Vestibular Neurostimulation for Parkinson’s Disease: A Novel Device-Aided Non-Invasive Therapeutic Option
Abstract
:1. Introduction
2. The Vestibular System
3. The Vestibular System and Parkinson’s Disease
- Bradykinesia [18];
4. Methods for Vestibular Stimulation
4.1. Galvanic Vestibular Stimulation
4.2. Caloric Vestibular Stimulation
4.3. Broad Physiological Effects of Vestibular Stimulation
4.4. Galvanic Vestibular Stimulation and Parkinson’s Disease
4.5. Caloric Vestibular Stimulation and Parkinson’s Disease
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef] [PubMed]
- LeWitt, P.A.; Chaudhuri, K.R. Unmet needs in Parkinson disease: Motor and non-motor. Park. Relat. Disord. 2020, 80, S7–S12. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Prieto-Jurcynska, C.; Naidu, Y.; Mitra, T.; Frades-Payo, B.; Tluk, S. The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: An international study using the nonmotor symptoms questionnaire. Mov. Disord. 2010, 25, 704–709. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Williams, D.; Tijssen, M.; Van Bruggen, G.; Bosch, A.; Insola, A.; Lazzaro, V.D.; Mazzone, P.; Oliviero, A.; Quartarone, A.; Speelman, H.; et al. Dopamine dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 2002, 125, 1558–1569. [Google Scholar] [CrossRef] [PubMed]
- Poplawska-Domaszewicz, K.; Batzu, L.; Falup-Pecurariu, C.; Chaudhuri, K.R. Subcutaneous Levodopa: A New Engine for the Vintage Molecule. Neurol. Ther. 2024, 13, 1055–1068. [Google Scholar] [CrossRef]
- Antonini, A.; Nitu, B. Apomorphine and levodopa infusion for motor fluctuations and dyskinesia in advanced Parkinson disease. J. Neural Transm. 2018, 125, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Limousin, P.; Krack, P.; Pollak, P.; Benazzouz, A.; Ardouin, C.; Hoffmann, D.; Benabid, A.-L. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med. 1998, 339, 1105–1111. [Google Scholar] [CrossRef]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef]
- Breit, S.; Milosevic, L.; Naros, G.; Cebi, I.; Weiss, D.; Gharabaghi, A. Structural-Functional Correlates of Response to Pedunculopontine Stimulation in a Randomized Clinical Trial for Axial Symptoms of Parkinson’s Disease. J. Park. Dis. 2023, 13, 563–573. [Google Scholar] [CrossRef]
- Khan, S.; Chang, R. Anatomy of the vestibular system: A review. NeuroRehabilitation 2013, 32, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Balaban, C.D.; Jacob, R.G.; Furman, J.M. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: Neurotherapeutic implications. Expert Rev. Neurother. 2011, 1, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Kwan APForbes, A.; Mitchell, D.E.; Blouin, J.S.; Cullen, K.E. Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat. Commun. 2019, 10, 1904. [Google Scholar] [CrossRef]
- Black, R.D.; Bell, R.P.; Riska, K.M.; Spankovich, C.; Peters, R.W.; Lascola, C.D.; Whitlow, C.T. The Acute Effects of Time-Varying Caloric Vestibular Stimulation as Assessed With fMRI. Front. Syst. Neurosci. 2021, 15, 648928. [Google Scholar] [CrossRef]
- Potegal, M.; Copack, P.; de Jong, J.; Krauthamer, G.; Gilman, S. Vestibular input to the caudate nucleus. Exp. Neurol. 1971, 32, 448–465. [Google Scholar] [CrossRef]
- Stiles, L.; Smith, P.F. The vestibular-basal ganglia connection: Balancing motor control. Brain Res. 2015, 1597, 180–188. [Google Scholar] [CrossRef]
