Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease
Abstract
:1. Introduction
2. Anatomy and Physiology of Retinal Vasculature
3. Retinal Vessel Analysis
3.1. Retinal Vessels Analyser Using Fundus Images
3.1.1. Types of Software Used to Measure Retinal Vasculature
3.1.2. Retinal Vascular Changes Used in Studying CVD
3.2. Optical Coherence Tomography—Angiography OCTA
3.2.1. Choroidal Vasculature Imaging
3.2.2. Imaging of the Retinal Capillary Network
3.3. Reference Values of Retinal Microcirculation Parameters
4. Retinal Vascular Changes in Cardiovascular Disease
4.1. Retinal Vascular Changes and Heart Disease
4.2. Retinal Vessel Analysis in Adults with Hypertension
4.3. Retinal Vascular Changes and CVD Mortality
5. Exercise Improves Retinal Microvascular Health
6. Artificial Intelligence in Retinal Vessel Analysis
7. Clinical Implementation in Cardiovascular Disease Prevention
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World-Health-Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; WHO Press: Geneva, Switzerland, 2013. [Google Scholar]
- Strain, W.D.; Paldánius, P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol. 2018, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Ikram, M.K.; Sabanayagam, C.; Wong, T.Y. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60, 1094–1103. [Google Scholar] [CrossRef]
- Flammer, J.; Konieczka, K.; Bruno, R.M.; Virdis, A.; Flammer, A.J.; Taddei, S. The eye and the heart. Eur. Heart J. 2013, 34, 1270–1278. [Google Scholar] [CrossRef]
- Streese, L.; Guerini, C.; Bühlmayer, L.; Lona, G.; Hauser, C.; Bade, S.; Deiseroth, A.; Hanssen, H. Physical activity and exercise improve retinal microvascular health as a biomarker of cardiovascular risk: A systematic review. Atherosclerosis 2020, 315, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Liew, G.; Klein, R.; Rochtchina, E.; Knudtson, M.D.; Klein, B.E.; Wong, T.Y.; Burlutsky, G.; Mitchell, P. Retinal vessel diameter and cardiovascular mortality: Pooled data analysis from two older populations. Eur. Heart J. 2007, 28, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wong, T.Y.; Sharrett, A.R.; Klein, R.; Folsom, A.R.; Jerosch-Herold, M. Relationship between retinal arteriolar narrowing and myocardial perfusion: Multiethnic study of atherosclerosis. Hypertension 2008, 51, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, H.; Lukas Streese, L.; Vilser, W. Retinal vessel diameters and function in cardiovascular risk and disease. Prog. Retin. Eye Res. 2022, 91, 101095. [Google Scholar] [CrossRef]
- Grammas, P.; Riden, M. Retinal endothelial cells are more susceptible to oxidative stress and increased permeability than brain-derived endothelial cells. Microvasc. Res. 2003, 65, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar] [CrossRef]
- Rassam, S.M.; Patel, V.; Chen, H.C.; Kohner, E.M. Regional retinal blood flow and vascular autoregulation. Eye 1996, 10 Pt 3, 331–337. [Google Scholar] [CrossRef]
- Garhofer, G.; Werkmeister, R.; Dragostinoff, N.; Schmetterer, L. Retinal blood flow in healthy young subjects. Investig. Ophthalmol. Vis. Sci. 2012, 53, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Shen, Y.M.; Jiang, M.N.; Lou, X.F.; Shen, Y. Ocular blood flow autoregulation mechanisms and methods. J. Ophthalmol. 2015, 2015, 864871. [Google Scholar] [CrossRef] [PubMed]
- Palkovits, S.; Lasta, M.; Told, R.; Schmidl, D.; Boltz, A.; Napora, K.J.; Werkmeister, R.M.; Popa-Cherecheanu, A.; Garhofer, G.; Schmetterer, L. Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4707–4713. [Google Scholar] [CrossRef]
- Kallab, M.; Hommer, N.; Tan, B.; Pfister, M.; Schlatter, A.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Schmetterer, L.; Garhofer, G. Plexus-specific effect of flicker-light stimulation on the retinal microvasculature assessed with optical coherence tomography angiography. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H23–H28. [Google Scholar] [CrossRef] [PubMed]
