Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives
Abstract
:1. Introduction
2. Current Trends in Personalized Medicine
2.1. Genomics and Biomarkers
2.2. Treatment Personalization
2.2.1. AI-Based Imaging
2.2.2. Hepatobiliary and Pancreatic (HBP) Imaging
2.2.3. Gastric Cancer
2.2.4. Colorectal Cancer (CRC)
Cancer Type | Modality | AI Model/Method | Target Outcome | Performance Metrics | References |
---|---|---|---|---|---|
Liver | CT, MRI | ResUNet, CNN, Graph-cut CNN | Segmentation, Lesion differentiation, Prognosis | DSC up to 99.2%, AUC 0.91 | [22,24,25,26,27] |
Biliary | CECT, MRI | CNN, Radiomics, Radiogenomics | Lesion classification, Genetic mutation prediction, Recurrence risk | Accuracy 88%, AUC 0.81–0.892 | [28,29,30,31,32,33] |
Pancreas | CECT, MRI | SVM, CNN, Delta-Radiomics | Detection, Resectability, Prognosis, Treatment response | AUC up to 0.98, Accuracy 99.2% | [34,35,38,39,40,41] |
Gastric | CT, MRI, PET-CT | Radiomics, Deep learning | Early detection, Lymph node metastasis, NAC response, Recurrence | C-index 0.76, AUC 0.8561–0.9195 | [43,44,45,46,47] |
Colorectal | CT, MRI, PET-CT | Radiomics, Deep learning CNN | Staging, pCR prediction, Recurrence detection | AUC 0.91–0.97, Sensitivity 0.83, Specificity 0.86 | [50,51,52] |
2.3. AI-Based Natural Language Processing (NLP) for Clinical Record Analysis
2.3.1. HBP Cancer
2.3.2. Gastric Cancer
2.3.3. CRC
Cancer Type | AI/NLP Application | Best Performance Metrics | References |
---|---|---|---|
Liver | Postoperative complication prediction using EHR + radiogenomics | FGFR2 AUC ≈ 0.89 [32], Complication prediction | [32,53] |
Biliary | Lesion classification, recurrence prediction, genetic mutation detection, NLP-based risk stratification | CCA recurrence AUC = 0.84, IDH1 AUC = 0.819, FGFR2 AUC = 0.892, NLP risk modeling | [29,30,31,32,33,55] |
Pancreas | Subtype classification, vascular involvement prediction, NLP for surgical strategy optimization | PDAC detection AUC = 0.98, Vascular resectability AUC = 0.94, NLP surgical notes integration | [34,38,55,56] |
Gastric | Pre/postoperative risk prediction, NAC response prediction, pathology feature extraction via NLP | Recurrence AUC = 0.9643, NAC response c-index = 0.76, Pathology NLP | [46,47,55] |
Colorectal | nCRT response prediction, recurrence risk modeling, continuous post-treatment monitoring | pCR prediction AUC = 0.97, recurrence prediction, NLP-driven risk modeling | [52,55,57,60] |
3. Role of Personalized Medicine in Gastrointestinal Surgical Oncology
3.1. Genomic Profiling and Biomarker-Driven Surgery
3.2. Individualized Surgical Strategies in Gastrointestinal Cancers
3.2.1. HBP Surgery
3.2.2. Gastric Cancer
3.2.3. CRC
3.3. Functional and Physiological Considerations
3.3.1. Nutritional Status
3.3.2. Frailty and Comorbidity Assessment
3.3.3. Neoadjuvant Therapy Selection
3.4. Integration of Advanced Imaging and Real-Time Decision Support
3.4.1. HBP Surgery
3.4.2. Gastric Cancer
3.4.3. CRC
3.5. Future Perspectives
3.5.1. Advances Toward Truly Personalized Care
3.5.2. Data Integration and Quality
3.5.3. Ethical and Privacy Concerns in Data Usage
3.5.4. Clinical Validation, Practical Limitations, and Trust
3.5.5. Multidisciplinary Collaboration and Human Expertise
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
NGS | Next-generation sequencing |
ML | Machine learning |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
CNN | Convolutional neural network |
HBP | Hepatobiliary and pancreatic |
DSC | Dice similarity coefficient |
3D | Three-dimensional |
IRCADb-1 | Image Reconstruction for Comparison of Algorithm Database-1 |
AUC | Area under the curve |
HCC | Hepatocellular carcinoma |
MRCP | Magnetic resonance cholangiopancreatography |
CCA | Cholangiocarcinoma |
CECT | Contrast-enhanced computed tomography |
GBC | Gallbladder cancer |
PDAC | Pancreatic ductal adenocarcinoma |
CRT | Chemoradiotherapy |
PET-CT | Positron emission tomography-computed tomography |
MDCT | Multidetector computed tomography |
NAC | Neoadjuvant chemotherapy |
pCR | Pathological complete response |
NLP | Natural language processing |
