Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine
Abstract
:1. Introduction
2. Common SWIR Imaging Technologies
2.1. Fluorescent Imaging
2.2. Multispectral/Hyperspectral Imaging
2.3. Optical Coherence Tomography (OCT)
3. Machine Learning (ML)
3.1. Advanced ML Methods
3.1.1. Artificial Neural Network (ANN)
3.1.2. Auto Features Engineering Approach with Deep Neural Network (DNN)
3.2. Conventional ML Methods (Features Engineered Approaches)
3.2.1. Support Vector Machine
3.2.2. Naive-Bayes Classifier
3.2.3. K-Nearest Neighbors
3.2.4. Regression
4. Biomedical Applications of ML-Assisted SWIR Techniques
4.1. Assistance in Diagnosis
4.1.1. Cardiovascular Diseases (CVDs)
4.1.2. Cancer Diagnosis and Surgical Interventions
4.2. Quantitative Imaging and Prognosis
4.3. Overcoming Technological Limitations
5. Challenges and Perspectives
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
CVD | Cardiovascular Disease |
DNN | Deep Neural Network |
EGT | Early Granulation Tissue |
FMT | Fluorescence Molecular Tomography |
GAN | Generative Adversarial Networks |
HF | Heart Failure |
InGaAs | Indium Gallium Arsenide |
ICG | Indocyanine Green |
IV | Intravascular |
ITAR | International Traffic in Arms Regulations |
KNN | K-Nearest Neighbors |
LGT | Late Granulation Tissue |
LP | Long Pass |
ML | Machine Learning |
MSE | Mean Squared Error |
MPI | Meso-Patterned Imaging |
NIR | Near Infrared |
NE | Neo-Epidermis |
OCE | Optical Coherence Elastography |
OCT | Optical Coherence Tomography |
OPI | Orthogonal Polarization Imaging |
PLS | Partial Least Squares |
PT | Photothermal |
PS | Polarization Sensitive |
RBF | Radial Basis Function |
ResNet | Residual Networks |
SWIR | Short-Wave Infrared |
SWIRF | Short-Wave Infrared Fluorescent |
SNR | Signal-to-Noise Ratio |
SMLR | Sparse Multinomial Logistic Regression |
SVD | Subclinical Vascular Disease |
SVMs | Support Vector Machines |
TCFA | Thin Cap Fibroatheroma |
WHO | World Health Organization |
References
- Schork, N.J. Personalized medicine: Time for one-person trials. Nature 2015, 520, 609–611. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Kanayama, N.; Nakayama, Y.; Matsushima, N. Current status, issues and future prospects of personalized medicine for each disease. J. Pers. Med. 2022, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M.; Roselló, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers 2020, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.H.; Nadeau, K.P.; Jaworski, F.B.; Tromberg, B.J.; Durkin, A.J. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. J. Biomed. Opt. 2015, 20, 030901. [Google Scholar] [CrossRef] [PubMed]
- Hecht, E. Optics; Pearson Education: Bengaluru, India, 2012. [Google Scholar]
- Bruns, O.T.; Bischof, T.S.; Harris, D.K.; Franke, D.; Shi, Y.; Riedemann, L.; Bartelt, A.; Jaworski, F.B.; Carr, J.A.; Rowlands, C.J.; et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 56. [Google Scholar] [CrossRef]
- Carr, J.A.; Aellen, M.; Franke, D.; So, P.T.; Bruns, O.T.; Bawendi, M.G. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc. Natl. Acad. Sci. USA 2018, 115, 9080–9085. [Google Scholar] [CrossRef]
- Carr, J.A.; Franke, D.; Caram, J.R.; Perkinson, C.F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R.K.; Bawendi, M.G.; et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. USA 2018, 115, 4465–4470. [Google Scholar] [CrossRef]
- AlZubaidi, A.K.; Ethawi, Y.; Schmölzer, G.M.; Sherif, S.; Narvey, M.; Seshia, M. Review of biomedical applications of contactless imaging of neonates using infrared thermography and beyond. Methods Protoc. 2018, 1, 39. [Google Scholar] [CrossRef]