- Hendrikx, D.; Smits, A.; Lavanga, M.; De Wel, O.; Thewissen, L.; Jansen, K.; Caicedo, A.; Van Huffel, S.; Naulaers, G. Measurement of neurovascular coupling in neonates. Front. Physiol. 2019, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Böhm, E.W.; Pfeiffer, N.; Wagner, F.M.; Gericke, A. Methods to measure blood flow and vascular reactivity in the retina. Front. Med. 2023, 9, 1069449. [Google Scholar] [CrossRef] [PubMed]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’donoghue, B.; Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2018, 2, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, R.; Cheung, N.; Wang, J.J.; Klein, R.; Klein, B.E.; Cotch, M.F.; Sharrett, A.R.; Shea, S.; Islam, F.A.; Wong, T.Y. Retinal vessel diameters and risk of hypertension: The Multiethnic Study of Atherosclerosis. J. Hypertens. 2009, 27, 2386–2393. [Google Scholar] [CrossRef]
- Wong, T.Y.; Knudtson, M.D.; Klein, R.; Klein, B.E.; Meuer, S.M.; Hubbard, L.D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 2004, 111, 1183–1190. [Google Scholar] [CrossRef]
- Knudtson, M.D.; Lee, K.E.; Hubbard, L.D.; Wong, T.Y.; Klein, R.; Klein, B.E. Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 2003, 27, 143–149. [Google Scholar] [CrossRef]
- Muramatsu, C.; Hatanaka, Y.; Iwase, T.; Hara, T.; Fujita, H. Automated detection and classification of major retinal vessels for determination of diameter ratio of arteries and veins. In Proceedings of the SPIE Medical Imaging, San Diego, CA, USA, 17–18 February 2010; Volume 9, p. 76240J. [Google Scholar]
- Miri, M.; Amini, Z.; Rabbani, H.; Kafieh, R. A Comprehensive Study of Retinal Vessel Classification Methods in Fundus Images. J. Med. Signals Sens. 2017, 7, 59–70. [Google Scholar]
- Yip, W.; Tham, Y.C.; Hsu, W.; Lee, M.L.; Klein, R.; Klein, B.; Ikram, M.K.; Wong, T.Y.; Cheung, C.Y. Comparison of Common Retinal Vessel Caliber Measurement Software and a Conversion Algorithm. Transl. Vis. Sci. Technol. 2016, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.F.; Zhang, Z.Y.; Petit, T.; Cauwenberghs, N.; Gu, Y.M.; Thijs, L.; Raaijmakers, A.; Jacobs, L.; Yang, W.Y.; Allegaert, K.; et al. Retinal microvascular diameter, a hypertension-related trait, in ECG-gated vs. non-gated images analyzed by IVAN and SIVA. Hypertens. Res. 2016, 39, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Perez-Rovira, A.; MacGillivray, T.; Trucco, E.; Chin, K.S.; Zutis, K.; Lupascu, C.; Tegolo, D.; Giachetti, A.; Wilson, P.J.; Doney, A.; et al. VAMPIRE: Vessel assessment and measurement platform for images of the REtina. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 2011, pp. 3391–3394. [Google Scholar]
- Niemeijer, M.; Xu, X.; Dumitrescu, A.V.; Gupta, P.; van Ginneken, B.; Folk, J.C.; Abramoff, M.D. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans. Med. Imaging 2011, 30, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Tay, W.T.; Mitchell, P.; Wang, J.J.; Hsu, W.; Lee, M.L.; Lau, Q.P.; Zhu, A.L.; Klein, R.; Saw, S.M.; et al. Quantitative and qualitative retinal microvascular characteristics and blood pressure. J. Hypertens. 2011, 29, 1380–1391. [Google Scholar] [CrossRef]
- Matsunaga, D.; Yi, J.; De Koo, L.; Ameri, H.; Puliafito, C.; Kashani, A. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 796–805. [Google Scholar] [CrossRef]
- You, Q.S.; Chan, J.C.H.; Ng, A.L.K.; Choy, B.K.N.; Shih, K.C.; Cheung, J.J.C.; Wong, J.K.W.; Shum, J.W.H.; Ni, M.Y.; Lai, J.S.M.; et al. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4830–4837. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Kitahara, J.; Toriyama, Y.; Kasamatsu, H.; Murata, T.; Sadda, S. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br. J. Ophthalmol. 2019, 103, 216–221. [Google Scholar] [CrossRef]
- Lu, Y.; Simonett, J.M.; Wang, J.; Zhang, M.; Hwang, T.; Hagag, A.M.; Huang, D.; Li, D.; Jia, Y. Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2212–2221. [Google Scholar] [CrossRef]
- Lei, J.; Yi, E.; Suo, Y.; Chen, C.; Xu, X.; Ding, W.; Abdelfattah, N.S.; Fan, X.; Lu, H. Distinctive analysis of macular superficial capillaries and large vessels using optical coherence tomographic angiography in healthy and diabetic eyes. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.C.; Leal, I.; Moreira, S.; Vale, S.D.; Silva-Herdade, A.S.; Aguiar, P.; Dionísio, P.; Pinto, L.A.; Castanho, M.A.R.B.; Marques-Neves, C. A protocol to evaluate retinal vascular response using optical coherence tomography angiography. Front. Neurosci. 2019, 13, 566. [Google Scholar] [CrossRef] [PubMed]
