Deciphering Alveolo-Capillary Gas Transfer Disturbances in Patients Recovering from COVID-19 Lung Disease
Abstract
:1. Introduction
2. Population and Methods
2.1. Population
2.2. Pulmonary Function Test
2.3. Exhaled Nitric Oxide Measurement
2.4. Combined Carbon Monoxide and Nitric Oxide Lung Diffusion (DLNO-DLCO) Measurement
2.5. Statistical Analyses
3. Results
3.1. Studied Population
3.2. Pulmonary Function Tests (PFTs) and Exhaled Nitric Oxide (NO) Measurement
3.3. Lung Diffusing Capacities for Nitric Oxide (DLNO) and for Carbon Monoxide (DLCO) Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antoniou, K.M.; Vasarmidi, E.; Russell, A.-M.; Andrejak, C.; Crestani, B.; Delcroix, M.; Dinh-Xuan, A.T.; Poletti, V.; Sverzellati, N.; Vitacca, M.; et al. European Respiratory Society statement on long COVID follow-up. Eur. Respir. J. 2022, 60, 2102174. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Jackson, C.; Stewart, I.D.; Plekhanova, T.; Cunningham, P.S.; Hazel, A.L.; Al-Sheklly, B.; Aul, R.; Bolton, C.E.; Chalder, T.; Chalmers, J.D.; et al. Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK: A prospective multicentre cohort study. Lancet Respir. Med. 2023, 11, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Graham, B.L.; Cooper, B.G.; Thompson, B.R.; Carter, K.W.; Francis, R.W.; Hall, G.L. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur. Respir. J. 2017, 50, 1700010. [Google Scholar] [CrossRef]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020, 55, 2001217. [Google Scholar] [CrossRef]
- Frija-Masson, J.; Debray, M.-P.; Gilbert, M.; Lescure, F.-X.; Travert, F.; Borie, R.; Khalil, A.; Crestani, B.; d’Ortho, M.-P.; Bancal, C. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection. Eur. Respir. J. 2020, 56, 2001754. [Google Scholar] [CrossRef] [PubMed]
- Faverio, P.; Paciocco, G.; Tassistro, E.; Rebora, P.; Rossi, E.; Monzani, A.; Tundo, M.; Milano, C.; Messa, M.; Marocchi, R.; et al. Two-year cardio-pulmonary follow-up after severe COVID-19: A prospective study. Intern. Emerg. Med. 2024, 19, 183–190. [Google Scholar] [CrossRef]
- Hughes, J.M.B.; Pride, N.B. Examination of the carbon monoxide diffusing capacity (DLCO) in relation to its KCO and VA components. Am. J. Respir. Crit. Care. Med. 2012, 186, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Borland, C.; Higenbottam, T. A simultaneous single breath measurement of pulmonary diffusing capacity with nitric oxide and carbon monoxide. Eur. Respir. J. 1989, 2, 56–63. [Google Scholar] [CrossRef]
- Hughes, J.; Dinh-Xuan, A. The DLNO/DLCO ratio: Physiological significance and clinical implications. Respir. Physiol. Neurobiol. 2017, 241, 17–22. [Google Scholar] [CrossRef]