- Carr, J.A. Shortwave Infrared Imaging and Its Translation to Clinically-Relevant Designs. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Privitera, L.; Waterhouse, D.J.; Preziosi, A.; Paraboschi, I.; Ogunlade, O.; Da Pieve, C.; Barisa, M.; Ogunbiyi, O.; Weitsman, G.; Hutchinson, J.C.; et al. Shortwave Infrared Imaging Enables High-Contrast Fluorescence-Guided Surgery in Neuroblastoma. Cancer Res. 2023, 83, 2077–2089. [Google Scholar] [CrossRef]
- Carr, J.A.; Valdez, T.A.; Bruns, O.T.; Bawendi, M.G. Using the shortwave infrared to image middle ear pathologies. Proc. Natl. Acad. Sci. USA 2016, 113, 9989–9994. [Google Scholar] [CrossRef]
- Mc Larney, B.; Zhang, Q.; Pratt, E.C.; Skubal, M.; Isaac, E.; Hsu, H.T.; Ogirala, A.; Grimm, J. Shortwave infrared detection of medical radioisotope Cerenkov luminescence. J. Nucl. Med. 2022, 64, 264079. [Google Scholar]
- Xu, H.; Chen, J.; Feng, Z.; Fu, K.; Qiao, Y.; Zhang, Z.; Wang, W.; Wang, Y.; Zhang, J.; Perdanasari, A.T.; et al. Shortwave infrared fluorescence in vivo imaging of nerves for minimizing the risk of intraoperative nerve injury. Nanoscale 2019, 11, 19736–19741. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, S.; Jin, T. Shortwave-infrared (SWIR) fluorescence molecular imaging using indocyanine green–antibody conjugates for the optical diagnostics of cancerous tumours. RSC Adv. 2020, 10, 28171–28179. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Villiger, M.; Tabatabaei, N. Effects of lipid composition on photothermal optical coherence tomography signals. J. Biomed. Opt. 2020, 25, 120501. [Google Scholar] [CrossRef] [PubMed]
- Weissler, E.H.; Naumann, T.; Andersson, T.; Ranganath, R.; Elemento, O.; Luo, Y.; Freitag, D.F.; Benoit, J.; Hughes, M.C.; Khan, F.; et al. The role of machine learning in clinical research: Transforming the future of evidence generation. Trials 2021, 22, 1–15. [Google Scholar]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef] [PubMed]
- Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- MacEachern, S.J.; Forkert, N.D. Machine learning for precision medicine. Genome 2021, 64, 416–425. [Google Scholar] [CrossRef]
- Stuker, F.; Ripoll, J.; Rudin, M. Fluorescence molecular tomography: Principles and potential for pharmaceutical research. Pharmaceutics 2011, 3, 229–274. [Google Scholar] [CrossRef]
- Hernot, S.; van Manen, L.; Debie, P.; Mieog, J.S.D.; Vahrmeijer, A.L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019, 20, e354–e367. [Google Scholar] [CrossRef]
- Qi, J.; Sun, C.; Zebibula, A.; Zhang, H.; Kwok, R.T.; Zhao, X.; Xi, W.; Lam, J.W.; Qian, J.; Tang, B.Z. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater. 2018, 30, 1706856. [Google Scholar] [CrossRef]
- Zhang, Q.; Grabowska, A.M.; Clarke, P.A.; Morgan, S.P. Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging. J. Imaging 2019, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Salo, D.; Kim, D.M.; Komarov, S.; Tai, Y.C.; Berezin, M.Y. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries. J. Biomed. Opt. 2016, 21, 126006. [Google Scholar] [CrossRef] [PubMed]
- Randeberg, L.L. Hyperspectral characterization of tissue in the SWIR spectral range: A road to new insight? In Optical Biopsy XVII: Toward Real-Time Spectroscopic Imaging and Diagnosis; SPIE: Bellingham, WA, USA, 2019; Volume 10873, pp. 125–140. [Google Scholar]
- Nachabé, R.; Evers, D.J.; Hendriks, B.H.; Lucassen, G.W.; van der Voort, M.; Rutgers, E.J.; Peeters, M.J.V.; Van der Hage, J.A.; Oldenburg, H.S.; Wesseling, J.; et al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: Comparison of classification methods. J. Biomed. Opt. 2011, 16, 087010. [Google Scholar] [CrossRef] [PubMed]
