A Scoping Review of the Use of Artificial Intelligence in the Identification and Diagnosis of Atrial Fibrillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Exclusion Criteria
2.3. Protocol and Registration
2.4. Data Sources
2.5. Study Selection Process
2.6. Data Extraction Process
2.7. Data Synthesis
3. Results
3.1. Development of ML Models for AF Detection
3.2. Comparison of Methods and Algorithms
3.3. Development of Predictive Models for AF Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bizhanov, K.A.; Khasanova, A.; Sadykova, L.; Aminova, N.; Salimov, M.; Mirrakhimov, E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications [literature review]. J. Cardiovasc. Electrophysiol. 2023, 34, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Nadarajah, R. The growing burden of atrial fibrillation and its consequences. BMJ 2024, 385, q826. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.S.; Dehghani, P. Reversal of cardiogenic shock after bilateral renal artery stenting. Can. J. Cardiol. 2013, 29, 1531.e1–1531.e3. [Google Scholar] [CrossRef]
- Shotan, A.; Garty, M.; Blondhein, D.S.; Meisel, S.R.; Lewis, B.S.; Shochat, M.; Grossman, E.; Porath, A.; Boyko, V.; Zimlichman, R.; et al. Atrial fibrillation and long-term prognosis in patients hospitalized for heart failure: Results from the Heart Failure Survey in Israel [HFSIS]. Eur. Heart J. 2010, 31, 309–317. [Google Scholar] [CrossRef]
- Tsang, T.S.; Gersh, B.J.; Appleton, C.P.; Tajik, A.J.; Barnes, M.E.; Bailey, K.R.; Oh, J.K.; Leibson, C.; Montgomery, S.C.; Seward, J.B. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J. Am. Coll. Cardiol. 2002, 40, 1636–1644. [Google Scholar] [CrossRef]
- Kirchhof, P.; Lip, G.Y.H.; Van Gelder, I.C.; Bax, J.; Hylek, E.; Kaab, S.; Schotten, U.; Wegscheider, K.; Boriani, G.; Brandes, A.; et al. Comprehensive risk reduction in patients with atrial fibrillation: Emerging diagnostic and therapeutic options—A report from the 3rd Atrial Fibrillation Competence Network/European Heart Rhythm Association consensus conference. Europace 2012, 14, 8–27. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Levy, D.; Vaziri, S.M.; D’Agostino, R.B.; Belanger, A.J.; Wolf, P.A. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham heart study. JAMA 1994, 271, 840–844. [Google Scholar] [CrossRef]
- Kirchhof, P.; Breithardt, G.; Bax, J.; Benninger, G.; Blomström-Lundqvist, C.; Borggrefe, M.; Camm, A.J.; Diener, H.C.; Goette, A.; Gorenek, B.; et al. Early and comprehensive management of atrial fibrillation. Proceedings of the from the 2nd AFNET/EHRA consensus conference on atrial fibrillation entitled “Research Perspectives in Atrial Fibrillation”. Europace 2009, 11, 860–885. [Google Scholar] [CrossRef]
- Cosio, F.G.; Aliot, E.; Botto, G.L.; Heidbüchel, H.; Geller, C.J.; Kirchhof, P.; De Haro, J.C.; Frank, R.; Villacastin, J.P.; Vijgen, J.; et al. Delayed rhythm control of atrial fibrillation may be a cause of failure to prevent recurrences: Reasons for change to active antiarrhythmic treatment at the time of the first detected episode. Europace 2008, 10, 21–27. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef]
- Krijthe, B.P.; Kunst, A.; Benjamin, E.J.; Lip, G.Y.; Franco, O.H.; Hofman, A.; Witteman, J.C.; Stricker, B.H. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 2013, 34, 2746–2751. [Google Scholar] [CrossRef] [PubMed]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.S.; Lee, S.C.; Choi, W.; Kim, D.H. A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm. Sci. Rep. 2021, 11, 12818. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Jiang, J.; Su, R.; Gao, M.; Zhu, S.; Zhou, J.; Huo, Y. A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation. Heart Rhythm. 2020, 17, 847–853. [Google Scholar] [CrossRef]
- Sanna, T.; Diener, H.C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef]
- Barbarossa, A.; Guerra, S.; Capucci, A.; Rodriguez-Bernal, C.; Fabbrini, P. Silent atrial fibrillation: A critical review. J. Atr. Fibrillation 2014, 7, 1138. [Google Scholar] [CrossRef]
- Deng, M.; Chen, K.; Huang, D.; Liang, D.; Liang, D.; Wang, Y.; Huang, X. An intelligent computer-aided diagnosis method for paroxysmal atrial fibrillation patients with nondiagnostic ECG signals. Biomed. Signal Process. Control 2024, 88, 105683. [Google Scholar] [CrossRef]