- Barisione, G.; Brusasco, V. Lung diffusing capacity for nitric oxide and carbon monoxide following mild-to-severe COVID-19. Physiol. Rep. 2021, 9, e14748. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Fernández, M.; Ramos-Hernández, C.; García-Río, F.; Torres-Durán, M.; Nodar-Germiñas, A.; Tilve-Gómez, A.; Rodríguez-Fernández, P.; Valverde-Pérez, D.; Ruano-Raviña, A.; Fernández-Villar, A. Alterations in respiratory function test three months after hospitalisation for COVID-19 pneumonia: Value of determining nitric oxide diffusion. J. Clin. Med. 2021, 10, 2119. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Fernández, M.; Ramos-Hernández, C.; García-Río, F.; Pérez-González, A.; Tilve-Gómez, A.; Rodríguez-Fernández, P.; Nodar-Germiñas, A.; Fernández-García, A.; Ruano-Raviña, A.; Fernández-Villar, A. Evolution and long-term respiratory sequelae after severe COVID-19 pneumonia: Nitric oxide diffusion measurement value. Respir. Res. 2023, 24, 48. [Google Scholar] [CrossRef] [PubMed]
- Barisione, G.; Brusasco, V. Lung diffusing capacities for nitric oxide and carbon monoxide at rest and post-walking in long COVID. ERJ Open Res. 2023, 9, 00363-2022. [Google Scholar] [CrossRef] [PubMed]
- Dal Negro, R.W.; Turco, P.; Povero, M. Long-lasting dyspnoea in patients otherwise clinically and radiologically recovered from COVID pneumonia: A probe for checking persisting disorders in capillary lung volume as a cause. Multidiscip. Respir. Med. 2022, 17, 875. [Google Scholar] [CrossRef] [PubMed]
- Imeri, G.; Conti, C.; Caroli, A.; Arrigoni, A.; Bonaffini, P.; Sironi, S.; Novelli, L.; Raimondi, F.; Chiodini, G.; Vargiu, S.; et al. Gas exchange abnormalities in Long COVID are driven by the alteration of the vascular component. Multidiscip. Respir. Med. 2024, 19, 938. [Google Scholar] [CrossRef] [PubMed]
- Seccombe, L.M.; Heath, D.; Farah, C.S.; Di Michiel, J.R.; Veitch, E.M.; Peters, M.J. Mechanisms of gas transfer impairment utilizing nitric oxide following severe COVID-19 pneumonitis. Physiol. Rep. 2023, 11, e15660. [Google Scholar] [CrossRef]
- Lytzen, A.A.; Helt, T.W.; Christensen, J.; Lund, T.K.; Kalhauge, A.; Rönsholt, F.F.; Podlekavera, D.; Arndal, E.; Lebech, A.M.; Hanel, B.; et al. Pulmonary diffusing capacity for carbon monoxide and nitric oxide after COVID-19: A prospective cohort study (the SECURe study). Exp. Physiol. 2024, 109, 652–661. [Google Scholar] [CrossRef]
- Hua-Huy, T.; Lorut, C.; Aubourg, F.; Morbieu, C.; Marey, J.; Texereau, J.; Fajac, I.; Mouthon, L.; Roche, N.; Dinh-Xuan, A.T. Persistent nasal inflammation 5 months after acute anosmia in patients with COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203, 1319–1322. [Google Scholar] [CrossRef]