- Drexler, W.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Salimi, M.H.; Villiger, M.; Tabatabaei, N. Three-dimensional opto-thermo-mechanical model for predicting photo-thermal optical coherence tomography responses in multilayer geometries. Biomed. Opt. Express 2022, 13, 3416–3433. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Zvietcovich, F.; Larin, K.V. Introduction to optical coherence elastography: Tutorial. J. Opt. Soc. Am. A 2022, 39, 418–430. [Google Scholar] [CrossRef]
- Tearney, G.J.; Regar, E.; Akasaka, T.; Adriaenssens, T.; Barlis, P.; Bezerra, H.G.; Bouma, B.; Bruining, N.; Cho, J.M.; Chowdhary, S.; et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 2012, 59, 1058–1072. [Google Scholar] [CrossRef]
- Ughi, G.J.; Verjans, J.; Fard, A.M.; Wang, H.; Osborn, E.; Hara, T.; Mauskapf, A.; Jaffer, F.A.; Tearney, G.J. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: A fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging. Int. J. Cardiovasc. Imaging 2015, 31, 259–268. [Google Scholar] [CrossRef]
- Ughi, G.J.; Wang, H.; Gerbaud, E.; Gardecki, J.A.; Fard, A.M.; Hamidi, E.; Vacas-Jacques, P.; Rosenberg, M.; Jaffer, F.A.; Tearney, G.J. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc. Imaging 2016, 9, 1304–1314. [Google Scholar] [CrossRef]
- Fard, A.M.; Vacas-Jacques, P.; Hamidi, E.; Wang, H.; Carruth, R.W.; Gardecki, J.A.; Tearney, G.J. Optical coherence tomography–near infrared spectroscopy system and catheter for intravascular imaging. Opt. Express 2013, 21, 30849–30858. [Google Scholar] [CrossRef]
- Munro, P. Guest Edited Collection: Quantitative and computational techniques in optical coherence tomography. Sci. Rep. 2022, 12, 11808. [Google Scholar] [CrossRef]
- Russell, S.J. Artificial Intelligence a Modern Approach; Pearson Education, Inc.: London, UK, 2010. [Google Scholar]
- Kelleher, J.D.; Mac Namee, B.; D’arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Obermeyer, Z.; Emanuel, E.J. Predicting the future—Big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016, 375, 1216. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Bannach-Brown, A.; Przybyła, P.; Thomas, J.; Rice, A.S.; Ananiadou, S.; Liao, J.; Macleod, M.R. Machine learning algorithms for systematic review: Reducing workload in a preclinical review of animal studies and reducing human screening error. Syst. Rev. 2019, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Adlung, L.; Cohen, Y.; Mor, U.; Elinav, E. Machine learning in clinical decision making. Med 2021, 2, 642–665. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, T.O. Types of machine learning algorithms. New Adv. Mach. Learn. 2010, 3, 19–48. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Graupe, D. Principles of Artificial Neural Networks; World Scientific: Singapore, 2013; Volume 7. [Google Scholar]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. In Genetic Programming and Evolvable Machines; MIT Press: Cambridge, MA, USA, 2016; Volume 19, pp. 305–307. ISBN 0262035618. [Google Scholar]
- Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.; Dannenfelser, R.; Dun, C.; Edrisi, M.; et al. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun. 2022, 13, 1728. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, Z.; Shi, X.; Cao, C.; Zhang, Z.; Hu, Z.; Ji, N.; Tian, J. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3482–3492. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, F.; Wang, W.; Zhong, Y.; Dai, H. Deep learning for in vivo near-infrared imaging. Proc. Natl. Acad. Sci. USA 2021, 118, e2021446118. [Google Scholar] [CrossRef]