- Lopez, C.; Blanke, O. The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 2011, 67, 119–146. [Google Scholar] [CrossRef]
- Turner, R.S.; Grafton, S.T.; McIntosh, A.R.; Mahlon RDeLong Hoffmana, J.M. The functional anatomy of parkinsonian bradykinesia. NeuroImage 2003, 19, 163–179. [Google Scholar] [CrossRef]
- Aravamuthan, B.R.; Angelaki, D.E. Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 2012, 223, 183–199. [Google Scholar] [CrossRef]
- Molina, R.; Hass, C.J.; Sowalsky, K.; Schmitt, A.C.; Opri, E.; Roper, J.A.; Martinez-Ramirez, D.; Hess, C.W.; Foote, K.D.; Okun, M.S.; et al. Neurophysiological Correlates of Gait in the Human Basal Ganglia and the PPN Region in Parkinson’s Disease. Front. Hum. Neurosci. 2020, 14, 194. [Google Scholar] [CrossRef]
- Barmack, N.H. Central vestibular system: Vestibular nuclei and posterior cerebellum. Brain Res. Bull. 2003, 60, 511–541. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, P.C.; Gilchrist, D.P.; Hicks, S.L.; MacDougall, H.G.; Curthoys, I.S. Electrophysiological evidence for vestibular activation of the guinea pig hippocampus. Neuroreport 2000, 11, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hallett, M. The cerebellum in Parkinson’s disease. Brain 2013, 136, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Le, W.; Jankovic, J. Linking the cerebellum to Parkinson disease: An update. Nat. Rev. Neurol. 2023, 19, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Plut, T.J.; Spencer, D.D.; Alkawadri, R. Age-dependent vestibular cingulate-cerebral network underlying gravitational perception: A cross-sectional multimodal study. Brain Inform. 2022, 9, 30. [Google Scholar] [CrossRef]
- Smith, P.F. Vestibular functions and Parkinson’s disease. Front. Neurol. 2018, 9, 1085. [Google Scholar] [CrossRef]
- Ma, W.; Li, L.; Kong, L.; Zhang, H.; Yuan, P.; Huang, Z.; Wang, Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci. Ther. 2023, 29, 4147–4159. [Google Scholar] [CrossRef]
- Green, A.L.S.; Wang, S.; Owen, L.; Aziz, T.Z. The periaqueductal grey area and the cardiovascular system. Acta Neurochir. Suppl. 2007, 97, 521–528. [Google Scholar]
- Sakakibara, R.; Tateno, F.; Nagao, T.; Yamamoto, T.; Uchiyama, T.; Yamanishi, T.; Yano, M.; Kishi, M.; Tsuyusaki, Y.; Aiba, Y. Bladder function of patients with Parkinson’s disease. Int. J. Urol. 2014, 21, 638–646. [Google Scholar] [CrossRef]
- Morita, H.C.; Hass, J.; Moro, E.; Sudhyadhom, A.; Kumar, R.; Okun, M.S. Pedunculopontine Nucleus Stimulation: Where are We Now and What Needs to be Done to Move the Field Forward? Front. Neurol. 2014, 5, 243. [Google Scholar] [CrossRef]
- Dalrymple-Alford, J.; Anderson, T.; Melzer, T. Thalamus, Thalamocortical Networks, and Non-Motor Symptoms in Parkinson’s Disease. In The Cerebral Cortex and Thalamus. Mitchell; Usrey, W.M., Sherman, S.M., Eds.; Oxford University Press: Oxford, UK, 2023; pp. 722–734. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Leta, V.; Bannister, K.; Brooks, D.J.; Svenningsson, P. The noradrenergic subtype of Parkinson disease: From animal models to clinical practice. Nat. Rev. Neurol. 2023, 19, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Wilkinson, D.; Bodani, M.; Bicknell, R.; Surenthiran, S.S. Short-term memory impairment in vestibular patients can arise independently of psychiatric impairment, fatigue, and sleeplessness. J. Neuropsychol. 2019, 13, 417–431. [Google Scholar] [CrossRef]
