during Expiration to Prevent Lung Collapse. Am. J. Respir. Crit. Care Med. 2017, 195, 1608–1616. [Google Scholar] [CrossRef]
- Vaporidi, K.; Babalis, D.; Chytas, A.; Lilitsis, E.; Kondili, E.; Amargianitakis, V.; Chouvarda, I.; Maglaveras, N.; Georgopoulos, D. Clusters of Ineffective Efforts during Mechanical Ventilation: Impact on Outcome. Intensive Care Med. 2017, 43, 184–191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akoumianaki, E.; Bolaki, M.; Prinianakis, G.; Konstantinou, I.; Panagiotarakou, M.; Vaporidi, K.; Georgopoulos, D.; Kondili, E. Hiccup-like Contractions in Mechanically Ventilated Patients: Individualized Treatment Guided by Transpulmonary Pressure. J. Pers. Med. 2023, 13, 984. https://doi.org/10.3390/jpm13060984
Akoumianaki E, Bolaki M, Prinianakis G, Konstantinou I, Panagiotarakou M, Vaporidi K, Georgopoulos D, Kondili E. Hiccup-like Contractions in Mechanically Ventilated Patients: Individualized Treatment Guided by Transpulmonary Pressure. Journal of Personalized Medicine. 2023; 13(6):984. https://doi.org/10.3390/jpm13060984
Chicago/Turabian StyleAkoumianaki, Evangelia, Maria Bolaki, Georgios Prinianakis, Ioannis Konstantinou, Meropi Panagiotarakou, Katerina Vaporidi, Dimitrios Georgopoulos, and Eumorfia Kondili. 2023. "Hiccup-like Contractions in Mechanically Ventilated Patients: Individualized Treatment Guided by Transpulmonary Pressure" Journal of Personalized Medicine 13, no. 6: 984. https://doi.org/10.3390/jpm13060984
APA StyleAkoumianaki, E., Bolaki, M., Prinianakis, G., Konstantinou, I., Panagiotarakou, M., Vaporidi, K., Georgopoulos, D., & Kondili, E. (2023). Hiccup-like Contractions in Mechanically Ventilated Patients: Individualized Treatment Guided by Transpulmonary Pressure. Journal of Personalized Medicine, 13(6), 984. https://doi.org/10.3390/jpm13060984