- Baulin, V.A.; Usson, Y.; Le Guével, X. Deep learning: Step forward to high-resolution in vivo shortwave infrared imaging. J. Biophotonics 2021, 14, e202100102. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, A.; Cai, M.; Shen, B.; Guo, L.; Shi, X.; Tian, J.; Hu, Z. Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography. Biomed. Opt. Express 2022, 13, 6284–6299. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Peng, S.; Zhu, L.; Meng, J.; Fan, X.; Feng, Z.; Zhang, H.; Qian, J. Enhancing Total Optical Throughput of Microscopy with Deep Learning for Intravital Observation. Small Methods 2023, 7, 2300172. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Jin, Z.; Shi, X.; Zhang, Z.; Xiao, A.; Yang, J.; Ji, N.; Tian, J.; Hu, Z. First clinical investigation of near-infrared window IIa/IIb fluorescence imaging for precise surgical resection of gliomas. IEEE Trans. Biomed. Eng. 2022, 69, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, C. Deep Neural Networks for A-Line Based Plaque Classification in Intravascular Optical Coherence Tomography Images. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2018. [Google Scholar]
- Lee, J.; Pereira, G.T.; Gharaibeh, Y.; Kolluru, C.; Zimin, V.N.; Dallan, L.A.; Kim, J.N.; Hoori, A.; Al-Kindi, S.G.; Guagliumi, G.; et al. Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries. Sci. Rep. 2022, 12, 21454. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Prabhu, D.; Kolluru, C.; Gharaibeh, Y.; Zimin, V.N.; Bezerra, H.G.; Wilson, D.L. Automated plaque characterization using deep learning on coronary intravascular optical coherence tomographic images. Biomed. Opt. Express 2019, 10, 6497–6515. [Google Scholar] [CrossRef] [PubMed]
- Abdolmanafi, A.; Duong, L.; Dahdah, N.; Adib, I.R.; Cheriet, F. Characterization of coronary artery pathological formations from OCT imaging using deep learning. Biomed. Opt. Express 2018, 9, 4936–4960. [Google Scholar] [CrossRef] [PubMed]
- Abdolmanafi, A.; Duong, L.; Dahdah, N.; Cheriet, F. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed. Opt. Express 2017, 8, 1203–1220. [Google Scholar] [CrossRef]
- Kolluru, C.; Prabhu, D.; Gharaibeh, Y.; Wu, H.; Wilson, D.L. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees. In Medical Imaging 2018: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2018; Volume 10575, pp. 657–662. [Google Scholar]
- Lee, J.; Kim, J.N.; Gharaibeh, Y.; Zimin, V.N.; Dallan, L.A.; Pereira, G.T.; Vergara-Martel, A.; Kolluru, C.; Hoori, A.; Bezerra, H.G.; et al. OCTOPUS–Optical coherence tomography plaque and stent analysis software. Heliyon 2023, 9, e13396. [Google Scholar] [CrossRef]
- Lu, H.; Lee, J.; Ray, S.; Tanaka, K.; Bezerra, H.G.; Rollins, A.M.; Wilson, D.L. Automated stent coverage analysis in intravascular OCT (IVOCT) image volumes using a support vector machine and mesh growing. Biomed. Opt. Express 2019, 10, 2809–2828. [Google Scholar] [CrossRef]
- Lu, H.; Gargesha, M.; Wang, Z.; Chamie, D.; Attizzani, G.F.; Kanaya, T.; Ray, S.; Costa, M.A.; Rollins, A.M.; Bezerra, H.G.; et al. Automatic stent detection in intravascular OCT images using bagged decision trees. Biomed. Opt. Express 2012, 3, 2809–2824. [Google Scholar] [CrossRef]