- Bigelow, R.T.; Semenov, Y.R.; du Lac, S.; Hoffman, H.J.; Agrawal, Y. Vestibular vertigo and comorbid cognitive and psychiatric impairment: The 2008 National Health Interview Survey. J. Neurol. Neurosurg. Psychiatry 2016, 87, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Kanel, P.; Boas, M.v.E.; Roytman, S.; Kerber, K.A. Vestibular Sensory Conflict During Postural Control, Freezing of Gait, and Falls in Parkinson’s Disease. Mov. Disord. 2022, 37, 2257–2262. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D. Caloric and galvanic vestibular stimulation for the treatment of Parkinson’s disease: Rationale and prospects. Expert Rev. Med. Devices 2021, 18, 649–655. [Google Scholar] [CrossRef]
- Sluydts, M.; Curthoys, I.; Vanspauwen, R.; Papsin, B.C.; Cushing, S.L.; Ramos, A.; Ramos de Miguel, A.; Borkoski Barreiro, S.; Barbara, M.; Manrique, M.; et al. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol. Neurootol. 2020, 25, 6–24. [Google Scholar] [CrossRef]
- Fitzpatrick, R.C.; Day, B.L. Probing the human vestibular system with galvanic stimulation. J. Appl. Physiol. 2004, 96, 2301–2316. [Google Scholar] [CrossRef]
- Curthoys, I.S.; Macdougall, H.G. What galvanic vestibular stimulation actually activates. Front. Neurol. 2012, 3, 117. [Google Scholar] [CrossRef]
- Black, R.D.; Rogers, L.L.; Ade, K.K.; Nicoletto, H.A.; Adkins, H.D.; Laskowitz, D.T. Non-invasive neuromodulation using time-varying caloric vestibular stimulation. IEEE J. Transl. Eng. Health Med. 2016, 4, 2000310. [Google Scholar] [CrossRef]
- Tsuji, J.J.; Naito, I.Y.; Honjo, I. The influence of caloric stimulation on the otolith organs in the cat. Eur. Arch. Otorhinolaryngol. 1990, 248, 68–70. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Hallpike, C.S. Studies in human vestibular function: Observations on the directional preponderance of caloric nystagmus resulting from cerebral lesions. Brain 1942, 65, 115–137. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Podlewska, A.; Sakel, M. A durable gain in motor and non-motor symptoms of Parkinson’s Disease following repeated caloric vestibular stimulation: A single-case study. NeuroRehabilitation 2016, 38, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.; Podlewska, A.; Banducci, S.E.; Pellat-Higgins, T.; Slade, M.; Bodani, M.; Sakel, M.; Smith, L.; LeWitt, P.; Ade, K.K. Caloric vestibular stimulation for the management of motor and non-motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2019, 65, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Black, R.D.; Rogers, L.L. Sensory Neuromodulation. Front. Syst. Neurosci. 2020, 14, 12. [Google Scholar] [CrossRef]
- Klingner, C.M.; Volk, G.F.; Flatz, C.; Brodoehl, S.; Dieterich, M.; Witte, O.W.; Guntinas-Lichius, O. Components of vestibular cortical function. Behav. Brain Res. 2013, 236, 194–199. [Google Scholar] [CrossRef]
- Fasold, O.M.; von Brevern, M.; Kuhberg, M.; Ploner, C.J.; Villringer, A.; Lempert, T.; Wenzel, R. Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 2002, 17, 1384–1393. [Google Scholar] [CrossRef]