- Sánchez de la Nava, A.M.; Atienza, F.; Bermejo, J.; Fernández-Avilés, F. Artificial intelligence for a personalized diagnosis and treatment of atrial fibrillation. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1337–H1347. [Google Scholar] [CrossRef]
- Johnson, K.W.; Torres Soto, J.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef]
- Isaksen, J.L.; Baumert, M.; Hermans, A.N.L.; Maleckar, M.; Linz, D. Artificial intelligence for the detection, prediction, and management of atrial fibrillation. Herzschrittmacherther. Elektrophysiol. 2022, 33, 34–41. [Google Scholar] [CrossRef]
- Deng, L.; Deep Learning, Y.D. Methods and Applications; Microsoft Research. 2014. Available online: https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/ (accessed on 7 July 2024).
- Playford, D.; Barin, E.; Timperley, J.; Samy, E.; van Gelder, I.; Darbar, D. A validation study of automated atrial fibrillation detection using Alerte digital health’s artificial intelligence system. Heart Lung Circ. 2017, 26, S279–S280. [Google Scholar] [CrossRef]
- Taniguchi, H.; Takata, T.; Takechi, M.; Furukawa, A.; Iwasawa, J.; Kawamura, A.; Taniguchi, T.; Tamura, Y. Explainable artificial intelligence model for diagnosis of atrial fibrillation using Holter electrocardiogram waveforms. Int. Heart J. 2021, 62, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Park, H.S.; Baek, Y.S.; Kim, T.H.; Kim, Y.G.; Uhm, J.S.; Joung, B.; Lee, M.H.; Pak, H.N. Artificial intelligence predicts undiagnosed atrial fibrillation in patients with embolic stroke of undetermined source using sinus rhythm electrocardiograms. Heart Rhythm. 2024, 21, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Santala, O.E.; Halonen, J.; Martikainen, S.; Jäntti, H.; Rissanen, T.T.; Tarvainen, M.P.; Laitinen, T.P.; Laitinen, T.M.; Väliaho, E.S.; Hartikainen, J.E.K.; et al. Automatic mobile health arrhythmia monitoring for the detection of atrial fibrillation: Prospective feasibility, accuracy, and user experience study. JMIR MHealth UHealth 2021, 9, e29933. [Google Scholar] [CrossRef] [PubMed]
- Gahungu, N.; Shariar, A.; Playford, D.; Judkins, C.; Gabbay, E. Transfer learning artificial intelligence for automated detection of atrial fibrillation in patients undergoing evaluation for suspected obstructive sleep apnea: A feasibility study. Sleep Med. 2021, 85, 166–171. [Google Scholar] [CrossRef]
- Zheng, C.; Lee, M.S.; Bansal, N.; Go, A.S.; Chen, C.; Harrison, T.N.; Fan, D.; Allen, A.; Garcia, E.; Lidgard, B.; et al. Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records. Eur. Heart J. Qual. Care Clin. Outcomes 2024, 10, 77–88. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Zhu, L.; Liu, L.; Han, B.; Zhang, Y.; Wei, S. Diagnosis of atrial fibrillation using self-complementary attentional convolutional neural network. Comput. Methods Programs Biomed. 2023, 238, 107565. [Google Scholar] [CrossRef]
- Selder, J.L.; Te Kolste, H.J.; Twisk, J.; Schijven, M.; Gielen, W.; Allaart, C.P. Accuracy of a standalone atrial fibrillation detection algorithm added to a popular wristband and smartwatch: Prospective diagnostic accuracy study. J. Med. Internet Res. 2023, 25, e44642. [Google Scholar] [CrossRef]
- Brasier, N.; Raichle, C.J.; Dörr, M.; Becke, A.; Nohturfft, V.; Weber, S.; Bulacher, F.; Salomon, L.; Noah, T.; Birkemeyer, R.; et al. Detection of atrial fibrillation with a smartphone camera: First prospective, international, two-centre, clinical validation study [DETECT AF PRO]. Europace 2019, 21, 41–47. [Google Scholar] [CrossRef]
- Lueken, M.; Gramlich, M.; Leonhardt, S.; Marx, N.; Zink, M.D. Automated signal quality assessment of single-lead ECG recordings for early detection of silent atrial fibrillation. Sensors 2023, 23, 5618. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Zhao, X.; Chen, Y.; Lip, G.Y. Photoplethysmography-based machine learning approaches for atrial fibrillation prediction. JACC Asia 2021, 1, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Fuster-Barceló, C.; Oliver, A.; Mauri, J.; Márquez, F. Exploring the Power of PPG Matrix for Atrial Fibrillation Detection with Integrated Explainability. SSRN. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4514512 (accessed on 7 July 2024).
