Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Study Participants & Procedures
2.3. Objectives
2.4. Outcome
2.5. Study Procedures
2.6. Data Processing and Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ICU | Overall | ICU Reason of Admission | n (%) |
---|---|---|---|
n | 242 | Post-operative after cardiopulmonary surgery | 153 (63.2) |
Age | 62.4 (14.2) | Sepsis | 16 (6.6) |
Male (%) | 165 (68.2) | Subarachnoid hemorrhage | 13 (5.4) |
BMI (kg/m2) | 26.1 [23.8–29.1] | Neurologic with high ICP, NOS | 12 (5.0) |
Shock type (if applicable) (%) | n (%) | Hypovolemic shock | 8 (3.3) |
Distributive | 29 (12.0) | Cardiac/cardiogenic shock | 8 (3.3) |
Cardiogenic | 26 (10.7) | Post-operative after non-cardiopulmonary surgery | 7 (2.9) |
Mixed type | 9 (3.7) | Respiratory failure, NOS | 6 (2.5) |
Hypovolemic | 3 (1.2) | Distributive shock, NOS | 4 (1.7) |
Obstructive | 1 (0.4) | Trauma | 3 (1.2) |
SOFA | 9.0 [7.0–11.0] | Spinal shock | 3 (1.2) |
Respiratory failure, pneumonia | 3 (1.2) | ||
OHCA | 1 (0.4) | ||
Other | 4 (1.7) | ||
PACU | Overall | ASA Classification | n (%) |
n | 40 | I | 2 (5.0) |
Age (years) | 64.4 (8.4) | II | 34 (85.0) |
Male (%) | 21 (52.5) | III | 4 (10.0) |
Weight (kg) | 73.1 (15.37) | Surgery type | n (%) |
BMI (kg/m2) | 24.55 [21.6–26.3] | Gastro-Intestinal | 37 (92.5) |
Duration of surgery (min.) | 262 [224–429] | Gynecological oncology | 1 (2.5) |
Other | 2 (5.0) |
Abbreviations
AKI | Acute kidney injury |
AUROC | Area under receiver operating characteristic curve |
FN | False negative |
FP | False positive |
HPI | Hypotension Prediction Index |
ICU | Intensive Care Unit |
MAP | Mean arterial pressure |
NPV | Negative predictive value |
OR | Operating room |
PACU | Post-anesthesia care unit |
PPV | Positive predictive value |
ROC | Receiver operating characteristic |
SD | Standard deviation |
TN | True negative |
TP | True positive |
TWA | Time-weighted average |
References
- Schenk, J.; van der Ven, W.H.; Schuurmans, J.; Roerhorst, S.; Cherpanath, T.G.V.; Lagrand, W.K.; Thoral, P.; Elbers, P.W.G.; Tuinman, P.R.; Scheeren, T.W.L.; et al. Definition and incidence of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine. J. Crit. Care 2021, 65, 142–148. [Google Scholar] [CrossRef]
- Bijker, J.B.; van Klei, W.A.; Kappen, T.H.; van Wolfswinkel, L.; Moons, K.G.; Kalkman, C.J. Incidence of intraoperative hypotension as a function of the chosen definition: Literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology 2007, 107, 213–220. [Google Scholar] [CrossRef]
- Roshanov, P.S.; Rochwerg, B.; Patel, A.; Salehian, O.; Duceppe, E.; Belley-Côté, E.P.; Guyatt, G.H.; Sessler, D.I.; Le Manach, Y.; Borges, F.K.; et al. Withholding versus Continuing Angiotensin-converting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patIents cOhort evaluatioN Prospective Cohort. Anesthesiology 2017, 126, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Briesenick, L.; Flick, M.; Saugel, B. Postoperative blood pressure management in patients treated in the ICU after noncardiac surgery. Curr. Opin. Crit. Care 2021, 27, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Wijnberge, M.; Schenk, J.; Bulle, E.; Vlaar, A.P.; Maheshwari, K.; Hollmann, M.W.; Binnekade, J.M.; Geerts, B.F.; Veelo, D.P. Association of intraoperative hypotension with postoperative morbidity and mortality: Systematic review and meta-analysis. BJS Open 2021, 5, zraa018. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Meyhoff, C.S.; Zimmerman, N.M.; Mao, G.; Leslie, K.; Vásquez, S.M.; Balaji, P.; Alvarez-Garcia, J.; Cavalcanti, A.B.; Parlow, J.L.; et al. Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death: A Substudy of the POISE-2 Trial. Anesthesiology 2018, 128, 317–327. [Google Scholar] [CrossRef]
