Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review
Abstract
:1. Introduction
2. Rationale
3. Design
4. Materials
5. Clinical Studies
6. Discussion
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, C.; Yu, S.; Yan, N.; Wang, J.; Hou, F.; Hou, T.; Cai, W. Risk Factors for Subsidence of Titanium Mesh Cage Following Single-Level Anterior Cervical Corpectomy and Fusion. BMC Musculoskelet. Disord. 2020, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, D.; Guo, Y.; Wang, X.; Lu, X.; He, Z.; Yuan, W. Subsidence of Titanium Mesh Cage: A Study Based on 300 Cases. Clin. Spine Surg. 2008, 21, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Purohit, D.K.; Gupta, A.; Kataria, R. Comparison of Radiological and Clinical Outcomes between Expandable and Non-Expandable Cages Following Cervical Corpectomy: A Systematic Review and Meta-Analysis. Asian Spine J. 2023, 17, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, A.; Snis, A.; Emanuelsson, L.; Browne, M.; Thomsen, P. Long-Term Biocompatibility and Osseointegration of Electron Beam Melted, Free-Form-Fabricated Solid and Porous Titanium Alloy: Experimental Studies in Sheep. J. Biomater. Appl. 2013, 27, 1003–1016. [Google Scholar] [CrossRef]
- Xu, N.; Wei, F.; Liu, X.; Jiang, L.; Cai, H.; Li, Z.; Yu, M.; Wu, F.; Liu, Z. Reconstruction of the Upper Cervical Spine Using a Personalized 3D-Printed Vertebral Body in an Adolescent With Ewing Sarcoma. Spine 2016, 41, E50–E54. [Google Scholar] [CrossRef]
- Wei, F.; Li, Z.; Liu, Z.; Liu, X.; Jiang, L.; Yu, M.; Xu, N.; Wu, F.; Dang, L.; Zhou, H.; et al. Upper Cervical Spine Reconstruction Using Customized 3D-Printed Vertebral Body in 9 Patients with Primary Tumors Involving C2. Ann. Transl. Med. 2020, 8, 332. [Google Scholar] [CrossRef]
- Mobbs, R.; Coughlan, M.; Thompson, R.; Sutterlin, C., III; Phan, K. The Utility of 3D Printing for Surgical Planning and Patient-Specific Implant Design for Complex Spinal Pathologies: Case Report. J. Neurosurg. Spine 2017, 26, 513–518. [Google Scholar] [CrossRef]
- He, S.; Ye, C.; Zhong, N.; Yang, M.; Yang, X.; Xiao, J. Customized Anterior Craniocervical Reconstruction via a Modified High-Cervical Retropharyngeal Approach Following Resection of a Spinal Tumor Involving C1-2/C1-3. J. Neurosurg. Spine 2019, 32, 432–440. [Google Scholar] [CrossRef]
- Kim, D.; Lim, J.Y.; Shim, K.W.; Han, J.W.; Yi, S.; Yoon, D.H.; Kim, K.N.; Ha, Y.; Ji, G.Y.; Shin, D.A. Sacral Reconstruction with a 3D-Printed Implant after Hemisacrectomy in a Patient with Sacral Osteosarcoma: 1-Year Follow-Up Result. Yonsei Med. J. 2017, 58, 453–457. [Google Scholar] [CrossRef]
- Tang, H.P.; Zhao, P.; Xiang, C.S.; Liu, N.; Jia, L. 3.3—Ti-6Al-4V Orthopedic Implants Made by Selective Electron Beam Melting. In Titanium in Medical and Dental Applications, 1st ed.; Froes, F.H., Qian, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–249. [Google Scholar]
- Lv, Z.; Li, J.; Yang, Z.; Li, X.; Yang, Q.; Li, Z. Reconstruction after Hemisacrectomy with a Novel 3D-Printed Modular Hemisacrum Implant in Sacral Giant Cell Tumor of the Bone. Front. Bioeng. Biotechnol. 2023, 11, 1155470. [Google Scholar] [CrossRef]
