A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Dataset
2.2. Ethical Considerations and Data Accessibility
2.3. Study Design
2.4. Statistical Analysis
3. Results
3.1. Cohort Sampling for the Control and CRS Groups
3.2. Incidence Analysis of Dementia Between the Control and CRS Groups
3.3. Risk Analysis of Subsequent Development of Dementia Between the Control and CRS Groups
3.4. Subgroup Analysis of Subsequent Development of Dementia
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fokkens, W.; Lund, V.; Hopkins, C.; Hellings, P.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J. Executive summary of EPOS 2020 including integrated care pathways. Rhinology 2020, 58, 82–111. [Google Scholar] [CrossRef] [PubMed]
- Son, D.S.; Cho, M.S.; Kim, D.K. Chronic Rhinosinusitis and the Increased Incidence of Atopic Dermatitis. Am. J. Rhinol. Allergy 2022, 36, 574–582. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, D.-K.; Dhong, H.-J.; Eun, K.M.; Lee, K.E.; Kong, I.G.; Kim, H.; Chung, S.-K.; Kim, D.-Y.; Rhee, C.-S.; et al. Immunological Characteristics in Refractory Chronic Rhinosinusitis with Nasal Polyps Undergoing Revision Surgeries. Allergy Asthma Immunol. Res. 2019, 11, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Caulley, L.; Thavorn, K.; Rudmik, L.; Cameron, C.; Kilty, S.J. Direct costs of adult chronic rhinosinusitis by using 4 methods of estimation: Results of the US Medical Expenditure Panel Survey. J. Allergy Clin. Immunol. 2015, 136, 1517–1522. [Google Scholar] [CrossRef] [PubMed]
- Halawi, A.M.; Smith, S.S.; Chandra, R.K. Chronic rhinosinusitis: Epidemiology and cost. Allergy Asthma Proc. 2013, 34, 328–334. [Google Scholar] [CrossRef]
- Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflammation 2018, 15, 276. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Kareem, O.; Khushtar, M.; Akbar; Haque, R.; Iqubal, A.; Haider, F.; Pottoo, F.H.; Abdulla, F.S.; Al-Haidar, M.B.; et al. Neuroinflammation: A Potential Risk for Dementia. Int. J. Mol. Sci. 2022, 23, 616. [Google Scholar] [CrossRef]
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for healthcare practice and research. J. Neurosci. Nurs. 2012, 44, 206–217. [Google Scholar] [CrossRef]
- Hendriks, C.; Drent, M.; De Kleijn, W.; Elfferich, M.; Wijnen, P.; De Vries, J. Everyday cognitive failure and depressive symptoms predict fatigue in sarcoidosis: A prospective follow-up study. Respir. Med. 2018, 138S, S24–S30. [Google Scholar] [CrossRef]
- Andreotti, C.; King, A.A.; Macy, E.; Compas, B.E.; DeBaun, M.R. The Association of Cytokine Levels With Cognitive Function in Children With Sickle Cell Disease and Normal MRI Studies of the Brain. J. Child. Neurol. 2015, 30, 1349–1353. [Google Scholar] [CrossRef]
- Miller, A.A.; Spencer, S.J. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef]
- Wichmann, M.A.; Cruickshanks, K.J.; Carlsson, C.M.; Chappell, R.; Fischer, M.E.; Klein, B.E.; Klein, R.; Tsai, M.Y.; Schubert, C.R. Long-term systemic inflammation and cognitive impairment in a population-based cohort. J. Am. Geriatr. Soc. 2014, 62, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Godbout, J.P.; Johnson, R.W. Age and neuroinflammation: A lifetime of psychoneuroimmune consequences. Neurol. Clin. 2006, 24, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Kipinoinen, T.; Toppala, S.; Rinne, J.O.; Viitanen, M.H.; Jula, A.M.; Ekblad, L.L. Association of Midlife Inflammatory Markers With Cognitive Performance at 10-Year Follow-up. Neurology 2022, 99, e2294–e2302. [Google Scholar] [CrossRef]
