Robotic Versus Sternotomy, Thoracotomy and Video-Thoracoscopy Approaches for Thymoma Resection: A Comparative Analysis of Short-Term Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Statistical Significance Is Expressed as a p < 0.05 Index
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruffini, E.; Filosso, P.L.; Guerrera, F.; Lausi, P.; Lyberis, P.; Oliaro, A. Optimal surgical approach to thymic malignancies: New trends challenging old dogmas. Lung Cancer 2018, 118, 161–170. [Google Scholar] [CrossRef]
- Fiorelli, A.; D’Andrilli, A.; Vanni, C.; Cascone, R.; Anile, M.; Diso, D.; Tassi, V.; Vannucci, J.; Serra, N.; Puma, F.; et al. Iterative Surgical Treatment for Repeated Recurrences After Complete Resection of Thymic Tumors. Ann. Thorac. Surg. 2017, 103, 422–431. [Google Scholar] [CrossRef]
- Kaba, E.; Cosgun, T.; Ayalp, K.; Toker, A. Robotic thymectomy for myasthenia gravis. Ann. Cardiothorac. Surg. 2019, 8, 288–291. [Google Scholar] [CrossRef]
- Melfi, F.; Fanucchi, O.; Davini, F.; Viti, A.; Lucchi, M.; Ambrogi, M.C.; Mussi, A. Ten-year experience of mediastinal robotic surgery in a single referral centre. Eur. J. Cardiothorac. Surg. 2012, 41, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Tantai, J.-C.; Ge, X.-X.; Li, W.; Feng, J.; Cheng, M.; Shi, J.-X.; Zhao, H. Surgical techniques for early-stage thymoma: Video-assisted thoracoscopic thymectomy versus transsternal thymectomy. J. Thorac. Cardiovasc. Surg. 2014, 147, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Pennathur, A.; Qureshi, I.; Schuchert, M.J.; Dhupar, R.; Ferson, P.F.; Gooding, W.E.; Christie, N.A.; Gilbert, S.; Shende, M.; Awais, O.; et al. Comparison of surgical techniques for early-stage thymoma: Feasibility of minimally invasive thymectomy and comparison with open resection. J. Thorac. Cardiovasc. Surg. 2011, 11, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.S.; Nicholson, A.G.; Maleszewski, J.J.; Marx, A.; Travis, W.D. Introduction to 2021 WHO Classification of Thoracic Tumors. J Thorac Oncol 2022, 17, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Matsuno, Y.; Noguchi, M.; Mukai, K.; Asamura, H.; Goya, T.; Shimosato, Y. A review of 79 thymomas: Modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol. Int. 1994, 44, 359–367. [Google Scholar] [CrossRef]
- Shields, T.W. Primary tumors and cysts of the mediastinum. In Shields’ General Thoracic Surgery, 8th ed.; Lea & Febiger: Philadelphia, PA, USA, 1972; p. 908. [Google Scholar]
- Maurizi, G.; Poggi, C.; D’andrilli, A.; Vanni, C.; Ciccone, A.M.; Ibrahim, M.; Andreetti, C.; Tierno, S.M.; Venuta, F.; Rendina, E.A. Superior Vena Cava Replacement for Thymic Malignancies. Ann. Thorac. Surg. 2019, 107, 386–392. [Google Scholar] [CrossRef]
- D’Andrilli, A.; Venuta, F.; Rendina, E.A. Surgical approaches for invasive tumors of the anterior mediastinum. Thorac. Surg. Clin. 2010, 20, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Chiba, Y.; Miyajima, M.; Takase, Y.; Tsuruta, K.; Shindo, Y.; Nakamura, Y.; Ishii, D.; Sato, T.; Aoyagi, M.; Shiraishi, T.; et al. Robot-assisted and video-assisted thoracoscopic surgery for thymoma: Comparison of the perioperative outcomes using inverse probability of treatment weighting method. Gland. Surg. 2022, 11, 1287–1300. [Google Scholar] [CrossRef]