- Costanzo, R.; Ferini, G.; Brunasso, L.; Bonosi, L.; Porzio, M.; Benigno, U.E.; Musso, S.; Gerardi, R.M.; Giammalva, G.R.; Paolini, F.; et al. The Role of 3D-Printed Custom-Made Vertebral Body Implants in the Treatment of Spinal Tumors: A Systematic Review. Life 2022, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Amelot, A.; Colman, M.; Loret, J.-E. Vertebral Body Replacement Using Patient-Specific Three-Dimensional-Printed Polymer Implants in Cervical Spondylotic Myelopathy: An Encouraging Preliminary Report. Spine J. 2018, 18, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.S.; Shin, D.A.; Kim, K.N.; Ha, Y.; Yoon, D.H.; Yi, S. Vertebral Reconstruction with Customized 3-Dimensional-Printed Spine Implant Replacing Large Vertebral Defect with 3-Year Follow-Up. World Neurosurg. 2019, 126, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-W.; Deng, L.; Zhang, X.-X.; Yu, X.-L.; Ai, Z.-Z.; Mei, Y.-X.; He, F.; Yu, H.; Zhang, L.; Xiao, X.; et al. Three-Dimensional Printing-Assisted Cervical Anterior Bilateral Pedicle Screw Fixation of Artificial Vertebral Body for Cervical Tuberculosis. World Neurosurg. 2019, 127, 25–30. [Google Scholar] [CrossRef]
- Willemsen, K.; Nizak, R.; Noordmans, H.J.; Castelein, R.M.; Weinans, H.; Kruyt, M.C. Challenges in the Design and Regulatory Approval of 3D-Printed Surgical Implants: A Two-Case Series. Lancet Digit. Health 2019, 1, e163–e171. [Google Scholar] [CrossRef]
- Dong, C.; Wei, H.; Zhu, Y.; Zhou, J.; Ma, H. Application of Titanium Alloy 3D-Printed Artificial Vertebral Body for Stage III Kümmell’s Disease Complicated by Neurological Deficits. Clin. Interv. Aging 2020, 15, 2265–2276. [Google Scholar] [CrossRef]
- Hunn, S.A.M.; Koefman, A.J.; Hunn, A.W.M. 3D-Printed Titanium Prosthetic Reconstruction of the C2 Vertebra: Techniques and Outcomes of Three Consecutive Cases. Spine 2020, 45, 667–672. [Google Scholar] [CrossRef]
- Yoshioka, K.; Murakami, H.; Demura, S.; Kato, S.; Kawahara, N.; Tomita, K.; Tsuchiya, H. Clinical Outcome of Spinal Reconstruction after Total En Bloc Spondylectomy at 3 or More Levels. Spine 2013, 38, E1511–E1516. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhao, Y.; Liu, J.; Xiao, S.; Mao, K. Multilevel 3D Printing Implant for Reconstructing Cervical Spine With Metastatic Papillary Thyroid Carcinoma. Spine 2017, 42, E1326–E1330. [Google Scholar] [CrossRef]
- Yang, X.; Wan, W.; Gong, H.; Xiao, J. Application of Individualized 3D-Printed Artificial Vertebral Body for Cervicothoracic Reconstruction in a Six-Level Recurrent Chordoma. Turk. Neurosurg. 2020, 30, 149–155. [Google Scholar] [CrossRef]
- He, S.; Yang, X.; Yang, J.; Ye, C.; Liu, W.; Wei, H.; Xiao, J. Customized “Whole-Cervical-Vertebral-Body” Reconstruction After Modified Subtotal Spondylectomy of C2-C7 Spinal Tumor Via Piezoelectric Surgery. Oper. Neurosurg. 2019, 17, 580–587. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhu, J.; Jing, Y.; Long, S.; Tang, L.; Cheng, L.; Shi, Z. Effect of 3D-Printed Porous Titanium Alloy Pore Structure on Bone Regeneration: A Review. Coat. World 2024, 14, 253. [Google Scholar] [CrossRef]
