Correlation between Human Embryo Morphokinetics Observed through Time-Lapse Incubator and Life Birth Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ovum Pick up Si ICSI (Intracytoplasmic Sperm Injection)
2.3. Incubation and Culture Conditions
2.4. Morphokinetic Parameters Analyzed in Embryo Time-Lapse Monitoring
2.5. Grading Embryos
2.6. Embryo Transfer
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Groups
3.2. Descriptive Statistics Lot A
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alegre, L.; Gallego, R.D.; Arrones, S.; Hernández, P.; Muñoz, M.; Meseguer, M. Novel noninvasive embryo selection algorithm combining time-lapse morphokinetics and oxidative status of the spent embryo culture medium. Fertil. Steril. 2019, 111, 918–927.e3. [Google Scholar] [CrossRef]
- Arsalan, M.; Haider, A.; Choi, J.; Park, K.R. Detecting Blastocyst Components by Artificial Intelligence for Human Embryological Analysis to Improve Success Rate of In Vitro Fertilization. J. Pers. Med. 2022, 12, 124. [Google Scholar] [CrossRef]
- Burks, C.; Van Heertum, K.; Weinerman, R. The Technological Advances in Embryo Selection and Genetic Testing: A Look Back at the Evolution of Aneuploidy Screening and the Prospects of Non-Invasive PGT. Reprod. Med. 2021, 2, 26–34. [Google Scholar] [CrossRef]
- Apter, S.; Ebner, T.; Freour, T.; Guns, Y.; Kovacic, B.; Le Clef, N.; Marques, M.; Meseguer, M.; Montjean, D.; Sfontouris, I.; et al. Good practice recommendations for the use of time-lapse technology ESHRE Working group on Time-lapse technology. Human Reprod. 2020, 2020, hoaa008. [Google Scholar] [CrossRef]
- Meseguer, M.; Herrero, J.; Tejera, A.; Hilligsoe, K.M.; Ramsing, N.B.; Remohí, J. The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 2011, 26–10, 2658–2671. [Google Scholar] [CrossRef]
- Serrano-Novillo, C.; Uroz, L.; Márquez, C. Novel Time-Lapse Parameters Correlate with Embryo Ploidy and Suggest an Improvement in Non-Invasive Embryo Selection. J. Clin. Med. 2023, 12, 2983. [Google Scholar] [CrossRef]
- Kakulavarapua, R.; Stensenb, M.H.; Jahanlua, D.; Haugen, T.B.; Delbarre, E. Altered morphokinetics and differential reproductive outcomes associated with cell exclusion events in human embryos. Reprod. Biomed. Online 2023, 47, 103285. [Google Scholar] [CrossRef]
- Minasi, M.; Boitrelle, G.F.; Sallam, H.; Vogiatzi, P.; Parmegiani, L.; Saleh, R.; Colpi, G.; Agarwal, A. Time-lapse embryo monitoring: Does it add to standard in-vitro fertilization/intra cytoplasmic sperm injection? Panminerva Medica 2023, 65, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Tvrdonova, K.; Belaskova, S.; Rumpikova, T.; Rumpik, D.; Myslivcova Fucikova, A.; Malir, F. Prediction of Live Birth–Selection of Embryos Using Morphokinetic Parameters. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2024, 168, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Basile, N.; Vime, P.; Florensa, M.; Aparicio, R.B.; García, V.J.A.; Remohí, J.; Meseguer, M. The use of morphokinetics as a predictor of implantation: A multicentric study to define and validate an algorithmfor embryo selection. Hum. Reprod. 2015, 30, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Bori, L.; Dominguez, F.; Fernandez, E.I.; Del Gallego, R.; Alegre, L.; Hickman, C.; Quiñonero, A.; Nogueira, M.F.G.; Rocha, J.C.; Meseguer, M. An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: A preliminary study. Reprod. Biomed Online 2021, 42, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Barrie, A.; Homburg, R.; McDowell, G.; Brown, J.; Kingsland, C.; Troup, S. Examining the eficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertil. Steril. 