- Friedant, A.J.; Handorf, E.A.; Su, S.; Scott, W.J. Minimally invasive versus open thymectomy for thymic malignancies: Systematic review and meta-analysis. J. Thorac. Oncol. 2015, 11, 30–38. [Google Scholar] [CrossRef]
- D’Andrilli, A.; Sommella, L.; Venuta, F.; Rendina, E.A.; Maurizi, G. Transsternal thymectomy. Thorac. Cardiovasc. Surg. 2015, 63, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.; Tjahjono, R.; Phan, K.; Yan, T.D. Video-assisted thoracoscopic surgery versus open thymectomy for thymoma: A systematic review. Ann. Cardiothorac. Surg. 2015, 4, 495–508. [Google Scholar] [CrossRef]
- Qian, L.; Chen, X.; Huang, J.; Lin, H.; Mao, F.; Zhao, X.; Luo, Q.; Ding, Z. A comparison of three approaches for the treatment of early-stage thymomas: Robot-assisted thoracic surgery, video-assisted thoracic surgery, and median sternotomy. J. Thorac. Dis. 2017, 9, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Li, J.; Li, J.; Che, G. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for treatment of patients with thymoma: A systematic review and meta-analysis. Thorac. Cancer 2022, 13, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-J.; Zhang, F.-Y.; Xiao, Q.; Li, X.-K. Does robotic-assisted thymectomy have advantages over video-assisted thymectomy in short-term outcomes? A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2021, 33, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Q.; Wang, J.; Liu, F.-Y.; Wang, W. Robot-assisted thoracoscopic surgery vs. sternotomy for thymectomy: A systematic review and meta-analysis. Front. Surg. 2023, 9, 1048547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilshire, C.L.; Vallières, E.; Shultz, D.; Aye, R.W.; Farivar, A.S.; Louie, B.E. Robotic resection of 3 cm and larger thymomas is associated with low peri-operative morbidity and mortality. Innovations 2016, 11, 321–326. [Google Scholar]
- Li, W.; Zhang, S.; Zhang, T.; Shen, Y.; Han, L.; Peng, Z.; Xie, Z.; Zhong, C.; Jia, S. Robotic thymectomy in anterior mediastinal mass: Propensity score matching study with transsternal thymectomy. Ann. Thorac. Surg. 2016, 102, 895–901. [Google Scholar] [CrossRef]
- Marulli, G.; Rea, F.; Melfi, F.; Schmid, T.A.; Ismail, M.; Fanucchi, O.; Augustin, F.; Swierzy, M.; Di Chiara, F.; Mussi, A.; et al. Robot-aided thoracoscopic thymectomy for early-stage thymoma: A multicenter European study. J. Thorac. Cardiovasc. Surg. 2012, 144, 1125–1130. [Google Scholar] [CrossRef]
- Comacchio, G.M.; Schiavon, M.; Zirafa, C.C.; De Palma, A.; Scaramuzzi, R.; Meacci, E.; Bongiolatti, S.; Monaci, N.; Lyberis, P.; Novellis, P.; et al. Robotic thymectomy in thymic tumours: A multicentre, nation-wide study. Eur. J. Cardiothorac. Surg. 2024, 65, ezae178. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Inoue, M.; Kadota, Y.; Shiono, H.; Shintani, Y.; Nakagiri, T.; Funaki, S.; Sawabata, N.; Minami, M.; Okumura, M. The oncological feasibility and limitations of video-assisted thoracoscopic thymectomy for early-stage thymomas. Eur. J. Cardiothorac. Surg. 2013, 44, e214–e218. [Google Scholar] [CrossRef]