- Yang, J.; Cai, H.; Lv, J.; Zhang, K.; Leng, H.; Sun, C.; Wang, Z.; Liu, Z. In Vivo Study of a Self-Stabilizing Artificial Vertebral Body Fabricated by Electron Beam Melting. Spine 2014, 39, E486–E492. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Shahi, M.H.; Nikolaou, V.S.; Giannitsios, D.; Ouellet, J.; Jarzem, P.F. The Effect of Angular Mismatch between Vertebral Endplate and Vertebral Body Replacement Endplate on Implant Subsidence. Clin. Spine Surg. 2013, 26, 268–273. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Hyzy, S.L.; Gittens, R.A., 1st; Schneider, J.M.; Haithcock, D.A.; Ullrich, P.F.; Slosar, P.J.; Schwartz, Z.; Boyan, B.D. Rough Titanium Alloys Regulate Osteoblast Production of Angiogenic Factors. Spine J. 2013, 13, 1563–1570. [Google Scholar] [CrossRef]
- Levy, H.A.; Karamian, B.A.; Yalla, G.R.; Canseco, J.A.; Vaccaro, A.R.; Kepler, C.K. Impact of Surface Roughness and Bulk Porosity on Spinal Interbody Implants. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 478–489. [Google Scholar] [CrossRef]
- Girolami, M.; Boriani, S.; Bandiera, S.; Barbanti-Bródano, G.; Ghermandi, R.; Terzi, S.; Tedesco, G.; Evangelisti, G.; Pipola, V.; Gasbarrini, A. Biomimetic 3D-Printed Custom-Made Prosthesis for Anterior Column Reconstruction in the Thoracolumbar Spine: A Tailored Option Following En Bloc Resection for Spinal Tumors: Preliminary Results on a Case-Series of 13 Patients: Preliminary Results on a Case-Series of 13 Patients. Eur. Spine J. 2018, 27, 3073–3083. [Google Scholar]
- Fang, T.; Zhang, M.; Yan, J.; Zhao, J.; Pan, W.; Wang, X.; Zhou, Q. Comparative Analysis of 3D-Printed Artificial Vertebral Body Versus Titanium Mesh Cage in Repairing Bone Defects Following Single-Level Anterior Cervical Corpectomy and Fusion. Med. Sci. Monit. 2021, 27, e928022. [Google Scholar] [CrossRef]
- Chin, B.Z.; Ji, T.; Tang, X.; Yang, R.; Guo, W. Three-Level Lumbar En Bloc Spondylectomy with Three-Dimensional-Printed Vertebrae Reconstruction for Recurrent Giant Cell Tumor. World Neurosurg. 2019, 129, 531–537.e1. [Google Scholar] [CrossRef]
- Girolami, M.; Sartori, M.; Monopoli-Forleo, D.; Ghermandi, R.; Tedesco, G.; Evangelisti, G.; Pipola, V.; Pesce, E.; Falzetti, L.; Fini, M.; et al. Histological Examination of a Retrieved Custom-Made 3D-Printed Titanium Vertebra. Eur. Spine J. 2021, 30, 2775–2781. [Google Scholar] [CrossRef]
- Choy, W.J.; Mobbs, R.J.; Wilcox, B.; Phan, S.; Phan, K.; Sutterlin, C.E. Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral Body in Adolescent with T9 Primary Bone Tumor. World Neurosurg. 2017, 105, 1032.e13–1032.e17. [Google Scholar] [CrossRef]
- Sun, Z.; Yin, M.; Sun, Y.; Cheng, M.; Fang, M.; Huang, W.; Ma, J.; Yan, W. Customized Multilevel 3D Printing Implant for Reconstructing Spine Tumor: A Retrospective Case Series Study in a Single Center. Orthop. Surg. 2022, 14, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Xu, N.; Li, Z.; Cai, H.; Zhou, F.; Yang, J.; Yu, M.; Liu, X.; Sun, Y.; Zhang, K.; et al. A Prospective Randomized Cohort Study on 3D-Printed Artificial Vertebral Body in Single-Level Anterior Cervical Corpectomy for Cervical Spondylotic Myelopathy. Ann. Transl. Med. 2020, 8, 1070. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, Y.; Zang, J.; Du, Z.; Yan, T.; Yang, R.; Guo, W. Preliminary Results of a 3D-Printed Modular Vertebral Prosthesis for Anterior Column Reconstruction after Multilevel Thoracolumbar Total En Bloc Spondylectomy. Orthop. Surg. 2021, 13, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, J.; He, X.; Wang, R.; Lu, T.; Zhang, T.; Liu, Z. Preclinical Evaluation of a Novel 3D-Printed Movable Lumbar Vertebral Complex for Replacement: In Vivo and Biomechanical Evaluation of Goat Model. Biomed. Res. Int. 2021, 2021, 2343404. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Lee, C.-S.; Chang, B.-S.; Kim, Y.-H.; Kim, H.; Kim, S.-I.; Chang, S.-Y. Korean Spine Tumor Study Group Rod Fracture and Related Factors after Total En Bloc Spondylectomy. Spine J. 2019, 19, 1613–1619. [Google Scholar] [CrossRef]
- Bartlow, C.M.; Mann, K.A.; Damron, T.A.; Oest, M.E. Altered Mechanical Behavior of Demineralized Bone Following Therapeutic Radiation. J. Orthop. Res. 2021, 39, 750–760. [Google Scholar] [CrossRef]
- Zhuang, H.; Wei, F.; Jiang, L.; Wang, Y.; Liu, Z. Assessment of Spinal Tumor Treatment Using Implanted 3D-Printed Vertebral Bodies with Robotic Stereotactic Radiotherapy. Innovation 2020, 1, 100040. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Wei, F.; Zhuang, H. Long-Term Follow-up Results of Spine Tumor Treatment Using High-Dose Radiotherapy after 3-Dimensional-Printed Vertebral Bodies Implantation. Cancer Med. 2023, 12, 11483–11490. [Google Scholar] [CrossRef]
- Hu, X.; Kenan, S.; Cheng, M.; Cai, W.; Huang, W.; Yan, W. 3D-Printed Patient-Customized Artificial Vertebral Body for Spinal Reconstruction after Total En Bloc Spondylectomy of Complex Multi-Level Spinal Tumors. Int. J. Bioprint. 2022, 8, 576. [Google Scholar] [CrossRef]
- Rao, P.J.; Pelletier, M.H.; Walsh, W.R.; Mobbs, R.J. Spine Interbody Implants: Material Selection and Modification, Functionalization and Bioactivation of Surfaces to Improve Osseointegration. Orthop. Surg. 2014, 6, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.C.; Jaffee, S.; Averick, S.; Swink, I.; Horvath, S.; Zhukauskas, R. A Comparative Study of Three Biomaterials in an Ovine Bone Defect Model. Spine J. 2020, 20, 457–464. [Google Scholar] [CrossRef] [PubMed]
- McGilvray, K.C.; Easley, J.; Seim, H.B.; Regan, D.; Berven, S.H.; Hsu, W.K.; Mroz, T.E.; Puttlitz, C.M. Bony Ingrowth Potential of 3D-Printed Porous Titanium Alloy: A Direct Comparison of Interbody Cage Materials in an In Vivo Ovine Lumbar Fusion Model. Spine J. 2018, 18, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Navarrete, R.; Gittens, R.A.; Schneider, J.M.; Hyzy, S.L.; Haithcock, D.A.; Ullrich, P.F.; Schwartz, Z.; Boyan, B.D. Osteoblasts Exhibit a More Differentiated Phenotype and Increased Bone Morphogenetic Protein Production on Titanium Alloy Substrates than on Poly-Ether-Ether-Ketone. Spine J. 2012, 12, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Navarrete, R.; Hyzy, S.L.; Slosar, P.J.; Schneider, J.M.; Schwartz, Z.; Boyan, B.D. Implant Materials Generate Different Peri-Implant Inflammatory Factors: Poly-Ether-Ether-Ketone Promotes Fibrosis and Microtextured Titanium Promotes Osteogenic Factors. Spine 2015, 40, 399–404. [Google Scholar] [CrossRef]
- Sultana, T.; Hossain, M.; Jeong, J.H.; Im, S. Comparative Analysis of Radiologic Outcomes between Polyetheretherketone and Three-Dimensional-Printed Titanium Cages after Transforaminal Lumbar Interbody Fusion. World Neurosurg. 2023, 179, e241–e255. [Google Scholar] [CrossRef]