- Tarasidis, G.S.; DeConde, A.S.; Mace, J.C.; Ashby, S.; Smith, T.L.; Orlandi, R.R.; Alt, J.A. Cognitive dysfunction associated with pain and quality of life in chronic rhinosinusitis. Int. Forum. Allergy Rhinol. 2015, 5, 1004–1009. [Google Scholar] [CrossRef]
- Matsui, T.; Arai, H.; Nakajo, M.; Maruyama, M.; Ebihara, S.; Sasaki, H.; Yoshida, Y. Role of chronic sinusitis in cognitive functioning in the elderly. J. Am. Geriatr. Soc. 2003, 51, 1818–1819. [Google Scholar] [CrossRef]
- Jung, H.J.; Lee, J.Y.; Choi, Y.S.; Choi, H.G.; Wee, J.H. Chronic rhinosinusitis and progression of cognitive impairment in dementia. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 138, 147–151. [Google Scholar] [CrossRef]
- Stewart, S.A.; Pimer, L.; Fisk, J.D.; Rusak, B.; Leslie, R.A.; Eskes, G.; Schoffer, K.; McKelvey, J.R.; Rolheiser, T.; Khan, M.N.; et al. Olfactory Function and Diffusion Tensor Imaging as Markers of Mild Cognitive Impairment in Early Stages of Parkinson’s Disease. Clin. EEG Neurosci. 2023, 54, 91–97. [Google Scholar] [CrossRef]
- Jung, H.J.; Shin, I.S.; Lee, J.E. Olfactory function in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Laryngoscope 2019, 129, 362–369. [Google Scholar] [CrossRef]
- Wee, J.H.; Yoo, D.M.; Byun, S.H.; Hong, S.J.; Park, M.W.; Choi, H.G. Association between neurodegenerative dementia and chronic rhinosinusitis: A nested case-control study using a national health screening cohort. Medicine 2020, 99, e22141. [Google Scholar] [CrossRef]
- Gong, J.; Harris, K.; Lipnicki, D.M.; Castro-Costa, E.; Lima-Costa, M.F.; Diniz, B.S.; Xiao, S.; Lipton, R.B.; Katz, M.J.; Wang, C.; et al. Sex differences in dementia risk and risk factors: Individual-participant data analysis using 21 cohorts across six continents from the COSMIC consortium. Alzheimers Dement. 2023, 19, 3365–3378. [Google Scholar] [CrossRef] [PubMed]
- Hasselgren, C.; Ekbrand, H.; Halleröd, B.; Fässberg, M.M.; Zettergren, A.; Johansson, L.; Skoog, I.; Dellve, L. Sex differences in dementia: On the potentially mediating effects of educational attainment and experiences of psychological distress. BMC Psychiatry 2020, 20, 434. [Google Scholar] [CrossRef] [PubMed]
- Chapurin, N.; Wu, J.; Labby, A.B.; Chandra, R.K.; Chowdhury, N.I.; Turner, J.H. Current insight into treatment of chronic rhinosinusitis: Phenotypes, endotypes, and implications for targeted therapeutics. J. Allergy Clin. Immunol. 2022, 150, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Peters, A.T.; Stevens, W.W.; Schleimer, R.P.; Tan, B.K.; Kern, R.C. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 2022, 77, 812–826. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.N.; Garcia, J.A.P.; Grayson, J.W. Chronic rhinosinusitis: Phenotypes and endotypes. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 24–29. [Google Scholar] [CrossRef]
- Bauer, A.M.; Turner, J.H. Personalized Medicine in Chronic Rhinosinusitis: Phenotypes, Endotypes, and Biomarkers. Immunol. Allergy Clin. N. Am. 2020, 40, 281–293. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kang, S.I.; Kong, I.G.; Cho, Y.H.; Song, S.K.; Hyun, S.J.; Cho, S.D.; Han, S.-Y.; Cho, S.-H.; Kim, D.W. Two-Track Medical Treatment Strategy According to the Clinical Scoring System for Chronic Rhinosinusitis. Allergy Asthma Immunol. Res. 2018, 10, 490–502. [Google Scholar] [CrossRef]
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef]