- Nesper, P.; Lee, H.; Fayed, A.; Schwartz, G.; Yu, F.; Fawzi, A. Hemodynamic response of the three macular capillary plexuses in dark adaptation and flicker stimulation using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2019, 60, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.; Fujimoto, J.; Waheed, N. Image artifacts in optical coherence tomography angiography. Retina 2015, 35, 2163–2180. [Google Scholar] [CrossRef]
- Ghasemi Falavarjani, K.; Al-Sheikh, M.; Darvizeh, F.; Sadun, A.; Sadda, S. Retinal vessel calibre measurements by optical coherence tomography angiography. Br. J. Ophthalmol. 2017, 101, 989–992. [Google Scholar] [CrossRef]
- Yu, P.; Mehnert, A.; Athwal, A.; Sarunic, M.; Yu, D. Use of the retinal vascular histology to validate an optical coherence tomography angiography technique. Transl. Vis. Sci. Technol. 2021, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Kaszubski, P.A.; Cobbs, L.; Reynolds, H.; Smith, R.T. Choroidal thickness in patients with coronary artery disease. PLoS ONE 2017, 12, e0175691. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Li, J.; Yuan, N.; Lau, G.Y.L.; Chan, A.Y.F.; Lam, A.; Tang, F.Y.; Tham, C.C.; Pang, C.-P.; Chen, L.J.; et al. Quantitative retinal microvasculature in children using swept-source optical coherence tomography: The Hong Kong Children Eye Study. Br. J. Ophthalmol. 2018, 103, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Kaneko, H.; Ito, Y.; Kataoka, K.; Iwase, T.; Yasuma, T.; Matsuura, T.; Tsunekawa, T.; Shimizu, H.; Suzumura, A.; et al. Novel classification of early-stage systemic hypertensive changes in human retina based on OCTA measurement of Choriocapillaris. Sci. Rep. 2018, 8, 15163. [Google Scholar] [CrossRef]
- Chua, J.; Chin, C.W.L.; Hong, J.; Chee, M.L.; Le, T.-T.; Ting, D.S.W.; Wong, T.Y.; Schmetterer, L. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J. Hypertens. 2019, 37, 572. [Google Scholar] [CrossRef]
- Ponto, K.A.; Werner, D.J.; Wiedemer, L.; Laubert-Reh, D.; Schuster, A.K.; Nickels, S.; Höhn, R.; Schulz, A.; Binder, H.; Beutel, M.; et al. Retinal vessel metrics: Normative data and their use in systemic hypertension: Results from the Gutenberg Health Study. J. Hypertens. 2017, 35, 1635–1645. [Google Scholar] [CrossRef] [PubMed]
- Cífková, R.; Harazny, J.M.; Bruthans, J.; Wohlfahrt, P.; Krajčoviechová, A.; Lánská, V.; Gelžinský, J.; Mateřánková, M.; Mareš, Š.; Filipovský, J.; et al. Reference values of retinal microcirculation parameters derived from a population random sample. Microvasc. Res. 2021, 134, 104117. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Kotliar, K.E.; Lammertyn, L.; Ramoshaba, N.E.; Vilser, W.; Huisman, H.W.; Schutte, A.E. Retinal vessel caliber and caliber responses in true normotensive black and white adults: The African-PREDICT study. Microvasc. Res. 2020, 128, 103937. [Google Scholar] [CrossRef] [PubMed]
- Madhloum, N.; Luyten, L.J.; Provost, E.B.; De Boever, P.; Dockx, Y.; Sleurs, H.; Plusquin, M.; Roodt, J.O.; Vrijens, K.; Nawrot, T.S. Establishing reference values for macro- and microvascular measurements in 4-to-5 year-old children of the ENVIRONAGE prospective birth cohort. Sci. Rep. 2020, 10, 5107. [Google Scholar] [CrossRef] [PubMed]
- Köchli, S.; Smith, W.; Lona, G.; Goikoetxea-Sotelo, G.; Breet, Y.; Botha-Le Roux, S.; Mokwatsi, G.G.; Kruger, R.; Hanssen, H. Obesity, blood pressure and retinal microvascular phenotype in a bi-ethnic cohort of young children. Atherosclerosis 2022, 350, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Arnould, L.; Binquet, C.; Guenancia, C.; Alassane, S.; Kawasaki, R.; Daien, V.; Guillemin, M.; Bron, A.M. Association between the retinal vascular network with Singapore «I»Vessel Assessment (SIVA) software, cardiovascular history and risk factors in the elderly: The Montrachet study, population-based study. PLoS ONE 2018, 13, e0194694. [Google Scholar] [CrossRef]
- Wagner, S.K.; Fu, D.J.; Faes, L.; Liu, X.; Huemer, J.; Khalid, H.; Ferraz, D.; Korot, E.; Kelly, C.; Balaskas, K.; et al. Insights into systemic disease through retinal imaging-based oculomics. Transl. Vis. Sci. Technol. 2020, 9, 6. [Google Scholar] [CrossRef]
- Liew, G.; Sharrett, A.R.; Wang, J.J.; Klein, R.B.; Klein, E.; Mitchell, P.; Wong, T.Y. Relative importance of systemic determinants of retinal arteriolar and venular caliber: The atherosclerosis risk in communities study. Arch. Ophthalmol. 2008, 126, 1404–1410. [Google Scholar] [CrossRef]