2017, 107, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Fréour, T.; Le Fleuter, N.; Lammers, J.; Splingart, C.; Reignier, A.; Barrière, P. External validation of a time-lapse prediction model. Fertil. Steril. 2015, 103, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Boucret, L.; Tramon, L.; Riou, J.; Ferré-L’Hôtellier, V.; Bouet, P.E.; May-Panloup, P. Influence of Diminished Ovarian Reserve on Early Embryo Morphokinetics during In Vitro Fertilization: A Time-Lapse Study. J. Clin. Med. 2022, 11, 7173. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Granados, L.; Serrano, M.; González-Utor, A.; Ortíz, N.; Badajoz, V.; Olaya, E.; Prados, N.; Boada, M.; Castilla, J.A.; Special Interest Group in Quality of ASEBIR (Spanish Society for the Study of Reproductive Biology). Inter-laboratory agreement on embryo classfication and clinical decision: Conventional morphological assessment vs. time lapse. PLoS ONE 2017, 12, e0183328. [Google Scholar] [CrossRef]
- Bori, L.; Paya, B.; Alegre, L.; Viloria, T.A.; Remohi, J.A.; Naranjo, V.; Meseguer, M. Novel and conventional embryo parameters as input data for artifcial neural networks: An artificial intelligence model applied for prediction of the implantation potential. Fertil. Steril. 2020, 12, 1–13. [Google Scholar]
- Armstrong, S.; Arroll, N.; Cree, L.M.; Jordan, V.; Farquhar, C. Time-Lapse Systems for Embryo Incubation and Assessment in Assisted Reproduction. Cochrane Database Syst. Rev. 2015, 2015, CD011320. [Google Scholar] [CrossRef]
- Balaban, B.; Brison, D.; Calderón, G.; Catt, J.; Conaghan, J.; Cowan, L.; Ebner, T.; Gardner, D.; Hardarson, T.; Lundin, K.; et al. The Istanbul Consensus Workshop on Embryo Assessment: Proceedings of an Expert Meeting. Hum. Reprod. 2011, 26, 1270–1283. [Google Scholar]
- Schiewe, M.C.; Zozula, S.; Nugent, N.L.; Whitney, J.B.; Hatch, I.; Lee, C.T.; Anderson, R.E. Systematic Development, Validation, and Optimization of a Human Embryo Culture System Using Different Incubators. Reprod. Med. 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, X.L.; Peng, Y.; Guo, X.; Heng, B.C.; Tong, G.Q. Reduction in Exposure of Human Embryos Outside the Incubator Enhances Embryo Quality and Blastulation Rate. Reprod. Biomed. Online 2010, 20, 510–515. [Google Scholar] [CrossRef]
- Geng, L.; Lin, X.; Liu, R.; Wu, J.; Luo, Y.; Sun, H.; Hou, Z.; Zhang, Q.; Xu, C.; Li, X.; et al. Clinical Outcome of Day-3 Cleavage Slow-Growing Embryos at Different Cleavage Rates after Overnight Culture: A Cohort Retrospective Study. J. Clin. Med. 2022, 11, 4417. [Google Scholar] [CrossRef] [PubMed]
- Ciray, H.N.; Campbell, A.; Agerholm, I.E.; Aguilar, J.; Chamayou, S.; Esbert, M.; Sayed, S. Proposed Guidelines on the Nomenclature and Annotation of Dynamic Human Embryo Monitoring by a Time-Lapse User Group. Hum. Reprod. 2014, 29, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
- Goodman, L.R.; Goldberg, J.; Falcone, T.; Austin, C.; Desai, N. Does the Addition of Time-Lapse Morphokinetics in the Selection of Embryos for Transfer Improve Pregnancy Rates? A Randomized Controlled Trial. Fertil. Steril. 2016, 105, 275–285.e10. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Ploskonka, S.; Goodman, L.R.; Austin, C.; Goldberg, J.; Falcone, T. Analysis of Embryo Morphokinetics, Multinucleation and Cleavage Anomalies Using Continuous Time-Lapse Monitoring in Blastocyst Transfer Cycles. Reprod. Biol. Endocrinol. 2014, 12, 54. [Google Scholar] [CrossRef]
- Sacks, G.C.; Mozes, H.; Ronn, R.; Elder-Geva, T.; Schonberger, O.; Ben-Ami, I.; Srebnik, N. Time-Lapse Incubation for Embryo Culture—Morphokinetics and Environmental Stability May Not Be Enough: Results from a Pilot Randomized Controlled Trial. J. Clin. Med. 2024, 13, 1701. [Google Scholar] [CrossRef]