- Low, A.; Prats-Sedano, M.A.; McKiernan, E.; Carter, S.F.; Stefaniak, J.D.; Nannoni, S.; Su, L.; Dounavi, M.-E.; Muniz-Terrera, G.; Ritchie, K.; et al. Modifiable and non-modifiable risk factors of dementia on midlife cerebral small vessel disease in cognitively healthy middle-aged adults: The PREVENT-Dementia study. Alzheimers Res. Ther. 2022, 14, 154. [Google Scholar] [CrossRef]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Blasko, I.; Stampfer-Kountchev, M.; Robatscher, P.; Veerhuis, R.; Eikelenboom, P.; Grubeck-Loebenstein, B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: The role of microglia and astrocytes. Aging Cell 2004, 3, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Licastro, F.; Chiappelli, M. Brain immune responses cognitive decline and dementia: Relationship with phenotype expression and genetic background. Mech. Ageing Dev. 2003, 124, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Van Zele, T.; Claeys, S.; Gevaert, P.; Van Maele, G.; Holtappels, G.; Van Cauwenberge, P.; Bachert, C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006, 61, 1280–1289. [Google Scholar] [CrossRef]
- Kim, D.W.; Eun, K.M.; Roh, E.Y.; Shin, S.; Kim, D.K. Chronic Rhinosinusitis without Nasal Polyps in Asian Patients Shows Mixed Inflammatory Patterns and Neutrophil-Related Disease Severity. Mediators Inflamm. 2019, 2019, 7138643. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Eun, K.M.; Kim, M.K.; Cho, D.; Han, S.A.; Han, S.Y.; Seo, Y.; Lee, D.-H.; Cho, S.H.; Kim, D.W. Comparison Between Signature Cytokines of Nasal Tissues in Subtypes of Chronic Rhinosinusitis. Allergy Asthma Immunol. Res. 2019, 11, 201–211. [Google Scholar] [CrossRef]
- Stein, N.R.; Jafari, A.; DeConde, A.S. Revision rates and time to revision following endoscopic sinus surgery: A large database analysis. Laryngoscope 2018, 128, 31–36. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ko, I.; Kim, M.S.; Yu, M.S.; Cho, B.J.; Kim, D.K. Association of Chronic Rhinosinusitis With Depression and Anxiety in a Nationwide Insurance Population. JAMA Otolaryngol. Head. Neck Surg. 2019, 145, 313–319. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ko, I.; Kim, M.S.; Kim, D.W.; Cho, B.J.; Kim, D.K. Relationship of Chronic Rhinosinusitis with Asthma, Myocardial Infarction, Stroke, Anxiety, and Depression. J. Allergy Clin. Immunol. Pract. 2020, 8, 721–727.e3. [Google Scholar] [CrossRef]
- Fan, H.; Han, Z.; Gong, X.; Wu, Y.; Fu, Y.; Zhu, T.; Li, H. Prevalence and predictors of depression and anxiety in patients with chronic rhinosinusitis: A systematic review and meta-analysis. BMJ Open 2024, 14, e079273. [Google Scholar] [CrossRef]
- Cha, H.; Kim, D.; Lee, H.W.; Lee, Y.; Baek, B.J.; Lee, J.Y.; Choi, J.H. Relationship between chronic rhinosinusitis and risk of obstructive sleep apnea. Sci. Rep. 2024, 14, 21379. [Google Scholar] [CrossRef] [PubMed]
- Guay-Gagnon, M.; Vat, S.; Forget, M.F.; Tremblay-Gravel, M.; Ducharme, S.; Nguyen, Q.D.; Desmarais, P. Sleep apnea and the risk of dementia: A systematic review and meta-analysis. J. Sleep. Res. 2022, 31, e13589. [Google Scholar] [CrossRef] [PubMed]
Variables | Control (n = 8504) | CRS (n = 2126) | p-Value |
---|---|---|---|
Sex | 0.9 | ||
Male | 3516 (41%) | 879 (41%) | |
Female | 4988 (59%) | 1247 (59%) | |
Ages | 0.9 | ||
55–69 | 5852 (69%) | 1463 (69%) | |
>69 | 2652 (31%) | 663 (31%) | |
Residence | 0.9 | ||
Seoul | 2244 (26%) | 561 (26%) | |
Second area | 2356 (28%) | 589 (28%) | |
Third area | 3904 (46%) | 976 (46%) | |
Household income | 0.9 | ||
Low (0–30%) | 1676 (20%) | 419 (20%) | |
Middle (30–70%) | 1888 (22%) | 472 (22%) | |