- Seong, Y.W.; Kang, C.H.; Choi, J.W.; Kim, H.S.; Jeon, J.H.; Park, I.K.; Kim, Y.T. Early clinical outcomes of robot-assisted surgery for anterior mediastinal mass: Its superiority over a conventional sternotomy approach evaluated by propensity score matching. Eur. J. Cardiothorac. Surg. 2014, 45, e68–e73; discussion e73. [Google Scholar] [CrossRef] [PubMed]
- Kneuertz, P.J.; Kamel, M.K.; Stiles, B.M.; Lee, B.E.; Rahouma, M.; Nasar, A.; Altorki, N.K.; Port, J.L. Robotic thymectomy is feasible for large thymomas: A propensity-matched comparison. Ann. Thorac. Surg. 2017, 104, 1673–1678. [Google Scholar] [CrossRef]
- Pompili, C.; Koller, M.; Velikova, G.; Franks, K.; Absolom, K.; Callister, M.; Robson, J.; Imperatori, A.; Brunelli, A. EORTC QLQ-C30 summary score reliably detects changes in QoL three months after anatomic lung resection for Non-Small Cell Lung Cancer (NSCLC). Lung Cancer 2018, 123, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Mattioni, G.; Palleschi, A.; Mendogni, P.; Tosi, D. Approaches and outcomes of Robotic-Assisted Thoracic Surgery (RATS) for lung cancer: A narrative review. J. Robot. Surg. 2023, 17, 797–809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burt, B.M.; Yao, X.; Shrager, J.; Antonicelli, A.; Padda, S.; Reiss, J.; Wakelee, H.; Su, S.; Huang, J.; Scott, W. Determinants of complete resection of thymoma by minimally invasive and open thymectomy: Analysis of an international registry. J. Thorac. Oncol. 2017, 12, 129–136. [Google Scholar] [CrossRef]
- Duchnowski, P.; Śmigielski, W. Risk Factors for Postoperative Acute Kidney Injury Requiring Renal Replacement Therapy in Patients Undergoing Heart Valve Surgery. J. Clin. Med. 2024, 13, 7811. [Google Scholar] [CrossRef]
- Park, J.H.; Na, K.J.; Kang, C.H.; Park, S.; Park, I.K.; Kim, Y.T. Robotic subxiphoid thymectomy versus lateral thymectomy: A propensity score-matched comparison. Eur. J. Cardiothorac. Surg. 2022, 62, ezac288. [Google Scholar] [CrossRef]
RATS 40 | Sternotomy 40 | Thoracotomy 40 | VATS 40 | ||||
---|---|---|---|---|---|---|---|
n (%) | n (%) | p | n (%) | p | n (%) | p | |
Age, mean ± SD | 62.26 ± 8.57 | 54.14 ± 11.43 | 0.299 | 61.34 ± 9.8 | 0.892 | 61.28 ± 9.8 | 0.885 |
Gender (M/F) | 14/26 | 16/24 | 0.817 | 10/30 | 0.465 | 15/25 | 1 |
Myasthenia | 8 (20%) | 16 (40%) | 0.087 | 6 (15%) | 0.769 | 7 (17.5%) | 1 |
Morbidity | 3 (7.5%) | 5 (12.5%) | 0.712 | 5 (12.5%) | 0.712 | 5 (12.5%) | 0.712 |
Histology | |||||||
A | 5 (12.5%) | 5 (12.5%) | 1 | 11 (27.5%) | 0.161 | 8 (20%) | 0.546 |
AB | 13 (32.5%) | 10 (25%) | 0.622 | 11 (27.5%) | 0.161 | 14 (35%) | 1 |
B1 | 5 (12.5%) | 10 (25%) | 0.252 | 10 (25%) | 0.252 | 7 (17.5%) | 0.755 |
B2 | 5 (12.5%) | 10 (25%) | 0.252 | 5 (12.5%) | 1 | 8 (20%) | 0.546 |
B3 | 12 (30%) | 5 (12.5%) | 0.099 | 3 (7.5%) | 0.019 | 3 (7.5%) | 0.019 |
Masaoka | |||||||
I | 10 (25%) | 13 (32.5%) | 0.622 | 10 (25%) | 1 | 16 (40%) | 0.232 |
IIA | 21 (52.5%) | 13 (32.5%) | 0.113 | 20 (50%) | 1 | 11 (27.5%) | 0.039 |
IIB | 8 (20%) | 11 (27.5%) | 0.6 | 10 (25%) | 0.789 | 13 (32.5%) | 0.309 |
III | 1 (2.5%) | 3 (7.5%) | 0.615 | 0 (0%) | 1 | 0 (0%) | 1 |
RATS 40 | Sternotomy 40 | Thoracotomy 40 | VATS 40 | ||||
---|---|---|---|---|---|---|---|
n (%) | n (%) | p | n (%) | p | n (%) | p | |
Surgery time, mean ± SD | 70.60 ± 8.13 | 116.41 ± 22.48 | 0.008 | 76.25 ± 13.15 | 0.598 | 90 ± 11.55 | 0.030 |
Surgery time without docking, mean ± SD | 51.25 ± 16.52 | 116.41 ± 22.48 | 0.003 | 76.25 ± 13.15 | 0.005 | 90 ± 11.55 | 0.008 |