- Myers, C.E.; Klein, R.; Knudtson, M.D.; Lee, K.E.; Gangnon, R.; Wong, T.Y.; Klein, B.E. Determinants of retinal venular diameter: The Beaver Dam Eye Study. Ophthalmology 2012, 119, 2563–2571. [Google Scholar] [CrossRef]
- Fu, Y.; Yusufu, M.; Wang, Y.; He, M.; Shi, D.; Wang, R. Association of retinal microvascular density and complexity with incident coronary heart disease. Atherosclerosis 2023, 380, 117196. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Shokr, H.; Greenstein, A.; Gherghel, D. Macro- and Microvascular Function in Middle-Aged Individuals with Low Cardiovascular Disease Risk. J. Clin. Med. 2022, 11, 6962. [Google Scholar] [CrossRef]
- Al-Fiadh, A.H.; Wong, T.Y.; Kawasaki, R.; Clark, D.J.; Patel, S.K.; Freeman, M.; Wilson, A.; Burrell, L.M.; Farouque, O. Usefulness of retinal microvascular endothelial dysfunction as a predictor of coronary artery disease. Am. J. Cardiol. 2015, 115, 609–613. [Google Scholar] [CrossRef]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Sharrett, A.R.; Klein, B.E.; Wang, J.J.; Chambless, L.E.; Wong, T.Y. Risk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk in Communities [ARIC] Study). Am. J. Cardiol. 2008, 102, 58–63. [Google Scholar] [CrossRef]
- Schuster, A.K.; Fischer, J.E.; Vossmerbaeumer, U. A retinal snap shot may indicate individual risk for cardiovascular disease—The MIPH Eye&Health Study. Int. J. Cardiol. 2015, 180, 30–33. [Google Scholar]
- Wang, S.B.; Mitchell, P.; Liew, G.; Wong, T.Y.; Phan, K.; Thiagalingam, A.; Joachim, N.; Burlutsky, G.; Gopinath, B. A spectrum of retinal vasculature measures and coronary artery disease. Atherosclerosis 2018, 268, 215–224. [Google Scholar] [CrossRef]
- Mutlu, U.; Ikram, M.K.; Wolters, F.J.; Hofman, A.; Klaver, C.C.; Ikram, M.A. Retinal microvasculature is associated with long-term survival in the general adult Dutch population. Hypertension 2016, 67, 281–287. [Google Scholar] [CrossRef]
- Shokr, H.; Lush, V.; Dias, I.H.; Ekárt, A.; De Moraes, G.; Gherghel, D. The Use of Retinal Microvascular Function and Telomere Length in Age and Blood Pressure Prediction in Individuals with Low Cardiovascular Risk. Cells 2022, 11, 3037. [Google Scholar] [CrossRef]
- Ikram, M.K.; de Jong, F.J.; Vingerling, J.R.; Witteman, J.C.; Hofman, A.; Breteler, M.M.; de Jong, P.T. Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2129–2134. [Google Scholar] [CrossRef]
- Wang, J.J.; Rochtchina, E.; Liew, G.; Tan, A.G.; Wong, T.Y.; Leeder, S.R.; Smith, W.; Shankar, A.; Mitchell, P. The long-term relation among retinal arteriolar narrowing, blood pressure, and incident severe hypertension. Am. J. Epidemiol. 2008, 168, 80–88. [Google Scholar] [CrossRef]
- Chew, S.K.; Xie, J.; Wang, J.J. Retinal arteriolar diameter and the prevalence and incidence of hypertension: A systematic review and meta-analysis of their association. Curr. Hypertens. Rep. 2012, 14, 144–151. [Google Scholar] [CrossRef]
- Antonio, P.R.; Marta, P.S.; Luis, D.D.; Antonio, D.P.; Manuel, S.T.; Rafael, M.S.; Sonia, G.V.; Manuel, G.P.; Isabel, M.N.; Carlos, E.N.; et al. Factors associated with changes in retinal microcirculation after antihypertensive treatment. J. Hum. Hypertens. 2014, 28, 310–315. [Google Scholar] [CrossRef]
- Chandra, A.; Seidelmann, S.B.; Claggett, B.L.; Klein, B.E.; Klein, R.; Shah, A.M.; Solomon, S.D. The association of retinal vessel calibres with heart failure and long-term alterations in cardiac structure and function: The Atherosclerosis Risk in Communities (ARIC) Study. Eur. J. Heart Fail. 2019, 21, 1207–1215. [Google Scholar] [CrossRef]
- Huang, L.; Chen, W.-Q.; Aris, I.M.; Teo, L.L.Y.; Wong, T.Y.; Koh, A.S.; Li, L.-J. Associations between cardiac function and retinal microvascular geometry among Chinese adults. Sci. Rep. 2020, 10, 14797. [Google Scholar] [CrossRef]
- Siantar, R.G.; Cheng, C.-Y.; Cheung, C.M.G.; Lamoureux, E.L.; Ong, P.G.; Chow, K.Y.; Mitchell, P.; Aung, T.; Wong, T.-Y.; Cheung, C.Y. Impact of visual impairment and eye diseases on mortality: The Singapore Malay Eye Study (SiMES). Sci. Rep. 2015, 5, 16304. [Google Scholar] [CrossRef]
- Liew, G.; Wong, T.Y.; Mitchell, P.; Cheung, N.; Wang, J.J. Retinopathy predicts coronary heart disease mortality. Heart 2009, 95, 391–394. [Google Scholar] [CrossRef]
