Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characteristics of Subjects
2.1.1. Characteristics of Tissue Samples
2.1.2. Characteristics of Selected Patients
2.2. Selection Criteria of Patient Tissue Samples
2.3. Selection Criteria of Control Tissue Samples
2.4. Routine Staining
2.5. Immunohistochemical (IHC) Analysis
2.5.1. LL-37
2.5.2. CD-163
2.5.3. IL-10
2.5.4. HBD-2
2.5.5. HBD-3
2.5.6. HBD-4
2.6. Assessment of Local Tissue Defense Factor Quantity
2.7. Statistical Analysis
2.7.1. Mann–Whitney U Test
2.7.2. Spearman’s Rank Correlation
3. Results
3.1. Routine Staining
3.2. LL-37
3.3. CD-163
3.4. IL-10
3.5. HBD-2
3.6. HBD-3
3.7. HBD-4
3.8. Correlations in the Epithelium and the Connective Tissue of Cheilognathouranoschisis Affected Patient Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasreddine, G.; El Hajj, J.; Ghassibe-Sabbagh, M. Orofacial clefts embryology, classification, epidemiology, and genetics. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108373. [Google Scholar] [CrossRef] [PubMed]
- Pilmane, M.; Jain, N.; Jain, S.; Akota, I.; Kroiča, J. Quantification of Cytokines in Lip Tissue from Infants Affected by Congenital Cleft Lip and Palate. Children 2021, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Kempa, I.; Ambrozaitytė, L.; Stavusis, J.; Akota, I.; Barkane, B.; Krumina, A.; Matulevičienė, A.; Utkus, A.; Kučinskas, V.; Lace, B. Association of BMP4 polymorphisms with non-syndromic cleft lip with or without cleft palate and isolated cleft palate in Latvian and Lithuanian populations. Stomatologija 2014, 16, 94–101. [Google Scholar] [PubMed]
- Vaivads, M.; Akota, I.; Pilmane, M. Characterization of SHH, SOX3, WNT3A and WNT9B Proteins in Human Non-Syndromic Cleft Lip and Palate Tissue. Dent. J. 2023, 11, 151. [Google Scholar] [CrossRef]
- Worley, M.L.; Patel, K.G.; Kilpatrick, L.A. Cleft Lip and Palate. Clin. Perinatol. 2018, 45, 661–678. [Google Scholar] [CrossRef]
- Vieira, A.R.; Pliss, L.; Pelnena, I.; Krumina, A.; Baumanis, V.; Lace, B. Mitochondrial DNA origins of the Latvian clefting population. Mitochondrion 2011, 11, 357–359. [Google Scholar] [CrossRef]
- Lithovius, R.H.; Ylikontiola, L.P.; Harila, V.; Sándor, G.K. A descriptive epidemiology study of cleft lip and palate in Northern Finland. Acta Odontol. Scand. 2014, 72, 372–375. [Google Scholar] [CrossRef]
- Goida, J.; Pilmane, M. The Evaluation of FGFR1, FGFR2 and FOXO1 in Orofacial Cleft Tissue. Children 2022, 9, 516. [Google Scholar] [CrossRef]
- Jankovska, I.; Pilmane, M.; Akota, I. Expression of gene proteins, interleukins and β-defensin in cleft-affected tissue. Stomatologija 2017, 19, 103–108. [Google Scholar]
- Salari, N.; Darvishi, N.; Heydari, M.; Bokaee, S.; Darvishi, F.; Mohammadi, M. Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 110–120. [Google Scholar] [CrossRef]
- Zhou, F.; Su, Z.; Li, Q.; Wang, R.; Liao, Y.; Zhang, M.; Li, J. Characterization of Bacterial Differences Induced by Cleft-Palate-Related Spatial Heterogeneity. Pathogens 2022, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Lima, J.E.; Gomide, M.R.; Rosa, O.P. Clinical and microbiological evaluation of the periodontal status of children with unilateral complete cleft lip and palate. Cleft Palate Craniofacial J. 2003, 40, 585–589. [Google Scholar] [CrossRef]