- Wang, H.; Su, K.; Su, L.; Liang, P.; Ji, P.; Wang, C. Comparison of 3D-Printed Porous Tantalum and Titanium Scaffolds on Osteointegration and Osteogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109908. [Google Scholar] [CrossRef]
- Fan, H.; Deng, S.; Tang, W.; Muheremu, A.; Wu, X.; He, P.; Tan, C.; Wang, G.; Tang, J.; Guo, K.; et al. Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds. Biomed. Res. Int. 2021, 2021, 2899043. [Google Scholar] [CrossRef]
- Wauthle, R.; van der Stok, J.; Amin Yavari, S.; Van Humbeeck, J.; Kruth, J.-P.; Zadpoor, A.A.; Weinans, H.; Mulier, M.; Schrooten, J. Additively Manufactured Porous Tantalum Implants. Acta Biomater. 2015, 14, 217–225. [Google Scholar] [CrossRef]
- Mobbs, R.J.; Choy, W.J.; Wilson, P.; McEvoy, A.; Phan, K.; Parr, W.C.H. L5 En-Bloc Vertebrectomy with Customized Reconstructive Implant: Comparison of Patient-Specific Versus Off-the-Shelf Implant. World Neurosurg. 2018, 112, 94–100. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, N.; Wang, S.; Wang, C.; He, Q.; Wu, Q.; Zheng, Y. The Application of 3D-Printed Auto-Stable Artificial Vertebral Body in En Bloc Resection and Reconstruction of Thoracolumbar Metastases. J. Orthop. Surg. Res. 2023, 18, 638. [Google Scholar] [CrossRef] [PubMed]
- Liebsch, C.; Aleinikov, V.; Kerimbayev, T.; Akshulakov, S.; Kocak, T.; Vogt, M.; Jansen, J.U.; Wilke, H.-J. In Vitro Comparison of Personalized 3D Printed versus Standard Expandable Titanium Vertebral Body Replacement Implants in the Mid-Thoracic Spine Using Entire Rib Cage Specimens. Clin. Biomech. 2020, 78, 105070. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, J.; Liao, S.; Zhang, D.; Zhang, J.; Ma, L.; Xia, H. Biomechanical Evaluation of a Novel Integrated Artificial Axis: A Finite Element Study. Medicine 2017, 96, e8597. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Du, S.; Wei, F.; Zhai, S.; Zhou, H.; Liu, X.; Liu, Z. Reconstruction after Resection of C2 Vertebral Tumors: A Comparative Study of 3D-Printed Vertebral Body versus Titanium Mesh. Front. Oncol. 2022, 12, 1065303. [Google Scholar] [CrossRef]
- Dong, M.; Gao, Y.; Fan, H.; Wang, Y.; Lv, J.; Bai, J.; Shao, P.; Gao, Y.; Lv, Z.; Feng, Y. Comparison of Clinical Efficacy of 3D-Printed Artificial Vertebral Body and Conventional Titanium Mesh Cage in Spinal Reconstruction after Total En Bloc Spondylectomy for Spinal Tumors: A Systematic Review and Meta-Analysis. Front. Oncol. 2024, 14, 1327319. [Google Scholar] [CrossRef]
- Lu, T.; Liu, C.; Yang, B.; Liu, J.; Zhang, F.; Wang, D.; Li, H.; He, X. Single-Level Anterior Cervical Corpectomy and Fusion Using a New 3D-Printed Anatomy-Adaptive Titanium Mesh Cage for Treatment of Cervical Spondylotic Myelopathy and Ossification of the Posterior Longitudinal Ligament: A Retrospective Case Series Study. Med. Sci. Monit. 2017, 23, 3105–3114. [Google Scholar] [CrossRef]
- Wang, J.; Wu, D.; Sun, H. Application of the 3-Dimensional Printing Images of Vertebral Body in Anterior Cervical Corpectomy and Fusion (ACCF): A Report of 25 Case Series. Asian J. Surg. 2022, 45, 1082–1083. [Google Scholar] [CrossRef]