- Ricardo, A.C.; Grunwald, J.E.; Parvathaneni, S.; Goodin, S.; Ching, A.; Lash, J.P. Retinopathy and CKD as predictors of all-cause and cardiovascular mortality: National Health and Nutrition Examination Survey (NHANES) 1988–1994. Am. J. Kidney Dis. 2014, 64, 198–203. [Google Scholar] [CrossRef]
- Sairenchi, T.; Iso, H.; Yamagishi, K.; Irie, F.; Okubo, Y.; Gunji, J.; Muto, T.; Ota, H. Mild retinopathy is a risk factor for cardiovascular mortality in Japanese with and without hypertension: The Ibaraki Prefectural Health Study. Circulation 2011, 124, 2502–2511. [Google Scholar] [CrossRef]
- Guo, S.; Yin, S.; Song, W.; Tse, G.; Liu, J.; Hei, K.; Chen, K.; Su, L.; Liu, T. Retinal Microvascular Abnormalities Predict Clinical Outcomes in Patients with Heart Failure. Diagnostics 2022, 12, 2078. [Google Scholar] [CrossRef]
- Wu, H.Q.; Wu, H.; Shi, L.L.; Yu, L.Y.; Wang, L.Y.; Chen, Y.L.; Geng, J.S.; Shi, J.; Jiang, K.; Dong, J.C. The association between retinal vasculature changes and stroke: A literature review and Meta-analysis. Int. J. Ophthalmol. 2017, 10, 109–114. [Google Scholar]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2020, 42, 17–96. [Google Scholar] [CrossRef]
- Kim, K.; Choi, S.; Hwang, S.E.; Son, J.S.; Lee, J.-K.; Oh, J.; Park, S.M. Changes in exercise frequency and cardiovascular outcomes in older adults. Eur. Heart J. 2020, 41, 1490–1499. [Google Scholar] [CrossRef]
- Deiseroth, A.; Marcin, T.; Berger, C.; Infanger, D.; Schäfer, J.; Bannert, B.; Schmidt-Trucksäss, A.; Voll, R.E.; Kyburz, D.; Hanssen, H. Retinal vessel diameters and physical activity in patients with mild to moderate rheumatic disease without cardiovascular comorbidities. Front. Physiol. 2018, 9, 176. [Google Scholar] [CrossRef]
- Braun, G.; Hafner, B.; Königstein, K.; Infanger, D.; Klenk, C.; Rossmeissl, A.; Schmidt-Trucksäss, A.; Hanssen, H. Association of cardiorespiratory fitness with retinal vessel diameters as a biomarker of cardiovascular risk. Microvasc. Res. 2018, 120, 36–40. [Google Scholar] [CrossRef]
- Hanssen, H.; Nickel, T.; Drexel, V.; Hertel, G.; Emslander, I.; Sisic, Z.; Lorang, D.; Schuster, T.; Kotliar, K.; Pressler, A.; et al. Exercise induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 2011, 216, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Streese, L.; Kotliar, K.; Deiseroth, A.; Infanger, D.; Vilser, W.; Hanssen, H. Retinal endothelial function, physical fitness and cardiovascular risk: A diagnostic challenge. Front. Physiol. 2019, 10, 831. [Google Scholar] [CrossRef] [PubMed]
- Streese, L.; Kotliar, K.; Deiseroth, A.; Infanger, D.; Gugleta, K.; Schmaderer, C.; Hanssen, H. Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial. Scand. J. Med. Sci. Sports 2020, 30, 272–280. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag. 2006, 27, 12–14. [Google Scholar]
- Armstrong, G.W.; Lorch, A.C. A(eye): A review of current applications of artificial intelligence and machine learning in ophthalmology. Int. Ophthalmol. Clin. 2020, 60, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms:new models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef]
- Huang, Y.; Cheung, C.Y.; Li, D.; Tham, Y.C.; Sheng, B.; Cheng, C.Y.; Wang, Y.X.; Wong, T.Y. AI-integrated ocular imaging for predicting cardiovascular disease: Advancements and future outlook. Eye 2023, 38, 464–472. [Google Scholar] [CrossRef]
- Ahuja, A.S.; Halperin, L.S. Understanding the advent of artificial intelligence in ophthalmology. J. Curr. Ophthalmol. 2019, 31, 115–117. [Google Scholar] [CrossRef]
- Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Khan, S.M.; Liu, X.; Nath, S.; Korot, E.; Faes, L.; Wagner, S.K.; A Keane, P.; Sebire, N.J.; Burton, M.J.; Denniston, A.K. A global review of publicly available datasets for ophthalmological imaging: Barriers to access, usability, and generalisability. Lancet Digit. Health 2021, 3, e51–e66. [Google Scholar] [CrossRef]
- Fraz, M.M.; Welikala, R.A.; Rudnicka, A.R. QUARTZ: Quantitative Analysis of Retinal Vessel Topology and Size—An automated system for quantification of retinal vessels morphology. Expert Syst. Appl. 2015, 42, 7221–7234. [Google Scholar] [CrossRef]