Associated resections | 4 (10%) | 14 (35%) | 0.015 | 3 (7.5%) | 1 | 0 (0%) | 0.116 |
Conversion rate | 0 (0%) | 0 (0%) | 1 | 0 (0%) | 1 | 6 (15%) | 0.026 |
R0 | 39 (97.5%) | 40 (100%) | 1 | 36 (90%) | 0.036 | 39 (97.5%) | 1 |
Lenght of stay in days, mean ± SD | 3.36 ± 1.73 | 7.44 ± 3.67 | <0.001 | 4.12 ± 1.51 | 0.104 | 3.64 ± 1.38 | 0.530 |
Dimensions, mean ± SD | 6.14 ± 1.86 | 7.72 ± 1.25 | 0.089 | 6.21 ± 1.49 | 0.877 | 4.71 ± 0.48 | 0.073 |
Pain, mean ± SD | |||||||
24 h | 2.2 ± 0.8 | 5.2 ± 0.9 | 0.003 | 5.8 ± 0.7 | 0.001 | 4.3 ± 0.5 | 0.004 |
48 h | 2.2 ± 0.7 | 5.1 ± 0.6 | 0.004 | 5.3 ± 0.7 | 0.001 | 4.0 ± 0.9 | 0.014 |
Cosmetic results, mean ± SD | 9.1 ± 0.5 | 4.1 ± 0.8 | 0.0001 | 6.1 ± 0.9 | 0.001 | 8 ± 0.8 | 0.052 |
Approach | Type of Complications | n | N (%) |
---|---|---|---|
RATS | Atrial fibrillation | 2 | 3 (7.5%) |
Pleural effusion | 1 | ||
Sternotomy | Phrenic nerve injury | 2 | 5 (12.5%) |
Ventricular fibrillation | 1 | ||
Bleeding | 1 | ||
Pneumonia | 1 | ||
Thoracotomy | Thoracotomy dehiscence | 1 | 5 (12.5%) |
Hemothorax (re-intervention) | 2 | ||
Pneumonia | 2 | ||
VATS | Pulmonary embolism | 1 | 5 (12.5%) |
Myasthenic crisis | 1 | ||
Bleeding | 2 | ||
Pneumonia | 1 |
Approach | Side | Type of Associated Resection | N; % |
---|---|---|---|
RATS | 2 L 2 R | 1 anonymous vein 2 lung (wedge upper lobe) 1 pericardium | 4; 10% |
Sternotomy | 2 L, 3 R | 5 pericardium | 14; 35% |
4 L, 2 R | 6 lung (wedge upper lobe) | ||
2 L | 2 phrenic nerve | ||
1 R | 1 pleura | ||
Thoracotomy | 1 L | 1 phrenic nerve | 3; 7.5% |
1 L, 1R | 2 lung (wedge upper lobe) | ||
VATS | 0 | 0 | 0; 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trabalza Marinucci, B.; Tiracorrendo, M.; Vanni, C.; Messa, F.; Piccioni, G.; Siciliani, A.; Fiorelli, S.; Ibrahim, M.; Rendina, E.A.; D’Andrilli, A. Robotic Versus Sternotomy, Thoracotomy and Video-Thoracoscopy Approaches for Thymoma Resection: A Comparative Analysis of Short-Term Results. J. Pers. Med. 2025, 15, 34. https://doi.org/10.3390/jpm15010034
Trabalza Marinucci B, Tiracorrendo M, Vanni C, Messa F, Piccioni G, Siciliani A, Fiorelli S, Ibrahim M, Rendina EA, D’Andrilli A. Robotic Versus Sternotomy, Thoracotomy and Video-Thoracoscopy Approaches for Thymoma Resection: A Comparative Analysis of Short-Term Results. Journal of Personalized Medicine. 2025; 15(1):34. https://doi.org/10.3390/jpm15010034
Chicago/Turabian StyleTrabalza Marinucci, Beatrice, Matteo Tiracorrendo, Camilla Vanni, Fabiana Messa, Giorgia Piccioni, Alessandra Siciliani, Silvia Fiorelli, Mohsen Ibrahim, Erino A. Rendina, and Antonio D’Andrilli. 2025. "Robotic Versus Sternotomy, Thoracotomy and Video-Thoracoscopy Approaches for Thymoma Resection: A Comparative Analysis of Short-Term Results" Journal of Personalized Medicine 15, no. 1: 34. https://doi.org/10.3390/jpm15010034
APA StyleTrabalza Marinucci, B., Tiracorrendo, M., Vanni, C., Messa, F., Piccioni, G., Siciliani, A., Fiorelli, S., Ibrahim, M., Rendina, E. A., & D’Andrilli, A. (2025). Robotic Versus Sternotomy, Thoracotomy and Video-Thoracoscopy Approaches for Thymoma Resection: A Comparative Analysis of Short-Term Results. Journal of Personalized Medicine, 15(1), 34. https://doi.org/10.3390/jpm15010034