- Meng, Q.; Xu, Y.; Zheng, A.; Li, H.; Ding, J.; Xu, Y.; Pu, Y.; Wang, W.; Wu, H. Noninvasive Embryo Evaluation and Selection by Time-Lapse Monitoring vs. Conventional Morphologic Assessment in Women Undergoing in Vitro Fertilization/Intracytoplasmic Sperm Injection: A Single-Center Randomized Controlled Study. Fertil. Steril. 2022, 117, 1203–1212. [Google Scholar] [CrossRef]
- Ahlström, A.; Lundin, K.; Lind, A.-K.; Gunnarsson, K.; Westlander, G.; Park, H.; Thurin-Kjellberg, A.; Thorsteinsdottir, S.A.; Einarsson, S.; Åström, M.; et al. A Double-Blind Randomized Controlled Trial Investigating a Time-Lapse Algorithm for Selecting Day 5 Blastocysts for Transfer. Hum. Reprod. 2022, 37, 708–717. [Google Scholar] [CrossRef]
- Rienzi, L.; Capalbo, A.; Stoppa, M.; Romano, S.; Maggiulli, R.; Albricci, L.; Scarica, C.; Farcomeni, A.; Vajta, G.; Ubaldi, F.M. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: A longitudinal cohort study. Reprod. BioMed Online 2015, 30, 57–66. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, W.; Liu, H.; Yu, G.; Li, M.; Ma, S.; Wu, K. Morphokinetic parameters from a time-lapse monitoring system cannot accurately predict the ploidy of embryos. J. Assist. Reprod. Genet. 2017, 34, 1173–1178. [Google Scholar] [CrossRef]
Age | N | Mean | SD | MeanA-B | t | df | p Value |
---|---|---|---|---|---|---|---|
Lot A | 57 | 35.28 | 5.13 | −1.81 | 1.4780 | 52 | 0.1454 |
Lot B | 32 | 37.09 | 3.10 | ||||
Number of Oocytes | N | Mean | SD | MeanA-B | t | df | p value |
Lot A | 57 | 14.48 | 5.41 | −4.12 | 3.1305 | 51 | 0.0029 |
Lot B | 32 | 10.36 | 3.51 |
Morphokinetics Time Characteristics—Lot A | Mean | SD |
---|---|---|
t PB—Second polar body extrusion | 4.3372 | 1.6116 |
t PN—Pronuclear appearance | 11.5094 | 2.4026 |
T Syngamy—Breaking the membranes between the two pronuclei and mixing the nucleoli | 19.5025 | 2.5857 |
t PNF—Pronuclear fading | 22.1416 | 2.2257 |
t2—Time of appearance of the first two blastomeres | 25.1981 | 2.2278 |
t3—Time of appearance of the first three blastomeres | 33.9938 | 4.4105 |
t4—Time of appearance of the first four blastomeres | 40.0500 | 6.1358 |
cc2—Time of appearance of the second cell cycle | 8.8312 | 3.7950 |
S2—Duration of the transition of an embryo from two cells to four cells | 6.1716 | 4.7075 |
t5—Time of appearance of five blastomeres | 47.3772 | 6.1715 |
t6—Time of appearance of six blastomeres | 53.1647 | 6.8748 |
t7—Time of appearance of five blastomeres | 59.7972 | 8.3123 |
t8—Time of appearance of eight blastomeres | 67.0963 | 7.5768 |
CC3—Time of appearance of the third cellular cycle | 12.9491 | 4.1861 |
S3—Transition time of an embryo from four cells to eight cells | 19.7034 | 6.2572 |
tcomp—Appearance time of the compaction of the morula | 86.4097 | 7.3542 |
tearly bl—Time of appearance of the early embryo | 99.4828 | 6.8996 |
Tblast—Time of blastocyst appearance on Day 5/Day 6 | 111.2832 | 7.74905 |
Grading—AA-1; BB-0 | 3.00 | 2.13 |
Morphokinetics Time Characteristics—Lot B | Mean | SD |
---|---|---|
t PB—Second polar body extrusion | 5.1023 | 1.2662 |
t PN—Pronuclear appearance | 11.8486 | 2.5572 |
T Syngamy—Breaking the membranes between the two pronuclei and mixing the nucleoli | 18.7905 | 3.1515 |
t PNF—Pronuclear fading | 22.2168 | 2.2157 |
t2—Time of appearance of the first two blastomeres | 25.2932 | 3.0559 |
t3—Time of appearance of the first three blastomeres | 34.9227 | 4.9124 |
t4—Time of appearance of the first four blastomeres | 39.4741 | 7.3265 |
cc2—Time of appearance of the second cell cycle | 9.1541 | 4.2000 |
S2—Duration of the transition of an embryo from two cells to four cells | 4.4505 | 4.9721 |