- Tapp, R.J.; Owen, C.G.; Barman, S.A.; Welikala, R.A.; Foster, P.J.; Whincup, P.H.; Strachan, D.P.; Rudnicka, A.R. Associations of Retinal Microvascular Diameters and Tortuosity with Blood Pressure and Arterial Stiffness: United Kingdom Biobank. Hypertension 2019, 74, 1383–1390. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Xu, D.; Cheng, C.-Y.; Sabanayagam, C.; Tham, Y.-C.; Yu, M.; Rim, T.H.; Chai, C.Y.; Gopinath, B.; Mitchell, P.; et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat. Biomed. Eng. 2021, 5, 498–508. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; Wang, Z.; Aydar, M.; Baber, U.; Min, J.K.; Tang, W.H.W.; Halperin, J.L.; Narayan, S.M. Deep learning for cardiovascular medicine: A practical primer. Eur. Heart J. 2019, 40, 2058–2073. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Noh, K.J.; Byun, S.J.; Lee, S.; Kim, T.; Sunwoo, L.; Lee, K.J.; Kang, S.-H.; Park, K.H.; Park, S.J. Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Sci. Rep. 2020, 10, 4623. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Shin, J.Y.; Chun, E.J.; Jung, K.H.; Park, K.H.; Park, S.J. Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms. Trans. Vis. Sci. Technol. 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Nusinovici, S.; Rim, T.H.; Yu, M.; Lee, G.; Tham, Y.-C.; Cheung, N.; Chong, C.C.Y.; Da Soh, Z.; Thakur, S.; Lee, C.J.; et al. Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk. Age Ageing 2022, 51, afac065. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.M.; Sun, Z.M.; Shi, J.M.; Ran, A.M.; Tang, F.; Tang, Z.M.; Lok, J.F.; Szeto, S.F.; Chan, J.M.; Yip, F.F.; et al. A multitask deep-learning system for assessment of diabetic macular ischemia on optical coherence tomography angiography images. Retina 2022, 42, 184–194. [Google Scholar] [CrossRef]
- Alam, M.; Le, D.; Son, T.; Lim, J.I.; Yao, X. AV-Net: Deep learning for fully automated arteryvein classification in optical coherence tomography angiography. Biomed. Opt. Express 2020, 11, 5249–5257. [Google Scholar] [CrossRef]
- Lin, A.; Fang, D.; Li, C.; Cheung, C.Y.; Chen, H. Improved automated foveal avascular zone measurement in cirrus optical coherence tomography angiography using the level sets macro. Transl. Vis. Sci. Technol. 2020, 9, 20. [Google Scholar] [CrossRef]
- Mirshahi, R.; Anvari, P.; Riazi-Esfahani, H.; Sardarinia, M.; Naseripour, M.; Falavarjani, K.G. Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach. Sci. Rep. 2021, 11, 1031. [Google Scholar] [CrossRef]
- Shi, D.; Lin, Z.; Wang, W.; Tan, Z.; Shang, X.; Zhang, X.; Meng, W.; Ge, Z.; He, M. A Deep Learning System for Fully Automated Retinal Vessel Measurement in High Throughput Image Analysis. Front. Cardiovasc. Med. 2022, 9, 823436. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Hom, G.L.; Abramoff, M.D.; Campbell, J.P.; Chiang, M.F. Current challenges and barriers to real-world artificial intelligence adoption for the healthcare system, provider, and the patient. Transl. Vis. Sci. Technol. 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, S.B.; Claggett, B.; Bravo, P.E.; Gupta, A.; Farhad, H.; Klein, B.E.; Klein, R.; Di Carli, M.; Solomon, S.D. Retinal vessel calibers in predicting long-term cardiovascular outcomes: The Atherosclerosis Risk in Communities Study. Circulation 2016, 134, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Theuerle, J.D.; Al-Fiadh, A.H.; Amirul Islam, F.M.; Patel, S.K.; Burrell, L.M.; Wong, T.Y.; Farouque, O. Impaired retinal microvascular function predicts long-term adverse events in patients with cardiovascular disease. Cardiovasc. Res. 2021, 117, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.; Cheung, C.Y.; Sabanayagam, C.; Yip, W.; Ikram, M.K.; Ong, P.G.; Mitchell, P.; Chow, K.Y.; Cheng, C.Y.; Tai, E.S.; et al. Retinopathy signs improved prediction and reclassification of cardiovascular disease risk in diabetes: A Prospective Cohort Study. Sci. Rep. 2017, 7, 41492. [Google Scholar] [CrossRef]
- Thom, S.; Stettler, C.; Stanton, A.; Witt, N.; Tapp, R.; Chaturvedi, N.; Allemann, S.; Mayet, J.; Sever, P.; Poulter, N.; et al. Differential effects of antihypertensive treatment on the retinal microcirculation: An Anglo-Scandinavian Cardiac Outcomes Trial Substudy. Hypertension 2009, 54, 405–408. [Google Scholar] [CrossRef]
Method | Main Content | Principle of Measurement |