High (70–100%) | 4940 (58%) | 1235 (58%) | |
Comorbidity | 0.9 | ||
No | 4248 (50%) | 1062 (50%) | |
Yes | 4248 (50%) | 1062 (50%) |
Variables | N | Case | Person-Year | Incidence | Unadjusted HR (95% CI) | Adjusted HR (95% CI) |
---|---|---|---|---|---|---|
All-cause dementia | ||||||
Control | 8504 | 512 | 4207 | 0.122 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 186 | 1492 | 0.125 | 1.1 (0.9–1.3) | 1.0 (0.8–1.3) |
Alzheimer’s disease | ||||||
Control | 8504 | 252 | 2148 | 0.117 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 88 | 770 | 0.114 | 1.0 (1.8–1.3) | 0.9 (0.7–1.2) |
Parkinson’s disease | ||||||
Control | 8504 | 78 | 577 | 0.135 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 37 | 260 | 0.142 | 1.1 (0.7–1.6) | 0.9 (0.5–1.4) |
Other types of dementia | ||||||
Control | 8504 | 182 | 1483 | 0.123 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 61 | 462 | 0.132 | 1.2 (0.9–1.6) | 1.0 (0.7–1.4) |
Time (Year) | Number of All-Cause Dementia | Adjusted HR (95% CI) | p-Value | |
---|---|---|---|---|
Comparison | CRS | |||
1 | NA | NA | NA | NA |
2 | NA | 1 | NA | NA |
3 | 13 | 3 | 0.3 (0.01–9.5) | 0.5055 |
4 | 50 | 17 | 0.7 (0.4–1.4) | 0.3597 |
5 | 72 | 33 | 0.6 (0.4–0.9) | 0.0285 |
6 | 106 | 49 | 0.9 (0.6–1.2) | 0.3779 |
7 | 165 | 66 | 0.9 (0.6–1.2) | 0.3477 |
8 | 218 | 88 | 0.8 (0.6–1.1) | 0.1956 |
9 | 301 | 114 | 1.0 (0.8–1.3) | 0.7432 |
10 | 364 | 133 | 1.1 (0.9–1.3) | 0.4698 |
11 | 424 | 157 | 1.0 (0.8–1.2) | 0.9063 |
12 | 512 | 186 | 1.0 (0.8–1.1) | 0.6059 |
Sex | Male | Female | ||
---|---|---|---|---|
Comparison | CRS | Comparison | CRS | |
Unadjusted HR (95% CI) | 1.00 (ref) | 1.1 (0.8–1.5) | 1.00 (ref) | 1.1 (0.8–1.3) |
Adjusted HR (95% CI) | 1.00 (ref) | 1.0 (0.7–1.3) | 1.00 (ref) | 1.0 (0.7–1.2) |
Variables | N | Case | Person-Year | Incidence | Unadjusted HR (95% CI) | Adjusted HR (95% CI) |
---|---|---|---|---|---|---|
All-cause dementia | ||||||
Comparison | 8504 | 512 | 4207 | 0.122 | 1.00 (ref) | 1.00 (ref) |
CRSsNP | 1864 | 162 | 1289 | 0.126 | 1.13 (1.0–1.4) | 1.0 (0.81–1.2) |
CRSwNP | 262 | 24 | 203 | 0.118 | 0.9 (0.6–1.3) | 0.8 (0.5–1.2) |
Variables | N | Case | Person-Year | Incidence | Unadjusted HR (95% CI) | Adjusted HR (95% CI) |
---|---|---|---|---|---|---|
Alzheimer’s disease | ||||||
Control | 8504 | 252 | 2148 | 0.117 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 88 | 770 | 0.114 | 1.0 (1.8–1.3) | 0.9 (0.7–1.2) |
Parkinson’s disease | ||||||
Control | 8504 | 78 | 577 | 0.135 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 37 | 260 | 0.142 | 1.1 (0.7–1.6) | 0.9 (0.5–1.4) |
Other types of dementia | ||||||
Control | 8504 | 182 | 1483 | 0.123 | 1.00 (ref) | 1.00 (ref) |
CRS | 2126 | 61 | 462 | 0.132 | 1.2 (0.9–1.6) | 1.0 (0.7–1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, D.-S.; Kim, J.-I.; Kim, D.-K. A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia. J. Pers. Med. 2024, 14, 1081. https://doi.org/10.3390/jpm14111081
Son D-S, Kim J-I, Kim D-K. A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia. Journal of Personalized Medicine. 2024; 14(11):1081. https://doi.org/10.3390/jpm14111081
Chicago/Turabian StyleSon, Dae-Soon, Jae-In Kim, and Dong-Kyu Kim. 2024. "A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia" Journal of Personalized Medicine 14, no. 11: 1081. https://doi.org/10.3390/jpm14111081
APA StyleSon, D.-S., Kim, J.-I., & Kim, D.-K. (2024). A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia. Journal of Personalized Medicine, 14(11), 1081. https://doi.org/10.3390/jpm14111081