- Cheng, H.; Luo, G.; Xu, D.; Li, Y.; Wang, Z.; Yang, H.; Liu, Y.; Jia, Y.; Sun, T. Comparison of Radiological and Clinical Outcomes of 3D-Printed Artificial Vertebral Body with Titanium Mesh Cage in Single-Level Anterior Cervical Corpectomy and Fusion: A Meta-Analysis. Front. Surg. 2022, 9, 1077551. [Google Scholar] [CrossRef]
- Wei, R.; Guo, W.; Yang, R.; Tang, X.; Yang, Y.; Ji, T.; Liang, H. Reconstruction of the Pelvic Ring after Total En Bloc Sacrectomy Using a 3D-Printed Sacral Endoprosthesis with Re-Establishment of Spinopelvic Stability: A Retrospective Comparative Study. Bone Jt. J. 2019, 101-B, 880–888. [Google Scholar]
- Zhou, H.; Liu, S.; Li, Z.; Liu, X.; Dang, L.; Li, Y.; Li, Z.; Hu, P.; Wang, B.; Wei, F.; et al. 3D-Printed Vertebral Body for Anterior Spinal Reconstruction in Patients with Thoracolumbar Spinal Tumors. J. Neurosurg. Spine 2022, 37, 274–282. [Google Scholar] [CrossRef]
- Hu, J.; Song, G.; Chen, H.; Xu, H.; Wang, A.; Wang, X.; Hou, B.; Lu, J.; Tang, Q.; Wang, J.; et al. Surgical Outcomes and Risk Factors for Surgical Complications after En Bloc Resection Following Reconstruction with 3D-Printed Artificial Vertebral Body for Thoracolumbar Tumors. World J. Surg. Oncol. 2023, 21, 385. [Google Scholar] [CrossRef]
- Li, Y.W.; Li, X.Z.; Gu, S.F.; Xu, J.Y.; Cui, W.; Wang, H.J. Clinical observation on the treatment of ossification of the posterior longitudinal ligament of the cervical spine using 3D printed self-stable zero-profile artificial vertebral body. Zhonghua Yi Xue Za Zhi 2024, 104, 526–532. [Google Scholar] [PubMed]
- Chen, Z.; Lü, G.; Wang, X.; He, H.; Yuan, H.; Pan, C.; Kuang, L. Is 3D-Printed Prosthesis Stable and Economic Enough for Anterior Spinal Column Reconstruction after Spinal Tumor Resection? A Retrospective Comparative Study between 3D-Printed off-the-Shelf Prosthesis and Titanium Mesh Cage. Eur. Spine J. 2023, 32, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Murakami, H.; Demura, S.; Kato, S.; Yokogawa, N.; Kawahara, N.; Tomita, K.; Tsuchiya, H. Risk Factors of Instrumentation Failure after Multilevel Total En Bloc Spondylectomy. Spine Surg. Relat. Res. 2017, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Koshimizu, H.; Nakashima, H.; Ohara, T.; Tauchi, R.; Kanemura, T.; Shinjo, R.; Machino, M.; Ito, S.; Ando, K.; Imagama, S. Implant-Related Complications after Spinal Fusion: A Multicenter Study. Glob. Spine J. 2024, 14, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Kato, S.; Demura, S.; Shinmura, K.; Yokogawa, N.; Kurokawa, Y.; Yoshioka, K.; Murakami, H.; Kawahara, N.; Tsuchiya, H. Characteristics and Risk Factors of Instrumentation Failure Following Total En Bloc Spondylectomy. Bone Jt. J. 2023, 105, 172–179. [Google Scholar] [CrossRef]
- He, H.; Fan, L.; Lü, G.; Li, X.; Li, Y.; Zhang, O.; Chen, Z.; Yuan, H.; Pan, C.; Wang, X.; et al. Myth or Fact: 3D-Printed off-the-Shelf Prosthesis Is Superior to Titanium Mesh Cage in Anterior Cervical Corpectomy and Fusion? BMC Musculoskelet. Disord. 2024, 25, 96. [Google Scholar] [CrossRef]