- Nakamichi, Y.; Horibe, K.; Takahashi, N.; Udagawa, N. Roles of cathelicidins in inflammation and bone loss. Odontology 2014, 102, 137–146. [Google Scholar] [CrossRef]
- Khurshid, Z.; Naseem, M.; Yahya, I.A.F.; Mali, M.; Sannam Khan, R.; Sahibzada, H.A.; Zafar, M.S.; Faraz Moin, S.; Khan, E. Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. Biomolecules 2017, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Chinipardaz, Z.; Zhong, J.M.; Yang, S. Regulation of LL-37 in Bone and Periodontium Regeneration. Life 2022, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and Mechanisms of Human Cathelicidin LL-37 in Cancer. Cell. Physiol. Biochem. 2018, 47, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ji, S.; Si, J.; Zhang, X.; Wang, X.; Guo, Y.; Zou, X. Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis. Mol. Med. Rep. 2020, 22, 5243–5250. [Google Scholar] [CrossRef]
- Greer, A.; Zenobia, C.; Darveau, R.P. Defensins and LL-37: A review of function in the gingival epithelium. Periodontol. 2000 2013, 63, 67–79. [Google Scholar] [CrossRef]
- Moreno-Angarita, A.; Aragón, C.C.; Tobón, G.J. Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. J. Transl. Autoimmun. 2020, 3, 100029. [Google Scholar] [CrossRef]
- Ferrisse, T.M.; de Oliveira, A.B.; Palaçon, M.P.; Silva, E.V.; Massucato, E.M.S.; de Almeida, L.Y.; Léon, J.E.; Bufalino, A. The role of CD68+ and CD163+ macrophages in immunopathogenesis of oral lichen planus and oral lichenoid lesions. Immunobiology 2021, 226, 152072. [Google Scholar] [CrossRef]
- Sun, X.; Gao, J.; Meng, X.; Lu, X.; Zhang, L.; Chen, R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front. Immunol. 2021, 12, 763334. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Bian, T.; Chen, B.; Cui, D.; Li, L.; Gong, L.; Yan, F. β-defensin 3 modulates macrophage activation and orientation during acute inflammatory response to Porphyromonas gingivalis lipopolysaccharide. Cytokine 2017, 92, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Fukuda, T.; Zhang, Q.; Sanui, T.; Shinjo, T.; Kou, X.; Chen, C.; Liu, D.; Watanabe, Y.; Hayashi, C.; et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021, 122, 306–324. [Google Scholar] [CrossRef] [PubMed]
- Etzerodt, A.; Moestrup, S.K. CD163 and inflammation: Biological, diagnostic, and therapeutic aspects. Antioxid. Redox Signal 2013, 18, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Rutz, S.; Ouyang, W. Regulation of Interleukin-10 Expression. Adv. Exp. Med. Biol. 2016, 941, 89–116. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Takahashi, M.; Umehara, Y.; Yue, H.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Ikutama, R.; Okumura, K.; Ogawa, H.; Ikeda, S.; et al. The Antimicrobial Peptide Human β-Defensin-3 Accelerates Wound Healing by Promoting Angiogenesis, Cell Migration, and Proliferation Through the FGFR/JAK2/STAT3 Signaling Pathway. Front. Immunol. 2021, 12, 712781. [Google Scholar] [CrossRef]
- Özdemir, M.; Caglayan, F.; Bikker, F.J.; Pussinen, P.; Könönen, E.; Yamalik, N.; Gürsoy, M.; Fteita, D.; Nazmi, K.; Güncü, G.N.; et al. Gingival tissue human beta-defensin levels in relation to infection and inflammation. J. Clin. Periodontol. 2020, 47, 309–318. [Google Scholar] [CrossRef]