t5—Time of appearance of five blastomeres | 46.8627 | 6.5410 |
t6—Time of appearance of six blastomeres | 52.1118 | 7.0194 |
t7—Time of appearance of five blastomeres | 60.0068 | 9.0786 |
t8—Time of appearance of eight blastomeres | 67.8768 | 9.2853 |
CC3—Time of appearance of the third cellular cycle | 12.3268 | 3.5428 |
S3—Transition time of an embryo from four cells to eight cells | 21.1605 | 5.8318 |
tcomp—Appearance time of the compaction of the morula | 85.9336 | 8.9347 |
tearly bl—Time of appearance of the early embryo | 100.7109 | 6.9412 |
Tblast—Time of blastocyst appearance on Day 5/Day 6 | 109.9364 | 8.1423 |
Grading | 1.23 | 1.80 |
Morphokinetics Time Characteristics | MeanA-B | SED | t | p Value |
---|---|---|---|---|
t PB—Second polar body extrusion | 0.0675 | 5.384 | 0.0125 | 0.9900 |
t PN—Pronuclear appearance | −4.2793 | 5.776 | 0.7409 | 0.4605 |
T Syngamy—Breaking the membranes between the two pronuclei and mixing the nucleoli | −8.0299 | 5.225 | 1.5369 | 0.1273 |
t PNF—Pronuclear fading | 0.0675 | 5.318 | 0.1487 | 0.8821 |
t2—Time of appearance of the first two blastomeres | −2.2802 | 4.546 | 0.5016 | −2.2802 |
t3—Time of appearance of the first three blastomeres | 0.7431 | 4.180 | 0.1778 | 0.8593 |
t4—Time of appearance of the first four blastomeres | 1.6342 | 4.533 | 0.3605 | 0.7192 |
cc2—Time of appearance of the second cell cycle | −11.4764 | 5.920 | 1.938 | 0.0553 |
S2—Duration of the transition of an embryo from two cells to four cells | 9.8241 | 6.447 | 1.5237 | 0.1307 |
t5—Time of appearance of five blastomeres | 2.4940 | 3.824 | 0.6523 | 0.5157 |
t6—Time of appearance of six blastomeres | −7.3751 | 4.324 | 1.7057 | 0.0911 |
t7—Time of appearance of five blastomeres | 7.8200 | 4.933 | 1.5857 | 0.1160 |
t8—Time of appearance of eight blastomeres | −1.4930 | 4.818 | 0.3099 | 0.7573 |
CC3—Time of appearance of the third cellular cycle | −2.8628 | 5.352 | 0.5349 | 0.5940 |
S3—Transition time of an embryo from four cells to eight cells | −2.8879 | 4.357 | 0.6628 | 0.5090 |
tcomp—Appearance time of the compaction of the morula | −0.9308 | 6.118 | 0.1521 | 0.8794 |
tearly bl—Time of appearance of the early embryo | 5.0732 | 6.121 | 0.8288 | 0.4091 |
Tblast—Time of blastocyst appearance on Day 5/Day 6 | 14.598 | 15.580 | 0.9179 | 0.3608 |
Grading | 2.22 | 0.509 | 4.3625 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghiar, L.; Naghi, P.; Zaha, I.A.; Sandor, M.; Bodog, A.; Sachelarie, L.; Vieriu, G.; Stefan, L.; Huniadi, A.; Hurjui, L.L. Correlation between Human Embryo Morphokinetics Observed through Time-Lapse Incubator and Life Birth Rate. J. Pers. Med. 2024, 14, 1045. https://doi.org/10.3390/jpm14101045
Maghiar L, Naghi P, Zaha IA, Sandor M, Bodog A, Sachelarie L, Vieriu G, Stefan L, Huniadi A, Hurjui LL. Correlation between Human Embryo Morphokinetics Observed through Time-Lapse Incubator and Life Birth Rate. Journal of Personalized Medicine. 2024; 14(10):1045. https://doi.org/10.3390/jpm14101045
Chicago/Turabian StyleMaghiar, Laura, Petronela Naghi, Ioana Alexandra Zaha, Mircea Sandor, Alin Bodog, Liliana Sachelarie, Georgiana Vieriu, Liana Stefan, Anca Huniadi, and Loredana Liliana Hurjui. 2024. "Correlation between Human Embryo Morphokinetics Observed through Time-Lapse Incubator and Life Birth Rate" Journal of Personalized Medicine 14, no. 10: 1045. https://doi.org/10.3390/jpm14101045
APA StyleMaghiar, L., Naghi, P., Zaha, I. A., Sandor, M., Bodog, A., Sachelarie, L., Vieriu, G., Stefan, L., Huniadi, A., & Hurjui, L. L. (2024). Correlation between Human Embryo Morphokinetics Observed through Time-Lapse Incubator and Life Birth Rate. Journal of Personalized Medicine, 14(10), 1045. https://doi.org/10.3390/jpm14101045