- Wang, Z.; Jenkins, M.W.; Linderman, G.C.; Bezerra, H.G.; Fujino, Y.; Costa, M.A.; Wilson, D.L.; Rollins, A.M. 3-D stent detection in intravascular OCT using a Bayesian network and graph search. IEEE Trans. Med. Imaging 2015, 34, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Mehanna, E.; Li, C.; Zhu, H.; He, C.; Lu, F.; Zhao, K.; Gong, Y.; Wang, Z. Stent detection with very thick tissue coverage in intravascular OCT. Biomed. Opt. Express 2021, 12, 7500–7516. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Le, D.; Son, T.; Adejumo, T.; Ma, G.; Yao, X. ADC-net: An open-source deep learning network for automated dispersion compensation in optical coherence tomography. Front. Med. 2022, 9, 864879. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, J.; Shi, J.; Boppart, S.A. Synthetic polarization-sensitive optical coherence tomography by deep learning. NPJ Digit. Med. 2021, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Freeman, A.; Ajjan, R.; Del Galdo, F.; Tiganescu, A. Automated quantification of 3D wound morphology by machine learning and optical coherence tomography in type 2 diabetes. Ski. Health Dis. 2023, 3, e203. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M. Advanced Photothermal Optical Coherence Tomography (PT-OCT) for Quantification of Tissue Composition. Ph.D. Thesis, York University, Toronto, ON, Canada, 2022. [Google Scholar]
- Salimi, M.; Villiger, M.; Tabatabaei, N. Molecular-Specific Imaging of Tissue with Photo-Thermal Optical Coherence Tomography. Int. J. Thermophys. 2023, 44, 36. [Google Scholar] [CrossRef]
- Waterhouse, D.J.; Privitera, L.; Anderson, J.; Stoyanov, D.; Giuliani, S. Enhancing intraoperative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning. J. Biomed. Opt. 2023, 28, 094804. [Google Scholar] [CrossRef]
- Spink, S.S.; Pilvar, A.; Wei, L.L.; Frias, J.; Anders, K.; Franco, S.T.; Rose, O.C.; Freeman, M.; Bag, G.; Huang, H.; et al. Shortwave infrared diffuse optical wearable probe for quantification of water and lipid content in emulsion phantoms using deep learning. J. Biomed. Opt. 2023, 28, 094808. [Google Scholar] [CrossRef]
- Vyas, S.; Banerjee, A.; Burlina, P. Estimating physiological skin parameters from hyperspectral signatures. J. Biomed. Opt. 2013, 18, 057008. [Google Scholar] [CrossRef]
- Zhao, Y.; Pilvar, A.; Tank, A.; Peterson, H.; Jiang, J.; Aster, J.C.; Dumas, J.P.; Pierce, M.C.; Roblyer, D. Shortwave-infrared meso-patterned imaging enables label-free mapping of tissue water and lipid content. Nat. Commun. 2020, 11, 5355. [Google Scholar] [CrossRef]
- Smith, A.G.; Perez, R.; Thomas, A.; Stewart, S.; Samiei, A.; Bangalore, A.; Gomer, H.; Darr, M.B.; Schweitzer, R.C.; Vasudevan, S. Objective determination of peripheral edema in heart failure patients using short-wave infrared molecular chemical imaging. J. Biomed. Opt. 2021, 26, 105002. [Google Scholar] [CrossRef] [PubMed]
- Haifler, M.; Pence, I.; Sun, Y.; Kutikov, A.; Uzzo, R.G.; Mahadevan-Jansen, A.; Patil, C.A. Discrimination of malignant and normal kidney tissue with short wave infrared dispersive Raman spectroscopy. J. Biophotonics 2018, 11, e201700188. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, S.; He, Y.; van Wijnbergen, J.W.; Zhang, Y.; Cottrell, R.D.; Smith, S.G.; Hammond, P.T.; Chen, D.Z.; Padera, T.P.; et al. A new label-free optical imaging method for the lymphatic system enhanced by deep learning. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Wang, S.; Cao, G.; Wang, Y.; Liao, S.; Wang, Q.; Shi, J.; Li, C.; Shen, D. Review and prospect: Artificial intelligence in advanced medical imaging. Front. Radiol. 2021, 1, 781868. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.W.; Torres Soto, J.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, Z.; Zheng, J.; Zhao, Q.; Yuan, Z. Artificial Intelligence-Aided Optical Imaging for Cancer Theranostics. Semin. Cancer Biol. 2023, 94, 62–80. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases. 2023. Available online: http://surl.li/kjhtr (accessed on 23 October 2023).