- Yilmaz, D.; Topcu, A.O.; Akcay, E.U.; Altındis, M.; Gursoy, U.K. Salivary human beta-defensins and cathelicidin levels in relation to periodontitis and type 2 diabetes mellitus. Acta Odontol. Scand. 2020, 78, 327–331. [Google Scholar] [CrossRef]
- Cieślik, M.; Bagińska, N.; Górski, A.; Jończyk-Matysiak, E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells 2021, 10, 2991. [Google Scholar] [CrossRef] [PubMed]
- Judge, C.J.; Reyes-Aviles, E.; Conry, S.J.; Sieg, S.S.; Feng, Z.; Weinberg, A.; Anthony, D.D. HBD-3 induces NK cell activation, IFN-γ secretion and mDC dependent cytolytic function. Cell Immunol. 2015, 297, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Vitenberga, Z.; Pilmane, M.; Babjoniševa, A. An Insight into COPD Morphopathogenesis: Chronic Inflammation, Remodeling, and Antimicrobial Defense. Medicina 2019, 55, 496. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Wang, Y.; Rao, N.; Li, J.; Li, X.; Fang, T.; Zhao, Y.; Ge, L. Activation and Biological Properties of Human β Defensin 4 in Stem Cells Derived From Human Exfoliated Deciduous Teeth. Front. Physiol. 2019, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Deņisova, A.; Pilmane, M.; Kažoka, D. Antimicrobial Peptides and Interleukins in Cleft Soft Palate. Children 2023, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Scheid, R.C.; Weiss, G. Woelfel’s Dental Anatomy; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2012. [Google Scholar]
- Suvarna, S.K.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Investig. Dermatol. 2007, 127, 594–604. [Google Scholar] [CrossRef]
- Umehara, Y.; Takahashi, M.; Yue, H.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Okumura, K.; Ogawa, H.; Niyonsaba, F. The Antimicrobial Peptides Human β-Defensins Induce the Secretion of Angiogenin in Human Dermal Fibroblasts. Int. J. Mol. Sci. 2022, 23, 8800. [Google Scholar] [CrossRef]
- Vaivads, M.; Akota, I.; Pilmane, M. Cleft Candidate Genes and Their Products in Human Unilateral Cleft Lip Tissue. Diseases 2021, 9, 26. [Google Scholar] [CrossRef]
- Vitenberga, Z.; Pilmane, M.; Babjoniševa, A. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways. Pathol. Res. Pract. 2019, 215, 97–105. [Google Scholar] [CrossRef]
- Barton, B.; Peat, J. Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Yanagi, S.; Ashitani, J.; Ishimoto, H.; Date, Y.; Mukae, H.; Chino, N.; Nakazato, M. Isolation of human beta-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir. Res. 2005, 6, 130. [Google Scholar] [CrossRef]
- Yanagi, S.; Ashitani, J.; Imai, K.; Kyoraku, Y.; Sano, A.; Matsumoto, N.; Nakazato, M. Significance of human beta-defensins in the epithelial lining fluid of patients with chronic lower respiratory tract infections. Clin. Microbiol. Infect. 2007, 13, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.; Wolgin, M.; Kielbassa, A.M.; Pries, A.; Zakrzewicz, A. Gene expression of human beta-defensins in healthy and inflamed human dental pulps. J. Endod. 