EHR | Electronic health record |
MSI | Microsatellite instability |
CI | Confidence interval |
HER2 | Human epidermal growth factor receptor 2 |
FLR | Future liver remnant |
FHIR | Fast Healthcare Interoperability Resources |
References
- Visvikis-Siest, S.; Theodoridou, D.; Kontoe, M.S.; Kumar, S.; Marschler, M. Milestones in Personalized Medicine: From the Ancient Time to Nowadays-the Provocation of COVID-19. Front. Genet. 2020, 11, 569175. [Google Scholar] [CrossRef] [PubMed]
- Oñate-Ocaña, L.F.; Aiello-Crocifoglio, V.; Mondragón-Sánchez, R.; Ruiz-Molina, J.M. Survival benefit of D2 lympadenectomy in patients with gastric adenocarcinoma. Ann. Surg. Oncol. 2000, 7, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.P. Surgical results in gastric cancer. Semin. Surg. Oncol. 1999, 17, 132–138. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Takeuchi, H.; Takagi, Y.; Natsugoe, S.; Terashima, M.; Murakami, N.; Fujimura, T.; Tsujimoto, H.; Hayashi, H.; Yoshimizu, N.; et al. Sentinel node mapping for gastric cancer: A prospective multicenter trial in Japan. J. Clin. Oncol. 2013, 31, 3704–3710. [Google Scholar] [CrossRef]
- Nagaraju, G.P.; Sandhya, T.; Srilatha, M.; Ganji, S.P.; Saddala, M.S.; El-Rayes, B.F. Artificial intelligence in gastrointestinal cancers: Diagnostic, prognostic, and surgical strategies. Cancer Lett. 2025, 612, 217461. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Rosenthal, E.L.; Warram, J.M.; Bland, K.I.; Zinn, K.R. The status of contemporary image-guided modalities in oncologic surgery. Ann. Surg. 2015, 261, 46–55. [Google Scholar] [CrossRef]
- Wang, P.; Xiao, X.; Glissen Brown, J.R.; Berzin, T.M.; Tu, M.; Xiong, F.; Hu, X.; Liu, P.; Song, Y.; Zhang, D.; et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. Biomed. Eng. 2018, 2, 741–748. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Khranovska, N.; Gorbach, O.; Skachkova, O.; Klimnyuk, G. Application of Next-Generation Sequencing to Realize Principles of Precision Therapy in Management of Cancer Patients. Exp. Oncol. 2025, 46, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Dongare, D.B.; Nishad, S.S.; Mastoli, S.Y.; Saraf, S.A.; Srivastava, N.; Dey, A. High-throughput sequencing: A breakthrough in molecular diagnosis for precision medicine. Funct. Integr. Genom. 2025, 25, 22. [Google Scholar] [CrossRef] [PubMed]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Casolino, R.; Beer, P.A.; Chakravarty, D.; Davis, M.B.; Malapelle, U.; Mazzarella, L.; Normanno, N.; Pauli, C.; Subbiah, V.; Turnbull, C.; et al. Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance. CA Cancer J. Clin. 2024, 74, 264–285. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—Latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology 2018, 286, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Berbís, M.A.; Paulano Godino, F.; Royuela Del Val, J.; Alcalá Mata, L.; Luna, A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J. Gastroenterol. 2023, 29, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering 2022, 9, 368. [Google Scholar] [CrossRef]
- Lu, F.; Wu, F.; Hu, P.; Peng, Z.; Kong, D. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 171–182. [Google Scholar] [CrossRef]
- Eugene Vorontsov, A.T.; Pal, C.; Kadoury, S. Liver lesion segmentation informed by joint liver segmentation. IEEE Trans. Med. Imaging 2019, 38, 2198–2210. [Google Scholar] [CrossRef]
- Kim, J.; Nickel, M.D.; Knoll, F. Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data. NMR Biomed. 2025, 38, e70002. [Google Scholar] [CrossRef]
- Haghbin, H.; Aziz, M. Artificial intelligence and cholangiocarcinoma: Updates and prospects. World J. Clin. Oncol. 2022, 13, 125–134. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, X.; Liang, M.; Li, D.; Ma, P.; Wang, S.; Wu, Z.; Zhao, X. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: Quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging 2019, 19, 49. [Google Scholar] [CrossRef]