---|---|---|
Retinal Vessel Analyzer | Vessel diameter | Fundus camera-based imaging technology |
Laser Doppler Velocimetry | Blood flow velocity | Optical Doppler shift |
Dye-based Angiography | Visualization of anatomic structures | Passage of a fluorescent dye |
OCTA | Depth resolved angiograms | Detection of intravascular moving particles as an intrinsic contrast |
Doppler OCTA | Retinal blood flow | Generation of a reflective profile and detection of phase shifts of the back-scattered lights |
Retinal oximetry | Oxygen saturation of haemoglobin in RBCs | Difference in absorption of light between oxyhaemoglobin and deoxyhaemoglobin |
Laser Speckle flowgraphy | Mean Blur Rate (MBR) as relative index of retinal blood flow velocity | Detection of changes in the speckle pattern by reflection of coherent laser light |
Vascular Changes | Description | |
---|---|---|
Retinopathy signs | Haemorrhages | red deposits—exudation of blood |
Exudates | yellow deposits—exudation of lipids | |
Cotton-wool spots | fluffy white lesions—ischemia of nerve fibre layer | |
Retinal arteriolar wall signs | Focal arteriolar narrowing (FAN) | constriction of retinal arterioles |
Arteriovenous nicking/ nipping (AVN) | arteriovenous crossing | |
Opacification of arteriolar wall (OAW) | Silver wiring of retinal arterioles | |
Quantitative retinal vascular parameters | Central retinal artery equivalent (CRAE) | index reflecting the average width of retinal arterioles |
Central retinal venule equivalent (CRVE) | index reflecting the average width of retinal venules | |
Tortuosity | a measure of the curliness of the retinal vessels | |
Fractal dimension | branching complexity of the capillary network | |
Branching angle | first angle subtended between two daughter vessels at each vascular bifurcation | |
Branching coefficient | ratio of the branching vessel widths to trunk vessel width | |
Length-diameter-ratio | ratio of the length between 2 branching points to trunk vessel width |
Reference Values (2.5th–97.5th Percentile) | Men | Women | ||
---|---|---|---|---|
<55 Years | >55 Years | <55 Years | >55 Years | |
AVR | 0.72–0.98 | 0.72–0.95 | 0.76–0.99 | 0.73–1.01 |
CRAE | 143.07–213.74 | 129.15–202.49 | 155.54–220.58 | 145.02–217.07 |
CRVE | 179.03–242.69 | 170.52–241.99 | 182.32–245.98 | 178.21–259.72 |
Risk Factors and Diseases | AVR | CRAE | CRV | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Age | 0.985 | 0.974–0.996 | 0.010 | 0.965 | 0.951–0.980 | 0.01 | 0.981 | 0.965–0.998 | 0.025 |
Hypertension | 2.703 | 2.098–3.848 | 0.001 | 2.881 | 2.099–3.954 | 0.001 | 0.786 | 0.549–1.127 | 0.190 |
Diabetes | 0.564 | 0.335–0.948 | 0.031 | 0.405 | 0.169–0.976 | 0.044 | 0.649 | 0.250–1.686 | 0.374 |
Smoking | 0.843 | 0.628–1.131 | 0.255 | 0.653 | 0.437–0.977 | 0.038 | 0.555 | 0.341–0.902 | 0.018 |
Dyslipidaemia | 1.073 | 0.842–1.367 | 0.568 | 1.189 | 0.864–1.638 | 0.288 | 0.797 | 0.540–1.178 | 0.255 |
Obesity | 1.031 | 0.798–1.331 | 0.818 | 0.813 | 0.571–1.158 | 0.251 | 0.727 | 0.470–1.125 | 0.153 |
Heart failure | 0.465 | 0.142–1.518 | 0.204 | 1.222 | 0.368–4.054 | 0.743 | 1.317 | 0.356–4.878 | 0.680 |
Stroke | 1.308 | 0.610–2.803 | 0.491 | 1.178 | 0.371–3.740 | 0.781 | 1.100 | 0.299–4.054 | 0.886 |
Myocardial infarction | 1.326 | 0.684–2.572 | 0.403 | 0.403 | 0.090–1.798 | 0.234 | 1.711 | 0.568–5.158 | 0.340 |
AV Crossing Changes | Arterial Changes | Retinal Changes | Macular Changes | Optic Nerve Changes |
---|---|---|---|---|
Salus’s sign—deflection of retinal vein as it crosses the arteriole | Decrease in the AV ratio to 1:3 | Retinal haemorrhages
| Macular star formation due to depositing of hard exudates around the macula | Optic disk swelling |
Gunn’s sign—tapering of the retinal vein on either side of the AV crossing | Changes in the arteriolar light reflex—copper or silver wiring | Retinal exudates
| ||
Bonnet’s sign—banking of the retinal vein distal to the AV crossing |
Microvascular Alterations in Heart failure | Microvascular Alterations in Stroke |
---|---|
Wider retinal venular calibre Lower vascular fractal dimension Smaller number of vessel segments | Retinal arteriole narrowing Retinal arteriovenous nicking Lower fractal dimension Haemorrhage Microaneurysm |
Study | Country | Retinal Vessel Analysis Software | Retinal Vascular Changes | References |