- Bui, Q.T.; Prempeh, M.; Wilensky, R.L. Atherosclerotic plaque development. Int. J. Biochem. Cell Biol. 2009, 41, 2109–2113. [Google Scholar] [CrossRef]
- Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 2006, 47, C13–C18. [Google Scholar] [CrossRef]
- Shi, P.; Xin, J.; Wu, J.; Deng, Y.; Cai, Z.; Du, S.; Zheng, N. Detection of thin-cap fibroatheroma in IVOCT images based on weakly supervised learning and domain knowledge. J. Biophotonics 2023, 16, e202200343. [Google Scholar] [CrossRef]
- Johnson, K.W.; Glicksberg, B.S.; Shameer, K.; Vengrenyuk, Y.; Krittanawong, C.; Russak, A.J.; Sharma, S.K.; Narula, J.N.; Dudley, J.T.; Kini, A.S. A transcriptomic model to predict increase in fibrous cap thickness in response to high-dose statin treatment: Validation by serial intracoronary OCT imaging. EBioMedicine 2019, 44, 41–49. [Google Scholar] [CrossRef]
- World Health Organization. Cancer. 2023. Available online: http://surl.li/cdgtc (accessed on 23 October 2023).
- de Lucena, D.V.; da Silva Soares, A.; Coelho, C.J.; Wastowski, I.J.; Filho, A.R.G. Detection of tumoral epithelial lesions using hyperspectral imaging and deep learning. In Proceedings of the Computational Science—ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, 3–5 June 2020; Proceedings, Part III 20. Springer: Cham, Switzerland, 2020; pp. 599–612. [Google Scholar]
- Butola, A.; Prasad, D.K.; Ahmad, A.; Dubey, V.; Qaiser, D.; Srivastava, A.; Senthilkumaran, P.; Ahluwalia, B.S.; Mehta, D.S. Deep learning architecture “LightOCT” for diagnostic decision support using optical coherence tomography images of biological samples. Biomed. Opt. Express 2020, 11, 5017–5031. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Gan, Y.; Chang, E.; Hibshoosh, H.; Feldman, S.; Hendon, C. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT. Lasers Surg. Med. 2017, 49, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Butola, A.; Ahmad, A.; Dubey, V.; Srivastava, V.; Qaiser, D.; Srivastava, A.; Senthilkumaran, P.; Mehta, D.S. Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography. Appl. Opt. 2019, 58, A135–A141. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Yi, J.Y.; Hsu, T.W.; Huang, S.L. Integration of cellular-resolution optical coherence tomography and Raman spectroscopy for discrimination of skin cancer cells with machine learning. J. Biomed. Opt. 2023, 28, 096005. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Wang, J.; Marjanovic, M.; Chaney, E.J.; Cradock, K.A.; Higham, A.M.; Liu, Z.G.; Gao, Z.; Boppart, S.A. Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. Biomed. Opt. Express 2021, 12, 3021–3036. [Google Scholar] [CrossRef] [PubMed]
- Finn, A.V.; Nakano, M.; Narula, J.; Kolodgie, F.D.; Virmani, R. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1282–1292. [Google Scholar] [CrossRef]
- Fleming, C.P.; Eckert, J.; Halpern, E.F.; Gardecki, J.A.; Tearney, G.J. Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed. Opt. Express 2013, 4, 1269–1284. [Google Scholar] [CrossRef]
- Zheng, G.; Jiang, Y.; Shi, C.; Miao, H.; Yu, X.; Wang, Y.; Chen, S.; Lin, Z.; Wang, W.; Lu, F.; et al. Deep learning algorithms to segment and quantify the choroidal thickness and vasculature in swept-source optical coherence tomography images. J. Innov. Opt. Health Sci. 2021, 14, 2140002. [Google Scholar] [CrossRef]
- Takahashi, H.; Mao, Z.; Du, R.; Ohno-Matsui, K. Machine learning-based 3D modeling and volumetry of human posterior vitreous cavity of optical coherence tomographic images. Sci. Rep. 2022, 12, 13836. [Google Scholar] [CrossRef]
- Teja, R.V.; Manne, S.R.; Goud, A.; Rasheed, M.A.; Dansingani, K.K.; Chhablani, J.; Vupparaboina, K.K.; Jana, S. Classification and quantification of retinal cysts in OCT B-scans: Efficacy of machine learning methods. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 48–51. [Google Scholar]