- Hiraoka, D.; Inui, T.; Kawakami, E.; Oya, M.; Tsuji, A.; Honma, K.; Kawasaki, Y.; Ozawa, Y.; Shiko, Y.; Ueda, H.; et al. Diagnosis of atrial fibrillation using machine learning with wearable devices after cardiac surgery: Algorithm development study. JMIR Form. Res. 2022, 6, e35396. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Dang, H.; Xiong, D.; Liu, R.; Liu, D.; Zhou, F. Automated detection of atrial fibrillation based on DenseNet using ECG signals. In Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences, Beijing, China, 11–13 September 2020; ACM: New York, NY, USA, 2020; pp. 69–73. [Google Scholar] [CrossRef]
- Mittal, S.; Oliveros, S.; Li, J.; Barroyer, T.; Henry, C.; Gardella, C. AI filter improves positive predictive value of atrial fibrillation detection by an implantable loop recorder. JACC Clin. Electrophysiol. 2021, 7, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Krivoshei, L.; Weber, S.; Burkard, T.; Maseli, A.; Brasier, N.; Kühne, M.; Conen, D.; Huebner, T.; Seeck, A.; Eckstein, J. Smart detection of atrial fibrillation. Europace 2017, 19, 753–757. [Google Scholar] [CrossRef]
- van der Velden, B.H.; Kuijf, H.J.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence [XAI] in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Hicks, S.A.; Alqudah, A.M.; Morris, A.; Kipritidis, J.; Zhai, S.; Xu, Z.; Chatburn, A. Explaining deep neural networks for knowledge discovery in electrocardiogram analysis. Sci. Rep. 2021, 11, 10949. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, K.G.; Tae, Y.; Chang, M.; Park, S.J.; Park, K.M.; On, Y.K.; Kim, J.S.; Lee, Y.; Jang, S.W. An artificial intelligence algorithm with 24-h Holter monitoring for the identification of occult atrial fibrillation during sinus rhythm. Front. Cardiovasc. Med. 2022, 9, 906780. [Google Scholar] [CrossRef]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef]
- Shi, H.; Wang, H.; Qin, C.; Zhao, L.; Liu, C. An incremental learning system for atrial fibrillation detection based on transfer learning and active learning. Comput. Methods Programs Biomed. 2020, 187, 105219. [Google Scholar] [CrossRef]
- Shah, R.U.; Mutharasan, R.K.; Ahmad, F.S.; Rosenblatt, A.G.; Gay, H.C.; Steinberg, B.A.; Yandell, M.; Tristani-Firouzi, M.; Klewer, J.; Mukherjee, R.; et al. Development of a portable tool to identify patients with atrial fibrillation using clinical notes from the electronic medical record. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, S.; Xing, W.; Chen, Q.; Liu, X.; Pu, Y.; Xin, F.; Jiang, H.; Yin, Z.; Tao, D.; et al. Robust Artificial Intelligence Tool for Atrial Fibrillation Diagnosis: Novel Development Approach Incorporating Both Atrial Electrograms and Surface ECG and Evaluation by Head-to-Head Comparison With Hospital-Based Physician ECG Readers. J. Am. Heart Assoc. 2024, 13, e032100. [Google Scholar] [CrossRef] [PubMed]
- Korucuk, N.; Bozkurt, F.; Yildirim, O. Estimation of atrial fibrillation from lead-I ECGs: Comparison with cardiologists and machine learning model [CurAlive], a clinical validation study. arXiv 2021, arXiv:2104.07427. Available online: http://arxiv.org/abs/2104.07427 (accessed on 7 July 2024).