2009, 35, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Noronha, S.A.; Noronha, S.M.; Lanziani, L.E.; Ipolito, M.Z.; Ferreira, L.M.; Gragnani, A. Human beta defensin-4 and keratinocyte growth factor gene expression in cultured keratinocyte and fibroblasts of burned patients. Acta Cir. Bras. 2014, 29 (Suppl. S3), 39–43. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Min, K.S.; Lee, S.I.; Shin, S.J.; Shin, K.S.; Kim, E.C. Effect of proinflammatory cytokines on the expression and regulation of human beta-defensin 2 in human dental pulp cells. J. Endod. 2010, 36, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Han, Y.; Miao, L.; Yue, Z.; Xu, M.; Liu, K.; Hou, J. Human β-defensins are correlated with the immune infiltration and regulated by vitamin D(3) in periodontitis. J. Periodontal Res. 2023, 58, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Viksne, R.J.; Sumeraga, G.; Pilmane, M. Antimicrobial and Defense Proteins in Chronic Rhinosinusitis with Nasal Polyps. Medicina 2023, 59, 1259. [Google Scholar] [CrossRef]
- Fusco, A.; Savio, V.; Donniacuo, M.; Perfetto, B.; Donnarumma, G. Antimicrobial Peptides Human Beta-Defensin-2 and -3 Protect the Gut During Candida albicans Infections Enhancing the Intestinal Barrier Integrity: In Vitro Study. Front. Cell Infect. Microbiol. 2021, 11, 666900. [Google Scholar] [CrossRef] [PubMed]
- Harder, J.; Meyer-Hoffert, U.; Wehkamp, K.; Schwichtenberg, L.; Schröder, J.M. Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J. Investig. Dermatol. 2004, 123, 522–529. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Ushio, H.; Nagaoka, I.; Okumura, K.; Ogawa, H. The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J. Immunol. 2005, 175, 1776–1784. [Google Scholar] [CrossRef]
- Huang, L.C.; Petkova, T.D.; Reins, R.Y.; Proske, R.J.; McDermott, A.M. Multifunctional roles of human cathelicidin (LL-37) at the ocular surface. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2369–2380. [Google Scholar] [CrossRef]
- Cui, D.; Lyu, J.; Li, H.; Lei, L.; Bian, T.; Li, L.; Yan, F. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. Mol. Immunol. 2017, 91, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Kanda, N.; Kamata, M.; Tada, Y.; Ishikawa, T.; Sato, S.; Watanabe, S. Human β-defensin-2 enhances IFN-γ and IL-10 production and suppresses IL-17 production in T cells. J. Leukoc. Biol. 2011, 89, 935–944. [Google Scholar] [CrossRef] [PubMed]
- van der Does, A.M.; Beekhuizen, H.; Ravensbergen, B.; Vos, T.; Ottenhoff, T.H.; van Dissel, J.T.; Drijfhout, J.W.; Hiemstra, P.S.; Nibbering, P.H. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J. Immunol. 2010, 185, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Soldati, K.R.; Toledo, F.A.; Aquino, S.G.; Rossa, C., Jr.; Deng, D.; Zandim-Barcelos, D.L. Smoking reduces cathelicidin LL-37 and human neutrophil peptide 1-3 levels in the gingival crevicular fluid of patients with periodontitis. J. Periodontol. 2021, 92, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, D.; Güncü, G.N.; Könönen, E.; Barış, E.; Çağlayan, F.; Gursoy, U.K. Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in Gingiva of Diabetics with Periodontitis. Immunobiology 2015, 220, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Ballestas, S.A.; Turner, T.C.; Kamalakar, A.; Stephenson, Y.C.; Willett, N.J.; Goudy, S.L.; Botchwey, E.A. Improving hard palate wound healing using immune modulatory autotherapies. Acta Biomater. 2019, 91, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Narayana, J.L.; Mishra, B.; Zhang, Y.; Wang, F.; Wang, C.; Zarena, D.; Lushnikova, T.; Wang, X. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. Adv. Exp. Med. Biol. 2019, 1117, 215–240. [Google Scholar] [CrossRef]