- Fujimoto, S.; Miki, A.; Maruyama, K.; Mei, S.; Mao, Z.; Wang, Z.; Chan, K.; Nishida, K. Three-Dimensional Volume Calculation of Intrachoroidal Cavitation Using Deep-Learning–Based Noise Reduction of Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2022, 11, 1. [Google Scholar] [CrossRef]
- Kulmaganbetov, M.; Bevan, R.J.; Anantrasirichai, N.; Achim, A.; Erchova, I.; White, N.; Albon, J.; Morgan, J.E. Textural feature analysis of optical coherence tomography phantoms. Electronics 2022, 11, 669. [Google Scholar] [CrossRef]
- Seesan, T.; Abd El-Sadek, I.; Mukherjee, P.; Zhu, L.; Oikawa, K.; Miyazawa, A.; Shen, L.T.W.; Matsusaka, S.; Buranasiri, P.; Makita, S.; et al. Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography. Biomed. Opt. Express 2022, 13, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Neidhardt, M.; Bengs, M.; Latus, S.; Schlüter, M.; Saathoff, T.; Schlaefer, A. 4D deep learning for real-time volumetric optical coherence elastography. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Nam, H.S.; Seok, J.Y.; Oh, W.Y.; Kim, J.W.; Yoo, H. Deep learning-based image enhancement in optical coherence tomography by exploiting interference fringe. Commun. Biol. 2023, 6, 464. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Huang, S.; Zhong, J.; Li, M.; Zheng, F.; Bo, E.; Liu, L.; Liu, Y.; Ge, X.; Ni, G. MAS-Net OCT: A deep-learning-based speckle-free multiple aperture synthetic optical coherence tomography. Biomed. Opt. Express 2023, 14, 2591–2607. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, G.; Ni, G.; Jerwick, J.; Duan, L.; Zhou, C. Optical coherence tomography image denoising using a generative adversarial network with speckle modulation. J. Biophotonics 2020, 13, e201960135. [Google Scholar] [CrossRef]
- Shi, F.; Cai, N.; Gu, Y.; Hu, D.; Ma, Y.; Chen, Y.; Chen, X. DeSpecNet: A CNN-based method for speckle reduction in retinal optical coherence tomography images. Phys. Med. Biol. 2019, 64, 175010. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Zhu, W.; Cheng, X.; Xiang, D.; Shi, F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed. Opt. Express 2018, 9, 5129–5146. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, D.; Yang, Z.; Zhao, J.; Liang, Y. Digital refocusing based on deep learning in optical coherence tomography. Biomed. Opt. Express 2022, 13, 3005–3020. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Lv, G.; Zhou, H.; Feng, H.; Xu, Z.; Li, Q.; Jiang, T.; Chen, Y. Deep learning-based image reconstruction for photonic integrated interferometric imaging. Opt. Express 2022, 30, 41359–41373. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Singh, M.; Çetintaş, E.; Luo, Y.; Rivenson, Y.; Larin, K.V.; Ozcan, A. Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data. Light. Sci. Appl. 2021, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Guo, Y.; Hormel, T.T.; Sun, J.; Hwang, T.S.; Jia, Y. Reconstruction of high-resolution 6 × 6-mm OCT angiograms using deep learning. Biomed. Opt. Express 2020, 11, 3585–3600. [Google Scholar] [CrossRef] [PubMed]
- Kashani, R.G.; Młyńczak, M.C.; Zarabanda, D.; Solis-Pazmino, P.; Huland, D.M.; Ahmad, I.N.; Singh, S.P.; Valdez, T.A. Shortwave infrared otoscopy for diagnosis of middle ear effusions: A machine-learning-based approach. Sci. Rep. 2021, 11, 12509. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chia, M.A.; Wagner, S.K.; Ayhan, M.S.; Williamson, D.J.; Struyven, R.R.; Liu, T.; Xu, M.; Lozano, M.G.; Woodward-Court, P.; et al. A foundation model for generalizable disease detection from retinal images. Nature 2023, 622, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.; Wong, T. Is age-related macular degeneration a manifestation of systemic disease? New prospects for early intervention and treatment. J. Intern. Med. 2014, 276, 140–153. [Google Scholar] [CrossRef]