---|---|---|---|---|
McGeechan 2008 | USA | Arteriolar narrowing, venular widening and arteriolar walls signs—associated with incident coronary heart disease | [56] | |
Myers 2012 | USA | Arteriolar narrowing and venular widening were associated with coronary heart disease and stroke mortality | [52] | |
Liew 2009 | Australia | Arteriolar narrowing and venular widening associated with coronary heart disease and stroke mortality | [68] | |
Kawasaki 2009 | USA | Arteriolar narrowing, retinopathy associated with incident stroke and stroke mortality | [20] | |
Ricardo 2014 | USA | Retinopathy—cardiovascular mortality in persons with chronic kidney disease | [69] | |
Mutlu 2016 | The Netherlands | Venular widening—incident stroke | [59] | |
Siantar 2015 | Singapore | Venular widening, arteriolar narrowing, retinopathy—incident CVD in diabetics | [67] | |
Patel 2022 | United Kingdom | DVA | Reduced flow-mediated dilation responses associated with a reduced baseline-corrected microvascular arterial dilation response to flickering light | [54] |
Köchli 2022 | South Africa, Switzerland | RVA | Narrower CRAE associated with higher body mass index and blood pressure BP | [48] |
Hanssen 2022 | Switzerland | RVA, DVA | Narrower CRAE and higher arteriolar flicker induced dilation associated with higher blood pressure | [8] |
Theuerle 2021 | Australia | DVA | Lower flicker light-induced retinal arteriolar dilation associated with higher risk of major adverse cardiovascular events | [106] |
Cheung 2021 | Multicountry | SIVA-DLS | Associations between measurements of retinal-vessel calibre and CVD risk factors, including BP, body mass index, total cholesterol and glycated-haemoglobin levels | [93] |
Poplin 2018 | [19] | |||
Wei 2019 | Belgium | IVAN | Smaller CRAE is associated with higher central pulse pressure, pulse wave velocity | [26] |
Ponto 2017 | Germany | RVA | Lower CRAE and AVR in participants with uncontrolled hypertension | [44] |
Chandra 2019 | USA | ARIC protocol for RVA (Hubbard) | CRVE widening and CRAE narrowing were associated with larger left ventricular size, higher prevalence of left ventricular hypertrophy | [65] |
Tapp 2019 | United Kingdom | QUARTZ | Narrower arterioles were associated with higher systolic BP, higher mean arterial pressure. Greater arteriolar tortuosity was associated with higher systolic BP, higher mean arterial pressure and higher pulse pressure | [92] |
Madhloum 2020 | Belgium | MONA | Reference values for CRAE and CRVE | [47] |
Shokr 2020 | United Kingdom | DVA | Microvascular alterations can be identifiable at normal values BP, associated with changes in oxidative stress level | [60] |
Takayama 2018 | Japan | RVA | Correlations between age, intraocular pressure, axial length, and choriocapillaris vasculature | [42] |
Cífková 2021 | Czech Republic | laser Doppler flowmetry (SLDF) | Juxtapupillary retinal capillary blood flow increased with age, while vessel and luminal diameters decreased. Systolic blood pressure correlates with wall thickness | [45] |
Smith 2020 | African countries | RVA | Black participants had a smaller CRAE value than white participants. In response to flicker light induced provocation, maximal artery dilation was greater in the black than in the white group | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorga, R.E.; Costin, D.; Munteanu-Dănulescu, R.S.; Rezuș, E.; Moraru, A.D. Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease. J. Pers. Med. 2024, 14, 501. https://doi.org/10.3390/jpm14050501
Iorga RE, Costin D, Munteanu-Dănulescu RS, Rezuș E, Moraru AD. Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease. Journal of Personalized Medicine. 2024; 14(5):501. https://doi.org/10.3390/jpm14050501
Chicago/Turabian StyleIorga, Raluca Eugenia, Damiana Costin, Răzvana Sorina Munteanu-Dănulescu, Elena Rezuș, and Andreea Dana Moraru. 2024. "Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease" Journal of Personalized Medicine 14, no. 5: 501. https://doi.org/10.3390/jpm14050501
APA StyleIorga, R. E., Costin, D., Munteanu-Dănulescu, R. S., Rezuș, E., & Moraru, A. D. (2024). Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease. Journal of Personalized Medicine, 14(5), 501. https://doi.org/10.3390/jpm14050501