- Kabra, A.; Mehta, N.; Garg, B. 3D Printing in Spine Care: A Review of Current Applications. J. Clin. Orthop. Trauma. 2022, 35, 102044. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z.; Xiao, H.; Luo, C.; Luo, X.; Lv, F.; Liao, J.; Huang, W. Three-Dimensional, MultiScale, and Interconnected Trabecular Bone Mimic Porous Tantalum Scaffold for Bone Tissue Engineering. ACS Omega 2020, 5, 22520–22528. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Shivaram, A.; Dasgupta, N.; Bose, S. Direct Comparison of Additively Manufactured Porous Titanium and Tantalum Implants towards in Vivo Osseointegration. Addit. Manuf. 2019, 28, 259–266. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, Y.; Cheng, M.; Jiang, G.; He, G.; Chen, Y.; Zhang, X.; Liu, X. Tantalum Implanted Entangled Porous Titanium Promotes Surface Osseointegration and Bone Ingrowth. Sci. Rep. 2016, 6, 26248. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chen, H.-S.; Kao, Y.-H.; Tu, Y.-K. Single-Stage Anterior Debridement and Reconstruction with Tantalum Mesh Cage for Complicated Infectious Spondylitis. World J. Orthop. 2017, 8, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xu, M.; Duan, Q.; Li, Y.; Liu, Y.; Song, L.; Cheng, L.; Ying, J.; Zhao, D. 3D-Printed Porous Tantalum Artificial Bone Scaffolds: Fabrication, Properties, and Applications. Biomed. Mater. 2024, 19, 042002. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Design | Groups (Patients) | Surgery | Main Outcomes (3DP vs. TMC) | Follow-Up, Months |
---|---|---|---|---|---|---|
C. Dong et al. [17] | 2020 | retrospective | 3DP OTS (12) TMC (16) | PVCR for Kümmel’s disease | Operation time (164.5 ± 51.19 vs. 217.63 ± 36.29 min, p < 0.05) Blood loss (399.42 ± 107.98 vs. 530.31 ± 155.68 mL, p < 0.05) VAS score (2.67 ± 0.89 vs. 3.94 ± 1.98, p < 0.05) ODI score (10.92 ± 6.4 vs. 20.25 vs. 12.03, p < 0.05) Loss of local kyphotic angle (2.96° vs. 10.57°, p < 0.05) Subsidence (0.97 ± 2.23 vs. 5.39 ± 2.5 mm, p < 0.05) | 35.5 ± 8.13 (OTS), 32.38 ± 8.13 (TMC) |
F. Wei et al. [34] | 2020 | randomized clinical trial | 3DP OTS (20) TMC (20) | ACCF | Subsidence (1.39 ± 1.05 vs. 2.39 ± 1.68 mm, p = 0.015) Subsidence rate (5% vs. 35%, p = 0.018) JOA score (16.46 ± 0.93 vs. 15.35 ± 1.81, p = 0.019) | 6 |
T. Fang et al. [29] | 2021 | retrospective | 3DP OTS (20) TMC (31) | ACCF | Operation time (106.5 ± 7.2 vs. 127.6 ± 14.4 min, p = 0.01) Subsidence rate (10% vs. 24%, p < 0.001)C2-C7 Cobb angle (22.64° ± 3.35 vs. 15.53° ± 1.86, p = 0.001) NDI (7.5 ± 1.52 vs. 10.17 ± 2.32, p = 0.04) | >12.0 |
H. Cheng et al. [59] | 2022 | meta-analysis | 3DP OTS (150) TMC (164) | ACCF | Operation time (82.35 ± 21.58 vs. 84.3 ± 22.06 min, p = 0.04) Subsidence rate (4/120 vs. 35/134, OR = 0.12 (95% CI: 0.05, 0.32, p < 0.001) C2-C7 Cobb angle (22.64° ± 3.35 vs. 15.53° ± 1.86, p < 0.001) | 12.0 |
Y. W. Li et al. [63] | 2024 | randomized clinical trial | 3DP PSI (21) TMC (20) | ACCF | Operation time (50.04 ± 8.45 vs. 59.20 ± 11.95 min, p = 0.007) Subsidence rate (4.8% vs. 40%, p = 0.009) Swallowing difficulties (0% vs. 20%, p = 0.048) | 12.0 |
P. Hu et al. [55] | 2022 | retrospective | 3DP PSI (18) TMC (13) | TES (C2 tumors) | Blood loss (603 ± 132 vs. 1384 ± 232 mL; p = 0.008) Implant-related problems (1 vs. 4, p = 0.06) | >12.0 |
Y. Cao et al. [52] | 2023 | retrospective | 3DP PSI (10) TMC (10) | TES (thoracolumbar metastasis) | Subsidence (1.8 ± 2.1 vs. 5.2 ± 5.1 mm; p < 0.006) Fusion time (12.5 ± 5.2 vs. 10.9 ± 8.9 mo; p = 0.041) Operation time (8.1 ± 2.3 vs. 9.1 ± 3.2 h; p = 0.021) Blood loss (1614.3 ± 1052.6 vs. 1850.5 ± 1116.9 mL; p = 0.044) | 21.8 (12.0–38.0) |