- Halcox, J.P.; Wareham, K.; Cardew, A.; Gilmore, M.; Barry, J.P.; Phillips, C.; Gravenor, M.B. Assessment of remote heart rhythm sampling using the AliveCor heart monitor to screen for atrial fibrillation: The REHEARSE-AF study. Circulation 2017, 136, 1784–1794. [Google Scholar] [CrossRef]
- Koenig, N.; Seeck, A.; Eckstein, J.; Mainka, A.; Huebner, T.; Voss, A.; Weber, S. Validation of a new heart rate measurement algorithm for fingertip recording of video signals with smartphones. Telemed J. E Health 2016, 22, 631–636. [Google Scholar] [CrossRef]
- Hill, N.R.; Groves, L.; Dickerson, C.; Ochs, A.; Pang, D.; Lawton, S.; Hurst, M.; Pollock, K.G.; Sugrue, D.M.; Tsang, C.; et al. Identification of undiagnosed atrial fibrillation using a machine learning risk-prediction algorithm and diagnostic testing [PULsE-AI] in primary care: A multi-centre randomized controlled trial in England. Eur. Heart J. Digit. Health 2022, 3, 195–204. [Google Scholar] [CrossRef]
- Jeon, K.H.; Baek, Y.S.; Park, H.S.; Lee, J.; Kim, J.; Lee, D.I.; Park, J.; Kim, Y.G.; Park, Y.J.; Park, J.W.; et al. Identifying atrial fibrillation with sinus rhythm electrocardiogram in embolic stroke of undetermined source: A validation study with insertable cardiac monitors. Korean Circ. J. 2023, 53, 758–771. [Google Scholar] [CrossRef]
- Kao, Y.T.; Hsieh, Y.C.; Lo, L.H.; Wu, M.S.; Wu, Y.H.; Chuang, S.Y.; Huang, H.Y.; Wang, T.D.; Lee, T.T.; Lee, C.H.; et al. Machine learning-based prediction of atrial fibrillation risk using electronic medical records in older-aged patients. Am. J. Cardiol. 2023, 198, 56–63. [Google Scholar] [CrossRef]
- Hygrell, T.; Frykman-Kull, V.; Jensen, S.; Wallenborg, M.; Ohlsson, H.; Wilhelmsen, M.; Faraguna, U.; Engdahl, J. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. Europace 2023, 25, 1332–1338. [Google Scholar] [CrossRef]
- Lee, J.H.; Yu, H.T.; Kim, T.H.; Park, J.; Park, J.K.; Kim, I.C.; Kim, I.S.; Park, H.R.; Park, Y.J.; Uhm, J.S.; et al. Left atrial wall stress and the long-term outcome of catheter ablation of atrial fibrillation: An artificial intelligence-based prediction of atrial wall stress. Front. Physiol. 2021, 12, 828509. [Google Scholar] [CrossRef]
- Liu, C.M.; Chang, S.L.; Chen, H.H.; Chen, W.S.; Lin, Y.J.; Lo, L.W.; Hu, Y.F.; Chung, F.P.; Chao, T.F.; Tuan, T.C.; et al. The clinical application of the deep learning technique for predicting trigger origins in patients with paroxysmal atrial fibrillation with catheter ablation. Circ. Arrhythm. Electrophysiol. 2020, 13, e008518. [Google Scholar] [CrossRef] [PubMed]
Authors | Country | Study Type | Main Objective | Main Results | Conclusions |
---|---|---|---|---|---|
Playford et al. [22] | Australia | Prospective validation study | Continuous electrocardiogram [ECG] recording using a wearable device with data transmission and artificial intelligence [AI] for rhythm monitoring. | Achieved 100% accuracy in classifying AF and sinus rhythm [SR] with ECG data [historical and simulated]. | The AI model accurately classified AF and SR, demonstrating the potential of AI in diagnosing other arrhythmias. |
Chen et al. [14] | China | Prospective cohort validation | Evaluate the sensitivity, specificity, and accuracy of a smart wristband equipped with photoplethysmography [PPG] and ECG systems to detect AF using AI. | PPG readings: Sensitivity 88.00%, Specificity 96.41%, Accuracy 93.27%; ECG readings: Sensitivity 87.33%, Specificity 99.20%, Accuracy 94.76%. | Smart wristbands using AI can reliably detect AF and SR, offering high accuracy in arrhythmia detection. |
Fuster-Barceló et al. [23] | Spain | Model validation study | Develop and validate a methodology to classify AF using PPG signals converted into images. | Achieved 100% accuracy in classifying AF and normal sinus rhythm [NSR] using convolutional neural networks [CNN] and Explainable AI [XAI]. | The methodology improved AF classification accuracy, ensuring transparency in the classification process with XAI techniques. |