- Wong, T.; Chakravarthy, U.; Klein, R.; Mitchell, P.; Zlateva, G.; Buggage, R.; Fahrbach, K.; Probst, C.; Sledge, I. The natural history and prognosis of neovascular age-related macular degeneration: A systematic review of the literature and meta-analysis. Ophthalmology 2008, 115, 116–126. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Franke, T. The relationship of cardiovascular disease and its risk factors to age-related maculopathy: The Beaver Dam Eye Study. Ophthalmology 1993, 100, 406–414. [Google Scholar] [CrossRef]
Ref. | ML Model | Explanation | |
---|---|---|---|
SWIRF | [50] | Deep CNN Network | Intraoperative glioma tumor detection |
[51] | Deep GAN Network | Overcoming limitation of fluorescent probe in SWIR by converting NIR-a to NIR-b results | |
[52] | Deep Iter-Net | Segmentation on vasculature, in vivo | |
[53] | Deep FCC Network | 3D rendering on fluorescent results with the FMT method | |
[54] | Deep Scale-recurrent Network | Image 3D reconstructing for increase SNR from deeper tissue layers | |
[55] | Deep U-Net | Enhancing the precision of surgical resection of gliomas | |
OCT and its modalities | [56,57,58] | Deep Network | Automated coronary plaque classification for risk assessment |
[59,60] | Deep Network | Cardiac tissue characterization for detection of Kawasaki disease’s biomarkers | |
[61] | Decision Tree | Coronary plaque classification with smaller dataset for training the ML model | |
[62,63] | SVM | Automated stent coverage analysis and detection | |
[64] | Decision Tree | Automatic stent detection from IV-OCT pullback results | |
[65] | Bayesian Network | 3D stent detection from IV-OCT results | |
[66] | Deep Network | Stent detection under deep tissue coverage | |
[67] | Deep U-Net | Automated dispersion compensation in OCT for improvement in axial resolution | |
[68] | Deep GAN Network | Synthesize PS-OCT images from conventional OCT images to tackle the limitation of conventional OCT system in providing birefringence-related contrast | |
[69] | Deep U-Net | Quantifying wound morphology as an automatic method to monitor wound healing | |
[70] | Deep FCC Network | Enhancing imaging rate of functional phase-related OCT extensions | |
[71] | SVM | Quantification of lipid content with OCT and its modalities on phantoms | |
Hyper/multi spectral | [72] | KNN | Enhancing intraoperative tumor delineation in mouse, in vivo |
[73] | Deep Network | Quantification of water and lipid in phantoms | |
[74] | KNN and SVM | Measuring skin parameters on humans | |
[75] | SVM | Quantitative label-free brown adipose tissue characterization | |
[76] | Partial least squares | Quantitative description of edema description | |
[77] | Bayesian classifier | Distinguishing malignant kidney tissue from normal tissues | |
[78] | Deep U-Net | Lymph nodes segmentation and size measurement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimi, M.; Roshanfar, M.; Tabatabaei, N.; Mosadegh, B. Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine. J. Pers. Med. 2024, 14, 33. https://doi.org/10.3390/jpm14010033
Salimi M, Roshanfar M, Tabatabaei N, Mosadegh B. Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine. Journal of Personalized Medicine. 2024; 14(1):33. https://doi.org/10.3390/jpm14010033
Chicago/Turabian StyleSalimi, Mohammadhossein, Majid Roshanfar, Nima Tabatabaei, and Bobak Mosadegh. 2024. "Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine" Journal of Personalized Medicine 14, no. 1: 33. https://doi.org/10.3390/jpm14010033
APA StyleSalimi, M., Roshanfar, M., Tabatabaei, N., & Mosadegh, B. (2024). Machine Learning-Assisted Short-Wave InfraRed (SWIR) Techniques for Biomedical Applications: Towards Personalized Medicine. Journal of Personalized Medicine, 14(1), 33. https://doi.org/10.3390/jpm14010033