- Danilov, Y.; Kaczmarek, K.; Skinner, K.; Tyler, M. Cranial Nerve Noninvasive Neuromodulation: New Approach to Neurorehabilitation. In Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Horii, A.; Takeda, N.; Mochizuki, T.; Okakura-Mochizuki, K.; Yamamoto, Y.; Yamatodani, A. Effects of vestibular stimulation on acetylcholine release from rat hippocampus: An in vivo microdialysis study. J. Neurophysiol. 1994, 72, 605–611. [Google Scholar] [CrossRef]
- Horii, A.; Takeda, N.; Matsunaga, T.; Yamatodani, A.; Mochizuki, T.; Okakura-Mochizuki, K.; Wada, H. Effect of Unilateral Vestibular Stimulation on Histamine Release From the Hypothalamus of Rats In Vivo. J. Neurophysiol. 1993, 70, 1822–1826. [Google Scholar] [CrossRef]
- Samoudi, G.; Jivegard, M.; Mulavara, A.P.; Bergquist, F. Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson’s disease. Brain Stimul. 2015, 8, 474–480. [Google Scholar] [CrossRef]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef]
- Sauerbier AJenner, P.; Todorova, A.; Chaudhuri, K.R. Non motor subtypes and Parkinson’s disease. Park. Relat. Disord. 2016, 22, S41–S46. [Google Scholar] [CrossRef] [PubMed]
- Tall, P.; Qamar, M.A.; Rosenzweig, I.; Raeder, V.; Sauerbier, A.; Heidemarie, Z.; Falup-Pecurariu, C.; Chaudhuri, K.R. The Park Sleep subtype in Parkinson’s disease: From concept to clinic. Expert Opin. Pharmacother. 2023, 24, 1725–1736. [Google Scholar] [CrossRef]
- Popławska-Domaszewicz, K.; Falup-Pecurariu, C.; Chaudhuri, K.R. An Overview of a Stepped-care Approach to Modern Holistic and Subtype-driven Care for Parkinson’s Disease in the Clinic. TouchRev. Neurol. 2024, 20, 27–32. [Google Scholar]
- Shaabani, M.; Lotfi, Y.; Karimian, S.M.; Rahgozar, M.; Hooshmandi, M. Short-term galvanic vestibular stimulation promotes functional recovery and neurogenesis in unilaterally labyrinthectomized rats. Brain Res. 2016, 1648, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Stiles, L.; Reynolds, J.N.; Napper, R.; Zheng, Y.; Smith, P.F. Single neuron activity and c-Fos expression in the rat striatum following electrical stimulation of the peripheral vestibular system. Physiol. Rep. 2018, 6, e13791. [Google Scholar] [CrossRef]
- Stiles, L.; Zheng, Y.; Smith, P.F. The effects of electrical stimulation of the peripheral vestibular system on neurochemical release in the rat striatum. PLoS ONE 2018, 13, e0205869. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Kassow, M.; Wilkinson, D.; Denby, E.; Ferguson, H. Synchronised vestibular signals increase the P300 event-related potential elicited by auditory oddballs. Brain Res. 2016, 1648, 224–231. [Google Scholar] [CrossRef]
- Dieterich, M.; Brandt, T. Functional brain imaging of peripheral and central vestibular disorders. Brain 2008, 131, 2538–2552. [Google Scholar] [CrossRef]
- Karnath, H.O.; Dieterich, M. Spatial neglect—A vestibular disorder? Brain 2006, 129, 293–305. [Google Scholar] [CrossRef]
- Lopez, C.; Blanke, O.; Mast, F.W. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 2012, 212, 159–179. [Google Scholar] [CrossRef]
- Wilkinson, D.; Ade, K.K.; Rogers, L.L.; Attix, D.K.; Kuchibhatla, M.; Slade, M.D.; Smith, L.L.; Poynter, K.P.; Laskowitz, D.T.; Freeman, M.C.; et al. Preventing Episodic Migraine With Caloric Vestibular Stimulation: A Randomized Controlled Trial. Headache 2017, 57, 1065–1087. [Google Scholar] [CrossRef]