- Ridyard, K.E.; Overhage, J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics 2021, 10, 650. [Google Scholar] [CrossRef]
- Hareharen, K.; Kumar, P.; Panneerselvam, T.; Babu, D.; Sriraman, N. Investigating the effect of laser shock peening on the wear behaviour of selective laser melted 316L stainless steel. Opt. Laser Technol. 2023, 162, 109317. [Google Scholar] [CrossRef]
Patient Number | Age (Months) | Sex | Diagnosis | Surgery | Remarks |
---|---|---|---|---|---|
237 | 8 | M | Cheilognathouranoschisis sinistra | Veloplastic | Mother with CLP |
285 | 8 | F | Cheilognathouranoschisis dextra | Veloplastic | |
319 | 8 | F | Cheilognathouranoschisis sinistra | Veloplastic | |
335/1 | 8 | F | Cheilognathouranoschisis bilateralis | Veloplastic | |
335/2 | 8 | F | Cheilognathouranoschisis bilateralis | Veloplastic | |
261 | 9 | M | Cheilognathouranoschisis bilateralis | Veloplastic | |
276 | 9 | M | Cheilognathouranoschisis bilateralis | Veloplastic | |
326 | 9 | F | Cheilognathouranoschisis sinistra | Veloplastic | |
332 | 9 | M | Cheilognathouranoschisis dextra | Veloplastic | |
366 | 9 | M | Cheilognathouranoschisis sinistra | Veloplastic | |
233 | 10 | M | Cheilognathouranoschisis dextra | Veloplastic | |
298 | 11 | F | Cheilognathouranoschisis sinistra | Veloplastic | Mother smoked during pregnancy |
17 | 12 | F | Cheilognathouranoschisis dextra | Veloplastic | |
362 | 12 | F | Cheilognathouranoschisis dextra | Veloplastic | Paracetamol during pregnancy |
Control Number | Age | Sex | Cause of Death |
---|---|---|---|
2b | Newborn | M | Asphyxia by the umbilical cord |
3b | Newborn | F | Asphyxia by the umbilical cord |
4b | 24 weeks | F | Abortion due to the maternal health status |
5b | Newborn | F | Sudden death syndrome |
6b | Newborn | F | Sudden death syndrome |
Identifier Used | Explanation |
---|---|
0 | No positive structures in the visual field (0%) |
0/+ | Rare occurrence of positive structures in the visual field (12.5%) |
+ | Few positive structures in the visual field (25%) |
+/++ | Few to moderate numbers of positive structures in the visual field (37.5%) |
++ | Moderate number of positive structures in the visual field (50%) |
++/+++ | Moderate to numerous positive structures in the visual field (62.5%) |
+++ | Numerous positive structures in the visual field (75%) |
+++/++++ | Numerous to abundant positive structures in the visual field (87.5%) |
++++ | Abundance of positive structures in the visual field (100%) |
Sample Number | LL-37 | CD-163 | IL-10 | HBD-2 | HBD-3 | HBD-4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | CT | E | CT | E | CT | E | CT | E | CT | E | CT | |
2b | 0 | ++ | 0 | + | U | U | 0 | ++ | 0 | +++ | 0 | ++ |
3b | +/++ | ++ | + | ++ | ++ | 0 | +/++ | 0 | +++ | ++ | + | + |