Liu et al. [24] | Taiwan | Algorithm validation study | Predict non-pulmonary vein triggers [NPV] before catheter ablation using deep learning models and image analysis. | Correctly predicted NPV triggers in approximately 82% of cases, with 64% sensitivity and 88% specificity. Overall accuracy improved to 89%. | Deep learning models can accurately predict NPV triggers, aiding decision-making before ablation procedures. |
Santala et al. [25] | Finland | Diagnostic accuracy study | Evaluate the diagnostic accuracy of an automated mHealth system with wearable ECG, mobile app, and cloud service for AF detection. | Sensitivity: 100%, Specificity: 96%, and area under the curve [AUC] of 0.88, showing high predictive capacity. | The system provided high-quality ECG recordings and diagnostic accuracy, enhancing patient care. |
Gahungu et al. [26] | USA | Retrospective validation study | Assess AI performance using single-lead ECGs recorded during polysomnography to detect AF. | AI achieved 100% sensitivity and 76% specificity. | AI application in sleep studies proved effective for AF detection, showing significant potential for integrated monitoring tools. |
Korucuk et al. [27] | Turkey | Comparative analysis | Compare the AI-based AF detection model [“CurAlive”] with human interpretation of ECG data. | AI model achieved an accuracy of 94.1%, outperforming human interpretation [54.6%]. | AI performed better than human experts, indicating its utility in supporting clinical decision-making. |
Li et al. [28] | China | Algorithm development and validation | Develop and validate a convolutional neural network [CNN] for AF prediction from ECG signals. | CNN achieved 99.79% AUC, showing high robustness for real-time AF identification. | CNNs have strong potential for real-time, highly accurate AF prediction, particularly in wearable technology. |
Guo et al. [29] | UK | Predictive model validation study | Develop an AI-based algorithm to predict AF onset 4 h before an event using patient data. | The model achieved an AUC of 94%, successfully predicting AF onset hours in advance. | AI’s predictive capacity enables pre-emptive diagnosis and decision-making, reducing AF complications. |
Brasier, et al. [30] | Germany | mHealth validation study | Test accuracy of a smartphone-based PPG algorithm for AF detection compared to standard ECGs. | Achieved 99.1% specificity and 89.9% sensitivity. | The smartphone-based AF detection method offers a noninvasive, cost-effective solution for long-term monitoring. |
Jeon et al. [31] | South Korea | Model development and validation | Developing an AI model to predict AF using various clinical markers, including ECG and demographic data. | The model demonstrated an accuracy of 92%, showing significant improvement over traditional AF detection methods. | AI models can be integrated into clinical practice to enhance AF prediction and early diagnosis. |
Hygrell et al. [32] | Sweden | Prospective cohort study | Investigating AF detection using wearable ECG devices combined with machine learning algorithms for long-term monitoring. | Sensitivity: 94%, Specificity: 91%, significantly reducing AF detection time. | Wearable devices equipped with AI can improve long-term AF detection and reduce the time needed for diagnosis. |
Shi et al. [33] | China | Retrospective validation study | Evaluation of AI performance using 12-lead ECGs for early AF detection in a large-scale clinical population. | AI demonstrated a sensitivity of 93% and specificity of 95% in detecting early-stage AF. | AI can enhance the early diagnosis of AF, particularly in asymptomatic patients. |