- Hua-Huy, T.; Günther, S.; Lorut, C.; Subileau, M.; Aubourg, F.; Morbieu, C.; Marey, J.; Texereau, J.; Fajac, I.; Mouthon, L.; et al. Distal lung inflammation assessed by alveolar concentration of nitric oxide is an individualised biomarker of severe COVID-19 pneumonia. J. Pers. Med. 2022, 12, 1631. [Google Scholar] [CrossRef]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.M.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.L.; Filipow, N.; Ruppel, G.; Okitika, T.; Thompson, B.; Kirkby, J.; Steenbruggen, I.; Cooper, B.G.; Stanojevic, S. Official ERS technical standard: Global Lung Function Initiative reference values for static lung volumes in individuals of European ancestry. Eur. Respir. J. 2021, 57, 2000289. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef] [PubMed]
- Tsoukias, N.M.; George, S.C. A two-compartment model of pulmonary nitric oxide exchange dynamics. J. Appl. Physiol. (1985) 1998, 85, 653–666. [Google Scholar] [CrossRef]
- Zavorsky, G.S.; Hsia, C.C.; Hughes, J.M.B.; Borland, C.D.; Guénard, H.; Van Der Lee, I.; Steenbruggen, I.; Naeije, R.; Cao, J.; Dinh-Xuan, A.T. Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600962. [Google Scholar] [CrossRef]
- Coffman, K.E.; Chase, S.C.; Taylor, B.J.; Johnson, B.D. The blood transfer conductance for nitric oxide: Infinite vs. finite θNO. Respir. Physiol. Neurobiol. 2017, 241, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Mentzer, S.J.; Kolb, M.; Jonigk, D. Inflammation and intussusceptive angiogenesis in COVID-19: Everything in and out of flow. Eur. Respir. J. 2020, 56, 2003147. [Google Scholar] [CrossRef]
- Dinh-Xuan, A.-T.; Hua-Huy, T.; Günther, S. Physical activity, COVID-19, and respiratory comorbidities: The good, the bad, and the ugly. J. Sport Health Sci. 2023, 12, 216. [Google Scholar] [CrossRef]
- Agostoni, P.; Mapelli, M.; Salvioni, E.; Mattavelli, I.; Banfi, C.; Bonomi, A.; Biondi, M.L.; Rovai, S.; Tamborini, G.; Muratori, M.; et al. Symptomatic post COVID patients have impaired alveolar capillary membrane function and high VE/VCO2. Respir. Res. 2024, 25, 82. [Google Scholar] [CrossRef]
Mild | Moderate | Severe | p-Value | |
---|---|---|---|---|
n = 36 | n = 35 | n = 47 | (ANOVA) | |
Age; years | 51 ± 14 | 60 ± 12 * | 57 ± 11 | 0.015 |
Male; n (%) | 12 (33.3) | 23 (65.7) | 37 (78.7) | <0.001 |
Height; cm | 167 ± 9 | 171 ± 9 | 170 ± 8 | 0.127 |
Weight; kg | 74 ± 18 | 82 ± 14 | 77 ± 12 | 0.084 |
BMI; kg.m−2 | 26.3 ± 5 | 27.8 ± 4.3 | 26.7 ± 4.2 | 0.358 |
Obesity; n (%) | 8 (22.2) | 11 (31.4) | 8 (17) | 0.305 |
Tobacco | ||||
| 28 (77.8) | 25 (71.4) | 36 (76.6) | |
| 4 (11.1) | 3 (8.6) | 2 (4.3) | 0.649 |
| 4 (11.1) | 7 (20) | 9 (19.1) | |
Time from COVID-19; days | 140 ± 38 | 143 ± 42 | 133 ± 32 | 0.456 |
Co-morbidities | ||||
| 9 (25) | 8 (22.9) | 6 (12.8) | 0.32 |
| 8 (22.2) | 4 (11.4) | 0 (0) | 0.004 |
| 0 (0) | 1 (2.9) | 1 (2.1) | 0.62 |
| 2 (5.6) | 3 (8.6) | 2 (4.3) | 0.71 |
| 0 (0) | 2 (5.7) | 6 (12.8) | 0.07 |
