Anatomical Reference of the Femur after Distal Resection Is Reliable for Rotational Alignment in Total Knee Arthroplasty
Abstract
:1. Introduction
2. Methods
2.1. Radiographic Measurements
2.2. Measurement of the Intraoperative Anatomical Parameters
2.3. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Associated Anatomical Parameters with Rotational Alignment of the Distal Femur and Its Prediction Models
3.3. Validation between Radiologic Parameters and Intraoperative Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawrence, K.W.; Link, L.; Lavin, P.; Schwarzkopf, R.; Rozell, J.C. Characterizing patient factors, perioperative interventions, and outcomes associated with inpatients falls after total knee arthroplasty. Knee Surg. Relat. Res. 2024, 36, 11. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Lee, D.; Lim, S.; Eom, J. The Accuracy of Alignment Determined by Patient-Specific Instrumentation System in Total Knee Arthroplasty. Knee Surg. Relat. Res. 2019, 31, 19–24. [Google Scholar] [CrossRef]
- Kessler, O.; Patil, S.; Colwell, C.W., Jr.; D’Lima, D.D. The effect of femoral component malrotation on patellar biomechanics. J Biomech. 2008, 41, 3332–3339. [Google Scholar] [CrossRef]
- Alamino, L.P.; Garabano, G.; Pesciallo, C.Á.; Del Sel, H. Bilateral simultaneous total knee arthroplasty with and without patellar resurfacing. A prospective single surgeon series with a minimum follow-up of 7 years. Knee Surg. Relat. Res. 2024, 36, 21. [Google Scholar] [CrossRef] [PubMed]
- Chon, J.; Jeon, T.; Yoon, J.; Jung, D.; An, C.H. Influence of Patellar Tilt Angle in Merchant View on Postoperative Range of Motion in Posterior Cruciate Ligament-Substituting Fixed-Bearing Total Knee Arthroplasty. Clin. Orthop. Surg. 2019, 11, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A.M.; Hash, T.W.; Hepinstall, M.S.; Lyman, S.; Nestor, B.J.; Potter, H.G. MRI evaluation of rotational alignment and synovitis in patients with pain after total knee replacement. J. Bone Joint Surg. Br. 2012, 94, 1209–1215. [Google Scholar] [CrossRef]
- de Saint Vincent, B.; Martinot, P.; Dartus, J.; Pasquier, G.; Girard, J.; Migaud, H. Tibiofemoral lift-off and resulting laxity following total knee arthroplasty: Frequency in a series of 906 continuous cases and functional consequences at 4 years’ follow-up in a case-control study. Orthop. Traumatol. Surg Res. 2022, 108, 103444. [Google Scholar] [CrossRef] [PubMed]
- Kia, M.; Wright, T.M.; Cross, M.B.; Mayman, D.J.; Pearle, A.D.; Sculco, P.K.; Westrich, G.H.; Imhauser, C.W. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA. Clin. Orthop. Relat. Res. 2018, 476, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.; Roth, J.D.; Howell, S.M.; Hull, M.L. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1618–1628. [Google Scholar] [CrossRef]
- Whiteside, L.A.; Arima, J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin. Orthop. Relat. Res 1995, 321, 168–172. [Google Scholar] [CrossRef]
- Siston, R.A.; Patel, J.J.; Goodman, S.B.; Delp, S.L.; Giori, N.J. The variability of femoral rotational alignment in total knee arthroplasty. J. Bone Joint Surg. Am. 2005, 87, 2276–2280. [Google Scholar] [PubMed]
- Laskin, R.S. Flexion space configuration in total knee arthroplasty. J. Arthroplast. 1995, 10, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Jenny, J.Y.; Boeri, C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop. Scand. 2004, 75, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Kinzel, V.; Ledger, M.; Shakespeare, D. Can the epicondylar axis be defined accurately in total knee arthroplasty? Knee 2005, 12, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Park, Y.B.; Ham, D.W.; Lee, J.S.; Song, M.K.; Lee, H.J. No influence of femoral component rotation by the lateral femoral posterior condylar cartilage remnant technique on clinical outcomes in navigation-assisted TKA. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- De Valk, E.J.; Noorduyn, J.C.; Mutsaerts, E.L. How to assess femoral and tibial component rotation after total knee arthroplasty with computed tomography: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3517–3528. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.J.; Cho, J.Y.; Jeung, S.H.; Poon, K.B.; Choi, Y.Y.; Suh, J.T. Combined Rotational Alignment Change after Total Knee Arthroplasty in Different Tibial Component Designs: Implications for Optimal Tibial Component Rotational Alignment. Knee Surg. Relat. Res. 2018, 30, 74–83. [Google Scholar] [CrossRef]