4b | +++ | ++ | U | U | + | + | +/++ | + | 0 | + | 0 | + |
5b | ++/+++ | ++ | U | U | ++ | + | 0 | 0/+ | ++ | + | ++ | 0 |
6b | +/++ | ++ | ++ | ++ | U | U | + | 0 | +/++ | + | +++ | ++ |
Median | +/++ | ++ | + | ++ | ++ | + | + | 0/+ | +/++ | + | + | + |
Sample Number | LL-37 | CD-163 | IL-10 | HBD-2 | HBD-3 | HBD-4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | CT | E | CT | E | CT | E | CT | E | CT | E | CT | |
237 | ++++ | +++ | +/++ | +++ | +++ | + | +++ | ++ | +++ | 0 | +++ | 0 |
285 | ++ | +++ | 0 | + | 0 | 0/+ | 0 | 0 | 0 | 0 | 0 | 0 |
319 | +/++ | +++ | +/++ | + | ++ | + | +/++ | 0/+ | 0/+ | 0 | 0/+ | 0 |
335/1 | ++/+++ | ++ | 0 | 0 | 0/+ | 0 | +/++ | 0 | 0/+ | 0 | 0 | 0 |
335/2 | +/++ | 0 | 0/+ | 0 | +++ | + | 0 | 0/+ | 0 | 0 | 0 | + |
261 | ++ | ++ | +/++ | ++/+++ | +/++ | 0/+ | 0 | 0 | 0 | 0/+ | 0 | 0 |
276 | + | 0 | 0 | ++/+++ | ++ | ++ | 0 | ++ | ++ | 0 | 0 | 0 |
326 | +++ | +/++ | + | 0 | +++ | 0/+ | ++/+++ | +/++ | ++ | 0 | 0 | 0 |
332 | 0 | ++ | + | 0 | +/++ | ++ | 0/+ | + | + | + | 0 | 0 |
366 | 0 | 0 | 0 | 0/+ | 0 | 0/+ | 0 | +++ | 0 | 0 | 0 | 0 |
233 | N | ++ | N | +/++ | N | ++ | N | +/++ | N | +/++ | N | 0 |
298 | +/++ | +/++ | 0/+ | + | ++++ | +/++ | 0 | 0 | 0 | 0 | 0 | 0 |
17 | N | 0 | N | 0 | N | ++ | N | +/++ | N | + | N | 0/+ |
362 | 0 | 0 | 0 | 0/+ | 0 | +/++ | 0/+ | 0 | 0 | 0 | 0 | 0 |
Median | +/++ | ++ | 0/+ | + | ++ | + | 0/+ | + | 0/+ | 0 | 0 | 0 |
9 | LL-37 | CD-163 | IL-10 | HBD-2 | HBD-3 | HBD-4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | CT | E | CT | E | CT | E | CT | E | CT | E | CT | |
Patient group | +/++ | ++ | 0/+ | + | ++ | + | 0/+ | + | 0/+ | 0 | 0 | 0 |
Control group | +/++ | ++ | ++ | + | ++ | + | + | 0/+ | +/++ | + | + | + |
U-test value | 27.5 | 25.0 | 13.5 | 11.5 | 18.0 | 13.5 | 28.0 | 30.5 | 23.5 | 6.0 | 16.5 | 9.0 |
p-value | 0.799 | 0.391 | 0.082 | 0.244 | 1.000 | 0.362 | 0.879 | 0.687 | 0.506 | 0.005 | 0.160 | 0.014 |
Strength of Correlation | Correlations between Tissue Defense Factors in Patient Group | rs | p-Value |
---|---|---|---|
Strong association (0.6–0.79) | HBD-2 in epithelium and HBD-3 in the epithelium | 0.697 | 0.012 |
HBD-2 in epithelium and HBD-4 in the epithelium | 0.602 | 0.038 | |
LL-37 in connective tissue and HBD-4 in the epithelium | 0.601 | 0.039 | |
Moderate association (0.4–0.59) | HBD-2 in connective tissue and HBD-3 in the epithelium | 0.575 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozola, L.; Pilmane, M. Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study. J. Pers. Med. 2024, 14, 27. https://doi.org/10.3390/jpm14010027
Ozola L, Pilmane M. Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study. Journal of Personalized Medicine. 2024; 14(1):27. https://doi.org/10.3390/jpm14010027
Chicago/Turabian StyleOzola, Laura, and Mara Pilmane. 2024. "Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study" Journal of Personalized Medicine 14, no. 1: 27. https://doi.org/10.3390/jpm14010027
APA StyleOzola, L., & Pilmane, M. (2024). Local Defense Factors in Cleft-Affected Palate in Children before and during Milk Dentition Age: A Pilot Study. Journal of Personalized Medicine, 14(1), 27. https://doi.org/10.3390/jpm14010027