Z. Chen et al. [64] | 2023 | retrospective | 3DP OTS (14) TMC (21) | TES | Subsidence rate (9/24 vs. 15/21, p > 0.05) Total cost (23.6 ± 5.1 vs. 18.9 ± 6.1 thousand US dollars, p = 0.026) | 24.6 (12.0–60.0) |
M. Dong et al. [56] | 2024 | meta-analysis of 9 retrospective studies | 3DP PSI (180) TMC (194) | TES | Postoperative VAS score (mean difference: −0.21 (−0.39: −0.04, p = 0.02) Subsidence rate (3/68 vs. 27/72, OR 0.08 (95% CI: 0.03; 0.27), p < 0.0001) Early complications (29/150 vs. 48/167, OR 0.52 (95% CI: 0.29; 0.9), p = 0.02) | 13.9 |
Study | Year | Patients (n) | Design | Surgery | Material | Subsidence Rate (>3 mm) | Mean Follow-Up, Months |
---|---|---|---|---|---|---|---|
T. Lu et al. [57] | 2017 | 15 | retrospective study | ACCF | Titanium alloy, OTS | 0 | 13.4 ± 1.4 |
A. Amelot et al. [13] | 2018 | 6 | retrospective study | ACCF | PEKK, PSI | 16.6% | 21.0 (12.0–24.0) |
F. Wei et al. [34] | 2020 | 20 | RCT | ACCF | Titanium alloy, OTS | 5% | 6.0 |
T. Fang et al. [29] | 2021 | 20 | retrospective study | ACCF | Titanium alloy, OTS | 10% | >12.0 |
H. Cheng et al. [59] | 2022 | 120 | meta-analysis | ACCF | Titanium alloy, OTS | 3.3% | 12.0 |
J. Wang et al. [58] | 2022 | 25 | retrospective study | ACCF | Titanium alloy, OTS | 0 | 13.5 (8.0–18.0) |
Y.W. Li et al. [63] | 2024 | 21 | RCT | ACCF | Titanium alloy, PSI | 4.8% | 12.0 |
J. Hu et al. [62] | 2023 | 51 | retrospective study | EBR | Titanium alloy, PSI (10), OTS (41) | 0 | 21.0 (7.0–57.0) |
M. Girolami et al. [28] | 2018 | 13 | retrospective study | TES | Titanium alloy, PSI | 76.9% | 10.0 (2.0–16.0) |
F. Wei et al. [6] | 2020 | 9 | retrospective study | TES (C2 tumors) | Titanium alloy, PSI | 0 | 28.6 (12.0–42.0) |
X. Tang et al. [35] | 2021 | 27 | retrospective study | TES | Titanium alloy, PSI | 7.4% (>2 mm) | 22.0 (12.0–41.0) |
H. Zhou et al. [61] | 2022 | 23 | retrospective study | TES | Titanium alloy, PSI (10), OTS (13) | 21.7% (>2 mm) (10% for PSI and 30.7% for OTS) | 37.0 (24.0–58.0) |
Z. Chen et al. [64] | 2023 | 14 | retrospective study | TES | Titanium alloy, OTS | 64.2% | 24.6 (12.0–60.0) |
M. Dong et al. [56] | 2024 | 68 | meta-analysis of retrospective studies | TES | Titanium alloy, PSI | 4.4% | 13.9 |
C. Dong et al. [17] | 2020 | 12 | retrospective study | PVCR | Titanium alloy, OTS | 41.6% (>2 mm) | 35.5±8.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiselev, R.; Zheravin, A. Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review. J. Pers. Med. 2024, 14, 1024. https://doi.org/10.3390/jpm14101024
Kiselev R, Zheravin A. Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review. Journal of Personalized Medicine. 2024; 14(10):1024. https://doi.org/10.3390/jpm14101024
Chicago/Turabian StyleKiselev, Roman, and Aleksander Zheravin. 2024. "Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review" Journal of Personalized Medicine 14, no. 10: 1024. https://doi.org/10.3390/jpm14101024
APA StyleKiselev, R., & Zheravin, A. (2024). Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review. Journal of Personalized Medicine, 14(10), 1024. https://doi.org/10.3390/jpm14101024