| 3 (8.3) | 9 (25.7) | 15 (31.9) | 0.04 |
| 3 (8.3) | 8 (22.9) | 10 (21.3) | 0.2 |
Pulmonary embolism during COVID-19 | 0 (0) | 4 (11.4) | 9 (19.1) | 0.004 |
Mild | Moderate | Severe | p-Value | |
---|---|---|---|---|
n = 36 | n = 35 | n = 47 | (ANOVA) | |
Body plethysmography | ||||
| 99 ± 12 | 90 ± 16 **§ | 81 ± 12 *** | <0.001 |
| 103 ± 20 | 95 ± 21 | 93 ± 19 | 0.07 |
| 125 ± 24 | 106 ± 17 ** | 96 ± 24 *** | <0.001 |
Restrictive pattern TLC < LLN-GLI; n (%) | 1 (2.8) | 11 (31.4) | 20 (42.6) | <0.001 |
Spirometry | ||||
| 94 ± 14 | 87 ± 18 | 82 ± 14 ** | 0.002 |
| 93 ± 12 | 88 ± 18 | 87 ± 15 | 0.18 |
| 80 ± 7 | 79 ± 7 §§ | 84 ± 7 ** | 0.001 |
Obstructive pattern FEV1/FVC < LLN-GLI; n (%) | 1 (2.8) | 1 (2.9) | 1 (2.1) | 0.97 |
Single breath DLCO10s | ||||
| 89 ± 14 | 79 ± 16 *§ | 69 ± 17 *** | <0.001 |
| 93 ± 10 | 93 ± 14 | 86 ± 17 | 0.04 |
| 95 ± 12 | 85 ± 17 ** | 80 ± 13 *** | <0.001 |
Lung diffusion impairment DLCO10s < LLN-GLI; n (%) | 5 (13.9) | 19 (54.3) | 27 (57.4) | <0.001 |
Exhaled nitric oxide (£) | n = 33 | n = 35 | n = 46 | |
| 4.15 ± 1.71 | 4.56 ± 2.81 | 4.72 ± 2.02 | 0.53 |
| 21.2 ± 8.8 | 25.2 ± 13.9 | 21.8 ± 8.7 | 0.23 |
| 52.3 ± 24.3 | 65.9 ± 41.5 | 53.8 ± 25.8 | 0.13 |
Single-Breath NO Uptake Infinite ƟNO | Healthy | Mild | p-Value |
---|---|---|---|
n = 28 | n = 36 | ||
VA; litre | 5.6 ± 1.1 | 5.6 ± 1.0 | 0.88 |
VA; % pred | 98 ± 9 | 98 ± 12 | 0.99 |
VA < LLN; n (%) | 0 | 1 (2.8) | N/A |
DLNO; mL.min−1.mmHg−1 | 131 ± 38 | 119 ± 34 | 0.18 |
DLNO; % pred | 106 ± 14 | 93 ± 16 | 0.001 |
DLNO < LLN; n (%) | 0 | 3 (8.3) | N/A |
DLCO; mL.min−1.mmHg−1 | 25.6 ± 7.9 | 21.6 ± 6.2 | 0.023 |
DLCO; % pred | 100 ± 15 | 82 ± 14 | <0.001 |
DLCO < LLN; n (%) | 0 | 6 (16.7) | N/A |
DLNO/DLCO | 5.14 ± 0.31 | 5.57 ± 0.54 | <0.001 |
DLNO/DLCO > ULN (5.75) | 0 | 10 (27.8) | 0.003 |
KNO; mL.min−1.mmHg−1.L−1 | 23.3 ± 4 | 20.9 ± 3.4 | 0.014 |
KNO; % pred | 103 ± 14 | 93 ± 12 | 0.014 |
KNO < LLN; n (%) | 0 | 0 (0) | N/A |
KCO; mL.min−1.mmHg−1.L−1 | 4.5 ± 0.85 | 3.8 ± 0.7 | <0.001 |
KCO; % pred | 96 ± 15 | 80 ± 12 | 0.001 |
KCO < LLN; n (%) | 0 | 11 (30.6) | N/A |
DM; mL.min−1.mmHg−1 | 66.7 ± 19.8 | 60.5 ± 17.2 | 0.18 |
DM; % pred | 62.3 ± 8.6 | 52.3 ± 9.5 | <0.001 |
DMCO < LLN; n (%) | 0 | 16 (44.4) | N/A |
VC; mL | 79.7 ± 23.8 | 63.7 ± 16.9 | 0.003 |
VC; % pred | 112.5 ± 22.1 | 91.3 ± 18 | <0.001 |
VC < LLN; n (%) | 0 | 2 (5.6) | N/A |
Single-Breath NO Uptake Infinite ƟNO | Mild | Moderate | Severe | p-Value (ANOVA) |
---|---|---|---|---|
n = 36 | n = 35 | n = 47 | ||
VA; litre | 5.6 ± 1.0 | 5.5 ± 1.3 | 5.0 ± 1.0 * | 0.027 |
VA; % pred | 98 ± 12 | 87 ± 16 §§ | 80 ± 13 *** | <0.001 |
VA < LLN; n (%) | 1 (2.8) | 10 (28.6) | 17 (36.2) | 0.001 |
DLNO; mL.min−1.mmHg−1 | 119 ± 34 | 110 ± 34 §§ | 90 ± 25 *** | <0.001 |