- Schuurmans, J.; van Rossem, B.T.B.; Rellum, S.R.; Tol, J.T.M.; Kurucz, V.C.; van Mourik, N.; van der Ven, W.H.; Veelo, D.P.; Schenk, J.; Vlaar, A.P.J. Hypotension during intensive care stay and mortality and morbidity: A systematic review and meta-analysis. Intensive Care Med. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wijnberge, M.; van der Ster, B.J.P.; Geerts, B.F.; de Beer, F.; Beurskens, C.; Emal, D.; Hollmann, M.W.; Vlaar, A.P.J.; Veelo, D.P. Clinical performance of a machine-learning algorithm to predict intra-operative hypotension with noninvasive arterial pressure waveforms: A cohort study. Eur. J. Anaesthesiol. EJA 2021, 38, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Šribar, A.; Jurinjak, I.S.; Almahariq, H.; Bandić, I.; Matošević, J.; Pejić, J.; Peršec, J. Hypotension prediction index guided versus conventional goal directed therapy to reduce intraoperative hypotension during thoracic surgery: A randomized trial. BMC Anesthesiol. 2023, 23, 101. [Google Scholar] [CrossRef]
- Frassanito, L.; Giuri, P.P.; Vassalli, F.; Piersanti, A.; Garcia, M.I.M.; Sonnino, C.; Zanfini, B.A.; Catarci, S.; Antonelli, M.; Draisci, G. Hypotension Prediction Index guided Goal Directed therapy and the amount of Hypotension during Major Gynaecologic Oncologic Surgery: A Randomized Controlled clinical Trial. J. Clin. Monit. Comput. 2023, 37, 1081–1093. [Google Scholar] [CrossRef]
- Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology 2018, 129, 663–674. [Google Scholar] [CrossRef]
- van der Ven, W.H.; Terwindt, L.E.; Risvanoglu, N.; Ie, E.L.; Wijnberge, M.; Veelo, D.P.; Geerts, B.F.; Vlaar, A.P.; van der Ster, B.J. Performance of a machine-learning algorithm to predict hypotension in mechanically ventilated patients with COVID-19 admitted to the intensive care unit: A cohort study. J. Clin. Monit. Comput. 2021, 36, 1397–1405. [Google Scholar] [CrossRef]
- Saugel, B.; Kouz, K.; Hoppe, P.; Maheshwari, K.; Scheeren, T.W.L. Predicting hypotension in perioperative and intensive care medicine. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 189–197. [Google Scholar] [CrossRef]
- Frassanito, L.; Sonnino, C.; Piersanti, A.; Zanfini, B.A.; Catarci, S.; Giuri, P.P.; Scorzoni, M.; Gonnella, G.L.; Antonelli, M.; Draisci, G. Performance of the Hypotension Prediction Index With Noninvasive Arterial Pressure Waveforms in Awake Cesarean Delivery Patients Under Spinal Anesthesia. Anesth. Analg. 2022, 134, 633–643. [Google Scholar] [CrossRef]
- Pinsky, M.R. The hemodynamic consequences of mechanical ventilation: An evolving story. Intensive Care Med. 1997, 23, 493. [Google Scholar] [CrossRef]
- Michard, F. Changes in arterial pressure during mechanical ventilation. J. Am. Soc. Anesthesiol. 2005, 103, 419–428. [Google Scholar] [CrossRef]
- Schenk, J.; Wijnberge, M.; Maaskant, J.M.; Hollmann, M.W.; Hol, L.; Immink, R.V.; Vlaar, A.P.; van der Ster, B.J.P.; Geerts, B.F.; Veelo, D.P. Effect of Hypotension Prediction Index-guided intraoperative haemodynamic care on depth and duration of postoperative hypotension: A sub-study of the Hypotension Prediction trial. Br. J. Anaesth. 2021, 127, 681–688. [Google Scholar] [CrossRef]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W.; Vlaar, A.P.; et al. Effect of a Machine Learning–Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Terwindt, L.E.; Schuurmans, J.; van der Ster, B.J.P.; Wensing, C.A.G.C.L.; Mulder, M.P.; Wijnberge, M.; Cherpanath, T.G.V.; Lagrand, W.K.; Karlas, A.A.; Verlinde, M.H.; et al. Incidence, Severity and Clinical Factors Associated with Hypotension in Patients Admitted to an Intensive Care Unit: A Prospective Observational Study. J. Clin. Med. 2022, 11, 6832. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Sondergaard, S. Pavane for a pulse pressure variation defunct. Crit. Care 2013, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Maler, S.A.; Reddy, K.; Fleming, N.W. Use of the Hypotension Prediction Index During Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Turan, A.; Chang, C.; Cohen, B.; Saasouh, W.; Essber, H.; Yang, D.; Ma, C.; Hovsepyan, K.; Khanna, A.K.; Vitale, J.; et al. Incidence, Severity, and Detection of Blood Pressure Perturbations after Abdominal Surgery: A Prospective Blinded Observational Study. Anesthesiology 2019, 130, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Lankadeva, Y.R.; May, C.N.; Bellomo, R.; Evans, R.G. Role of perioperative hypotension in postoperative acute kidney injury: A narrative review. Br. J. Anaesth. 2022, 128, 931–948. [Google Scholar] [CrossRef] [PubMed]
Demographics | |
---|---|
n | 282 |
ICU (%) | 242 (85.8%) |
Age (years) | 62.7 (13.5) |
Male (%) | 186 (66.0%) |
Weight (kg) | 81.0 (18.1) |
Length (cm) | 174.4 (9.8) |
BMI (kg/m2) | 25.7 [23.6–29.0] |
Reason of Admission | n (%) |
Post-operative after cardiopulmonary surgery | 153 (54.3) |
Post-operative after major non-cardiopulmonary surgery | 47 (16.7) |
Sepsis | 16 (5.7) |
Subarachnoid hemorrhage | 13 (4.6) |
Neurologic with high ICP, NOS | 12 (4.3) |
Hypovolemic shock | 8 (2.8) |
Cardiac/cardiogenic shock | 8 (2.8) |
Respiratory failure, NOS | 6 (2.1) |
Distributive shock, NOS | 4 (1.4) |
Trauma | 3 (1.1) |
Spinal shock | 3 (1.1) |
Respiratory failure, pneumonia | 3 (1.1) |
OHCA | 1 (0.4) |
Other | 4 (1.4) |
HPI above Threshold ≥ 1 min | Sensitivity | Specificity | TTE (Seconds) | PPV | NPV |
---|---|---|---|---|---|
0 | 1.00 | 0.00 | 180 [80–400] | 0.71 | 1.00 |
5 | 1.00 | 0.10 | 180 [80–400] | 0.71 | 1.00 |
10 | 1.00 | 0.15 | 180 [60–400] | 0.72 | 1.00 |
15 | 1.00 | 0.22 | 180 [60–400] | 0.72 | 1.00 |
20 | 1.00 | 0.28 | 180 [80–400] | 0.73 | 1.00 |
25 | 1.00 | 0.34 | 180 [80–400] | 0.74 | 1.00 |
30 | 1.00 | 0.41 | 180 [80–400] | 0.75 | 1.00 |
35 | 1.00 | 0.47 | 180 [60–400] | 0.76 | 1.00 |
40 | 1.00 | 0.53 | 180 [80–400] | 0.77 | 1.00 |
45 | 1.00 | 0.57 | 180 [60–400] | 0.78 | 1.00 |
50 | 1.00 | 0.60 | 180 [60–400] | 0.79 | 1.00 |
55 | 1.00 | 0.63 | 180 [60–400] | 0.80 | 1.00 |
60 | 1.00 | 0.66 | 180 [60–400] | 0.81 | 1.00 |
65 | 1.00 | 0.68 | 180 [60–400] | 0.82 | 1.00 |
70 | 1.00 | 0.71 | 180 [60–380] | 0.82 | 1.00 |
75 | 1.00 | 0.74 | 180 [60–380] | 0.84 | 1.00 |
80 | 1.00 | 0.76 | 160 [60–380] | 0.84 | 1.00 |
85 | 1.00 | 0.79 | 160 [60–375] | 0.85 | 1.00 |
90 | 1.00 | 0.82 | 160 [60–360] | 0.87 | 1.00 |
95 | 1.00 | 0.89 | 140 [60–340] | 0.90 | 0.99 |
100 | 0.00 | 1.00 | - | - | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tol, J.T.M.; Terwindt, L.E.; Rellum, S.R.; Wijnberge, M.; van der Ster, B.J.P.; Kho, E.; Hollmann, M.W.; Vlaar, A.P.J.; Veelo, D.P.; Schenk, J. Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients. J. Pers. Med. 2024, 14, 210. https://doi.org/10.3390/jpm14020210
Tol JTM, Terwindt LE, Rellum SR, Wijnberge M, van der Ster BJP, Kho E, Hollmann MW, Vlaar APJ, Veelo DP, Schenk J. Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients. Journal of Personalized Medicine. 2024; 14(2):210. https://doi.org/10.3390/jpm14020210
Chicago/Turabian StyleTol, Johan T. M., Lotte E. Terwindt, Santino R. Rellum, Marije Wijnberge, Björn J. P. van der Ster, Eline Kho, Markus W. Hollmann, Alexander P. J. Vlaar, Denise P. Veelo, and Jimmy Schenk. 2024. "Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients" Journal of Personalized Medicine 14, no. 2: 210. https://doi.org/10.3390/jpm14020210
APA StyleTol, J. T. M., Terwindt, L. E., Rellum, S. R., Wijnberge, M., van der Ster, B. J. P., Kho, E., Hollmann, M. W., Vlaar, A. P. J., Veelo, D. P., & Schenk, J. (2024). Performance of a Machine Learning Algorithm to Predict Hypotension in Spontaneously Breathing Non-Ventilated Post-Anesthesia and ICU Patients. Journal of Personalized Medicine, 14(2), 210. https://doi.org/10.3390/jpm14020210