- Miller, M.C.; Berger, R.A.; Petrella, A.J.; Karmas, A.; Rubash, H.E. Optimizing femoral component rotation in total knee arthroplasty. Clin. Orthop. Relat. Res. 2001, 392, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Victor, J. Rotational alignment of the distal femur: A literature review. Orthop. Traumatol. Surg. Res. 2009, 95, 365–372. [Google Scholar] [CrossRef]
- Asada, S.; Akagi, M.; Matsushita, T.; Hashimoto, K.; Mori, S.; Hamanishi, C. Effects of cartilage remnants of the posterior femoral condyles on femoral component rotation in varus knee osteoarthritis. Knee 2012, 19, 185–189. [Google Scholar] [CrossRef]
- Tashiro, Y.; Uemura, M.; Matsuda, S.; Okazaki, K.; Kawahara, S.; Hashizume, M.; Iwamoto, Y. Articular cartilage of the posterior condyle can affect rotational alignment in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Matziolis, D.; Meiser, M.; Sieber, N.; Teichgräber, U.; Matziolis, G. Posterior Cortical Axis: A New Landmark to Control Femoral Component Rotation in Total Knee Arthroplasty. Orthopedics 2017, 40, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Hitt, K.; Shurman, J.R., 2nd; Greene, K.; McCarthy, J.; Moskal, J.; Hoeman, T.; Mont, M.A. Anthropometric measurements of the human knee: Correlation to the sizing of current knee arthroplasty systems. J. Bone Joint Surg. Am. 2003, 85 (Suppl. S4), 115–122. [Google Scholar] [CrossRef] [PubMed]
- Dargel, J.; Michael, J.W.; Feiser, J.; Ivo, R.; Koebke, J. Human knee joint anatomy revisited: Morphometry in the light of sex-specific total knee arthroplasty. J. Arthroplasty 2011, 26, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Phillips, M.; Bhandari, M.; Watson, J.; Malhotra, R. What Differences in Morphologic Features of the Knee Exist Among Patients of Various Races? A Systematic Review. Clin. Orthop. Relat. Res. 2017, 475, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, M.P.; Saffarini, M.; Nover, L.; van der Maas, J.; Haeberle, C.; Hannink, G.; Victor, J. External rotation of the femoral component increases asymmetry of the posterior condyles. Bone Joint J. 2017, 99, 894–903. [Google Scholar] [CrossRef]
- Cheng, F.B.; Ji, X.F.; Lai, Y.; Feng, J.C.; Zheng, W.X.; Sun, Y.F.; Fu, Y.W.; Li, Y.Q. Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 2009, 16, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Park, Y.B.; Baek, S.H.; Lee, J.; Lee, H.J. “Boot Sign” of Anterior Femoral Condylar Resectional Shape during Total Knee Arthroplasty Is More Frequent in Asian Patients. J. Pers. Med. 2023, 13, 1684. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, Y.B.; Song, M.K.; Lim, J.W.; Lee, H.J. Reliability and Validity of the Femorotibial Mechanical Axis Angle in Primary Total Knee Arthroplasty: Navigation versus Weight Bearing or Supine Whole Leg Radiographs. Knee Surg. Relat. Res. 2018, 30, 326–333. [Google Scholar] [CrossRef]
- King, T.S.; Chinchilli, V.M. A generalized concordance correlation coefficient for continuous and categorical data. Stat. Med. 2001, 20, 2131–2147. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Thienpont, E.; Schwab, P.E.; Paternostre, F.; Koch, P. Rotational alignment of the distal femur: Anthropometric measurements with CT-based patient-specific instruments planning show high variability of the posterior condylar angle. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2995–3002. [Google Scholar] [CrossRef] [PubMed]
- Minoda, Y.; Mizokawa, S.; Ohta, Y.; Ikebuchi, M.; Itokazu, M.; Yamamura, K.; Nakamura, S.; Nakamura, H. Posterior reference guides do not always maintain the size of posterior femoral condyles in TKA. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Kahlenberg, C.A.; Elmasry, S.; Mayman, D.J.; Cross, M.B.; Wright, T.M.; Westrich, G.H.; Sculco, P.K. Posterior condylar bone resection and femoral implant thickness vary by up to 3 mm across implant systems: Implications for flexion gap balancing. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Bellemans, J.; Carpentier, K.; Vandenneucker, H.; Vanlauwe, J.; Victor, J. The John Insall Award: Both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clin. Orthop. Relat. Res. 2010, 468, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Chin, P.L.; Tey, T.T.; Ibrahim, M.Y.; Chia, S.L.; Yeo, S.J.; Lo, N.N. Intraoperative morphometric study of gender differences in Asian femurs. J. Arthroplasty 2011, 26, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Mukartihal, R.; Bhat, V.K.; Das, R.; Chandan, S.; Patil, S.S.; Rathnakar, V.; Reddy, A.G.; Annapareddy, A. Relationship between femoral component placement and patient-specific anatomical rotational landmarks in robotic arm assisted total knee Arthroplasty- a multicentric study. J. Orthop. 2023, 45, 87–90. [Google Scholar] [CrossRef] [PubMed]
- MacDessi, S.J.; Griffiths-Jones, W.; Harris, I.A.; Bellemans, J.; Chen, D.B. Coronal Plane Alignment of the Knee (CPAK) classification. Bone Joint J. 2021, 103-B, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Yoon, T.W.; Kim, J.Y.; Seon, J.K. Radiologic Assessment of Knee Phenotypes Based on the Coronal Plane Alignment of the Knee Classification in a Korean Population. Clin. Orthop. Surg. 2024, 16, 422–429. [Google Scholar] [CrossRef]
- Hsu, C.E.; Tsai, M.H.; Wu, H.T.; Huang, J.T.; Huang, K.C. Phenotype-considered kinematically aligned total knee arthroplasty for windswept-deformity-associated osteoarthritis: Surgical strategy and clinical outcomes. Knee Surg. Relat. Res. 2024, 36, 16. [Google Scholar] [CrossRef]
Overall Results | |
---|---|
Patients (number) | 204 |
Sex (Male/Female) | 29:175 |
Age (y) | 69.8 ± 7.7 |
BMI | 26.4 ± 3.5 |
Degree of osteoarthritis (Kellgren and Lawrence Score) | 3.5 ± 1.0 |
cTEA-PCA | 5.4° ± 2.1 |
Mechanical HKA angle | varus 9.2° ± 4.7 |
MPTA | 84.1° ± 5.5 |
LDFA | 88.6° ± 2.5 |
FLAP | 52.4 mm ± 3.9 |
FMAP | 55.2 mm ± 3.8 |
dFAP | 2.8 mm ± 3.6 |
FML | 68.2 mm ± 4.7 |
cTEA-PCA | |||
---|---|---|---|
ß ± SE | p-Value | Adjusted R2 | |
Univariate linear regression analysis | |||
1. HKA | −0.056 ± 0.033 | 0.091 | 0.028 |
2. MPTA | −0.008 ± 0.024 | 0.741 | 0.001 |
3. LDFA | −0.085 ± 0.049 | 0.084 | 0.015 |
4. FLAP | 0.134 ± 0.037 | <0.001 | 0.06 |
5. FMAP | 0.264 ± 0.025 | <0.001 | 0.346 |
6. dFAP | 0.301 ± 0.035 | <0.001 | 0.242 |
7. FML | 0.012 ± 0.024 | 0.637 | 0.001 |
Multivariate linear regression analysis including dFAP | |||
Intercept | 4.8 ± 0.228 | 0.256 | |
dFAP | 0.298 ± 0.035 | <0.001 | |
HKA | −0.043 ± 0.021 | 0.043 | |
Multivariate linear regression analysis including FMAP and FLAP | |||
Intercept | −3.872 | 0.409 | |
FMAP | 0.357 ± 0.033 | <0.001 | |
FLAP | −0.124 ± 0.039 | 0.002 | |
FML | −0.05 ± 0.02 | 0.016 | |
HKA | −0.046 ± 0.019 | 0.017 |
Mean Value ± Standard Deviation | p-Value | ICC | 95% CI | p-Value | ||
---|---|---|---|---|---|---|
Radiologic | Intraoperative | |||||
FMAP | 55.2 mm ± 3.8 | 55.4 mm ± 4.6 | 0.831 | 0.811 | 0.684–0.935 | 0.001 |
FLAP | 52.4 mm ± 4.1 | 53.0 mm ± 4.9 | 0.35 | 0.803 | 0.665–0.928 | 0.001 |
dFAP | 2.8 mm ± 3.6 | 2.4 mm ± 4.2 | 0.302 | 0.779 | 0.623–0.872 | 0.008 |
Differences between Intraoperative and Radiographic Measurements | ||
---|---|---|
Mean Difference | 95% LOA | |
FMAP | 0.1 mm | −6.9 mm ~ 7.2 mm |
FLAP | 0.6 mm | −8.7 mm ~ 9.9 mm |
dFAP | −0.4 mm | −7.9 mm ~ 7.1 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Park, Y.-B.; Choi, G.-W.; Lee, H.-J. Anatomical Reference of the Femur after Distal Resection Is Reliable for Rotational Alignment in Total Knee Arthroplasty. J. Pers. Med. 2024, 14, 663. https://doi.org/10.3390/jpm14060663
Kim SH, Park Y-B, Choi G-W, Lee H-J. Anatomical Reference of the Femur after Distal Resection Is Reliable for Rotational Alignment in Total Knee Arthroplasty. Journal of Personalized Medicine. 2024; 14(6):663. https://doi.org/10.3390/jpm14060663
Chicago/Turabian StyleKim, Seong Hwan, Yong-Beom Park, Gil-Won Choi, and Han-Jun Lee. 2024. "Anatomical Reference of the Femur after Distal Resection Is Reliable for Rotational Alignment in Total Knee Arthroplasty" Journal of Personalized Medicine 14, no. 6: 663. https://doi.org/10.3390/jpm14060663
APA StyleKim, S. H., Park, Y.-B., Choi, G.-W., & Lee, H.-J. (2024). Anatomical Reference of the Femur after Distal Resection Is Reliable for Rotational Alignment in Total Knee Arthroplasty. Journal of Personalized Medicine, 14(6), 663. https://doi.org/10.3390/jpm14060663