DLNO; % pred | 93 ± 16 | 83 ± 20 *§§ | 63 ± 16 *** | <0.001 |
DLNO < LLN; n (%) | 3 (8.3) | 9 (25.7) | 32 (68.1) | <0.001 |
DLCO; mL.min−1.mmHg−1 | 21.6 ± 6.2 | 19.9 ± 6.2 §§ | 16 ± 4.9 | <0.001 |
DLCO; % pred | 82 ± 14 | 73 ± 16 *§§ | 56 ± 15 *** | <0.001 |
DLCO < LLN; n (%) | 6 (16.7) | 16 (45.7) | 40 (85.1) | <0.001 |
DLNO/DLCO | 5.57 ± 0.54 | 5.6 ± 0.64 | 5.71 ± 0.66 | 0.513 |
DLNO/DLCO > ULN (5.75) | 10 (27.8) | 10 (28.6) | 15 (31.9) | 0.9 |
KNO; mL.min−1.mmHg−1.L−1 | 20.9 ± 3.4 | 20 ± 3.5 § | 17.9 ± 3.5 *** | <0.001 |
KNO; % pred | 93 ± 12 | 94 ± 13 §§§ | 82 ± 15 ** | <0.001 |
KNO < LLN; n (%) | 0 (0) | 1 (2.9) | 15 (31.9) | <0.001 |
KCO; mL.min−1.mmHg−1.L−1 | 3.8 ± 0.7 | 3.6 ± 0.7 § | 3.2 ± 0.7 *** | <0.001 |
KCO; % pred | 80 ± 12 | 80 ± 12 §§§ | 69 ± 14 ** | <0.001 |
KCO < LLN; n (%) | 11 (30.6) | 7 (20.0) | 25 (53.2) | <0.001 |
DM; mL.min−1.mmHg−1 | 60.5 ± 17.2 | 55.9 ± 17.1 § | 45.5 ± 12.7 *** | <0.001 |
DM; % pred | 52.3 ± 9.5 | 46.1 ± 13.4 *§§§ | 33.3 ± 9.2 *** | <0.001 |
DM < LLN; n (%) | 16 (44.4) | 23 (65.7) | 44 (93.6) | <0.001 |
Vc; mL | 63.7 ± 16.9 | 56 ± 16.8 § | 45.6 ± 14.1 *** | <0.001 |
Vc; % pred | 91.3 ± 18 | 79.5 ± 19 *§§ | 65.7 ± 18.8 *** | <0.001 |
Vc < LLN; n (%) | 2 (5.6) | 4 (11.4) | 23 (48.9) | <0.001 |
VA | DLNO | DLCO | DM | VC | |
---|---|---|---|---|---|
TLC | 0.868 *** | 0.671 *** | 0.644 *** | 0.661 *** | 0.578 *** |
FRC | 0.685 *** | 0.437 ** | 0.395 ** | 0.402 ** | 0.359 ** |
RV | 0.583 *** | 0.474 ** | 0.441 ** | 0.471 ** | 0.394 ** |
FVC | 0.786 *** | 0.621 *** | 0.604 *** | 0.582 *** | 0.553 *** |
FEV1 | 0.701 *** | 0.509 *** | 0.504 *** | 0.456 ** | 0.486 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua-Huy, T.; Pham-Ngoc, H.; Aubourg, F.; Lorut, C.; Roche, N.; Dinh-Xuan, A.T. Deciphering Alveolo-Capillary Gas Transfer Disturbances in Patients Recovering from COVID-19 Lung Disease. J. Pers. Med. 2024, 14, 738. https://doi.org/10.3390/jpm14070738
Hua-Huy T, Pham-Ngoc H, Aubourg F, Lorut C, Roche N, Dinh-Xuan AT. Deciphering Alveolo-Capillary Gas Transfer Disturbances in Patients Recovering from COVID-19 Lung Disease. Journal of Personalized Medicine. 2024; 14(7):738. https://doi.org/10.3390/jpm14070738
Chicago/Turabian StyleHua-Huy, Thông, Hà Pham-Ngoc, Frédérique Aubourg, Christine Lorut, Nicolas Roche, and Anh Tuan Dinh-Xuan. 2024. "Deciphering Alveolo-Capillary Gas Transfer Disturbances in Patients Recovering from COVID-19 Lung Disease" Journal of Personalized Medicine 14, no. 7: 738. https://doi.org/10.3390/jpm14070738
APA StyleHua-Huy, T., Pham-Ngoc, H., Aubourg, F., Lorut, C., Roche, N., & Dinh-Xuan, A. T. (2024). Deciphering Alveolo-Capillary Gas Transfer Disturbances in Patients Recovering from COVID-19 Lung Disease. Journal of Personalized Medicine, 14(7), 738. https://doi.org/10.3390/jpm14070738