Sánchez et al. [18] | Spain | Algorithm development and validation | Development of a deep learning algorithm for predicting AF recurrence post-ablation therapy. | The model achieved 85% accuracy in predicting AF recurrence, significantly improving treatment outcomes. | Deep learning models can support clinicians in predicting AF recurrence and tailoring post-ablation therapy. |
Hiraoka et al. [34] | Japan | Predictive model development | Development of an AI algorithm to predict post-operative AF in patients undergoing cardiac surgery. | The model predicted post-operative AF with 87% sensitivity and 83% specificity. | AI models can aid in identifying high-risk patients and reducing post-operative AF complications. |
Choi et al. [35] | South Korea | mHealth validation study | Validation of a PPG-based algorithm for AF detection using smartphone cameras. | Achieved 97.6% accuracy, 89.3% sensitivity, and 95.7% specificity. | Smartphone-based AI algorithms offer an accessible, low-cost solution for AF detection. |
Tao et al. [36] | China | Algorithm development and validation | Development of an AI algorithm for detecting AF in patients with heart failure using ECG and other clinical markers. | The algorithm demonstrated 93% accuracy in detecting AF in patients with heart failure, outperforming traditional diagnostic methods. | AI algorithms can improve the early detection of AF in high-risk populations, particularly heart failure patients. |
Zheng et al. [37] | China | Comparative analysis | Compare the performance of different AI models in detecting AF using ECG data from wearable devices. | The CNN-based model achieved the highest accuracy at 95.8%, significantly outperforming other machine-learning models. | CNNs offer superior accuracy in AF detection compared to other machine-learning approaches. |
Lueken Markus, et al. [38] | Germany | Algorithm validation study | Validation of an AI-based algorithm for detecting AF in older patients using wearable devices for continuous monitoring. | Sensitivity: 92%, Specificity: 88%, with a significant improvement in AF detection time. | AI models in wearable devices can enhance continuous monitoring and reduce diagnostic delay in older patients. |
Isaksen et al. [20] | Norway | Retrospective validation study | AI-based algorithm to detect AF in patients with multiple comorbidities using 12-lead ECG data. | Achieved 89% sensitivity and 90% specificity in detecting AF in complex cases. | AI can improve AF detection in patients with multiple comorbidities, supporting earlier interventions and better outcomes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes Junior, A.d.S.; e Silva, A.L.F.; e Silva, L.R.F.; de Lima, K.B.A.; Oliveira, H.L.d. A Scoping Review of the Use of Artificial Intelligence in the Identification and Diagnosis of Atrial Fibrillation. J. Pers. Med. 2024, 14, 1069. https://doi.org/10.3390/jpm14111069
Menezes Junior AdS, e Silva ALF, e Silva LRF, de Lima KBA, Oliveira HLd. A Scoping Review of the Use of Artificial Intelligence in the Identification and Diagnosis of Atrial Fibrillation. Journal of Personalized Medicine. 2024; 14(11):1069. https://doi.org/10.3390/jpm14111069
Chicago/Turabian StyleMenezes Junior, Antônio da Silva, Ana Lívia Félix e Silva, Louisiany Raíssa Félix e Silva, Khissya Beatryz Alves de Lima, and Henrique Lima de Oliveira. 2024. "A Scoping Review of the Use of Artificial Intelligence in the Identification and Diagnosis of Atrial Fibrillation" Journal of Personalized Medicine 14, no. 11: 1069. https://doi.org/10.3390/jpm14111069
APA StyleMenezes Junior, A. d. S., e Silva, A. L. F., e Silva, L. R. F., de Lima, K. B. A., & Oliveira, H. L. d. (2024). A Scoping Review of the Use of Artificial Intelligence in the Identification and Diagnosis of Atrial Fibrillation. Journal of Personalized Medicine, 14(11), 1069. https://doi.org/10.3390/jpm14111069