- Aranda-Moreno, C.; Jáuregui-Renaud, K.; Reyes-Espinosa, J.; Andrade-Galicia, A.; Bastida-Segura, A.E.; González Carrazco, L.G. Stimulation of the Semicircular Canals or the Utricles by Clinical Tests Can Modify the Intensity of Phantom Limb Pain. Front. Neurol. 2019, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; McGeoch, P.D.; Williams, L.; Arcilla, G. Rapid relief of thalamic pain syndrome induced by vestibular caloric stimulation. Neurocase 2007, 13, 185–188. [Google Scholar] [CrossRef]
- McGeoch, P.D.; Williams, L.E.; Lee, R.R.; Ramachandran, V.S. Behavioural evidence for vestibular stimulation as a treatment for central post-stroke pain. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Samoudi, G.; Nissbrandt, H.; Dutia, M.B.; Bergquist, F. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in Hemiparkinsonian rats. PLoS ONE 2012, 7, e29308. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Okada, Y.; Kiriyama, T.; Kita, Y.; Nakamura, J.; Morioka, S.; Shomoto, K.; Ueno, S. Can Postural Instability Respond to Galvanic Vestibular Stimulation in Patients with Parkinson’s Disease? J. Mov. Disord. 2016, 9, 40–43. [Google Scholar] [CrossRef]
- Khoshnam, M.; Häner, D.M.C.; Kuatsjah, E.; Zhang, X.; Menon, C. Effects of galvanic vestibular stimulation on upper and lower extremities motor symptoms in parkinson’s disease. Front. Neurosci. 2018, 12, 633. [Google Scholar] [CrossRef]
- Pal, S.; Rosengren, S.M.; Colebatch, J.G. Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease. J. Vestib. Res. 2009, 19, 137–142. [Google Scholar] [CrossRef]
- Lee, S.; Smith, P.F.; Lee, W.H.; McKeown, M.J. Frequency-Specific Effects of Galvanic Vestibular Stimulation on Response-Time Performance in Parkinson’s Disease. Front. Neurol. 2021, 12, 758122. [Google Scholar] [CrossRef]
- Cai, J.; Lee, S.; Ba, F.; Garg, S.; Kim, L.J.; Liu, A.; Kim, D.; Wang, Z.J.; McKeown, M.J. Galvanic Vestibular Stimulation (GVS) Augments Deficient Pedunculopontine Nucleus (PPN) Connectivity in Mild Parkinson’s Disease: fMRI Effects of Different Stimuli. Front. Neurosci. 2018, 12, 101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray Chaudhuri, K.; Poplawska-Domaszewicz, K.; Limbachiya, N.; Qamar, M.; Batzu, L.; Podlewska, A.; Ade, K. Vestibular Neurostimulation for Parkinson’s Disease: A Novel Device-Aided Non-Invasive Therapeutic Option. J. Pers. Med. 2024, 14, 933. https://doi.org/10.3390/jpm14090933
Ray Chaudhuri K, Poplawska-Domaszewicz K, Limbachiya N, Qamar M, Batzu L, Podlewska A, Ade K. Vestibular Neurostimulation for Parkinson’s Disease: A Novel Device-Aided Non-Invasive Therapeutic Option. Journal of Personalized Medicine. 2024; 14(9):933. https://doi.org/10.3390/jpm14090933
Chicago/Turabian StyleRay Chaudhuri, K., Karolina Poplawska-Domaszewicz, Naomi Limbachiya, Mubasher Qamar, Lucia Batzu, Aleksandra Podlewska, and Kristen Ade. 2024. "Vestibular Neurostimulation for Parkinson’s Disease: A Novel Device-Aided Non-Invasive Therapeutic Option" Journal of Personalized Medicine 14, no. 9: 933. https://doi.org/10.3390/jpm14090933
APA StyleRay Chaudhuri, K., Poplawska-Domaszewicz, K., Limbachiya, N., Qamar, M., Batzu, L., Podlewska, A., & Ade, K. (2024). Vestibular Neurostimulation for Parkinson’s Disease: A Novel Device-Aided Non-Invasive Therapeutic Option. Journal of Personalized Medicine, 14(9), 933. https://doi.org/10.3390/jpm14090933