- Jolissaint, J.S.; Wang, T.; Soares, K.C.; Chou, J.F.; Gönen, M.; Pak, L.M.; Boerner, T.; Do, R.K.G.; Balachandran, V.P.; D’Angelica, M.I.; et al. Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB 2022, 24, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Viganò, L.; Zanuso, V.; Fiz, F.; Cerri, L.; Laino, M.E.; Ammirabile, A.; Ragaini, E.M.; Viganò, S.; Terracciano, L.M.; Francone, M.; et al. CT-based radiogenomics of intrahepatic cholangiocarcinoma. Dig. Liver Dis. 2025, 57, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Yakar, D.; Slangen, J.J.G.; Hoogwater, F.J.H.; Kwee, T.C.; de Haas, R.J. The Value of Deep Learning in Gallbladder Lesion Characterization. Diagnostics 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Patra, A.; Khasawneh, H.; Korfiatis, P.; Rajamohan, N.; Suman, G.; Majumder, S.; Panda, A.; Johnson, M.P.; Larson, N.B.; et al. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022, 163, 1435–1446.e1433. [Google Scholar] [CrossRef]
- Chu, L.C.; Park, S.; Kawamoto, S.; Fouladi, D.F.; Shayesteh, S.; Zinreich, E.S.; Graves, J.S.; Horton, K.M.; Hruban, R.H.; Yuille, A.L.; et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR Am. J. Roentgenol. 2019, 213, 349–357. [Google Scholar] [CrossRef]
- Li, K.; Yao, Q.; Xiao, J.; Li, M.; Yang, J.; Hou, W.; Du, M.; Chen, K.; Qu, Y.; Li, L.; et al. Contrast-enhanced CT radiomics for predicting lymph node metastasis in pancreatic ductal adenocarcinoma: A pilot study. Cancer Imaging 2020, 20, 12. [Google Scholar] [CrossRef]
- Gu, Q.; Sun, H.; Liu, P.; Hu, X.; Yang, J.; Chen, Y.; Xing, Y. Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study. Radiother. Oncol. 2025, 205, 110770. [Google Scholar] [CrossRef]
- Bereska, J.I.; Janssen, B.V.; Nio, C.Y.; Kop, M.P.M.; Kazemier, G.; Busch, O.R.; Struik, F.; Marquering, H.A.; Stoker, J.; Besselink, M.G.; et al. Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer. Eur. Radiol. Exp. 2024, 8, 18. [Google Scholar] [CrossRef]
- Viviers, C.; Ramaekers, M.; Valiuddin, A.; Hellström, T.; Tasios, N.; van der Ven, J.; Jacobs, I.; Ewals, L.; Nederend, J.; de With, P.; et al. Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical Resectability Prediction of Pancreatic Ductal Adenocarcinoma. arXiv 2023, arXiv:2310.00639. [Google Scholar]
- Nasief, H.; Zheng, C.; Schott, D.; Hall, W.; Tsai, S.; Erickson, B.; Allen Li, X. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. npj Precis. Oncol. 2019, 3, 25. [Google Scholar] [CrossRef]
- Noda, Y.; Goshima, S.; Miyoshi, T.; Kawada, H.; Kawai, N.; Tanahashi, Y.; Matsuo, M. Assessing Chemotherapeutic Response in Pancreatic Ductal Adenocarcinoma: Histogram Analysis of Iodine Concentration and CT Number in Single-Source Dual-Energy CT. AJR Am. J. Roentgenol. 2018, 211, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, F.; Wang, L.; Li, E.; Xu, Z.; Wels, M.; Yao, W.; Zhang, H. Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy. Eur. J. Surg. Oncol. 2022, 48, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Yu, Y.; Liu, J.J.; Xue, H.D.; Qi, Y.F.; Lei, J.; Yu, J.C.; Jin, Z.Y. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur. Radiol. 2020, 30, 976–986. [Google Scholar] [CrossRef]
- Matsuki, M.; Kani, H.; Tatsugami, F.; Yoshikawa, S.; Narabayashi, I.; Lee, S.W.; Shinohara, H.; Nomura, E.; Tanigawa, N. Preoperative assessment of vascular anatomy around the stomach by 3D imaging using MDCT before laparoscopy-assisted gastrectomy. AJR Am. J. Roentgenol. 2004, 183, 145–151. [Google Scholar] [CrossRef]
- Adili, D.; Mohetaer, A.; Zhang, W. Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis. Eur. J. Radiol. 2024, 173, 111249. [Google Scholar] [CrossRef]
- Huang, L.; Feng, B.; Yang, Z.; Feng, S.T.; Liu, Y.; Xue, H.; Shi, J.; Chen, Q.; Zhou, T.; Chen, X.; et al. A Transfer Learning Radiomics Nomogram to Predict the Postoperative Recurrence of Advanced Gastric Cancer. J. Gastroenterol. Hepatol. 2024, 40, 844–854. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Yamada, M.; Saito, Y.; Imaoka, H.; Saiko, M.; Yamada, S.; Kondo, H.; Takamaru, H.; Sakamoto, T.; Sese, J.; Kuchiba, A.; et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci. Rep. 2019, 9, 14465. [Google Scholar] [CrossRef]
- He, J.; Wang, S.X.; Liu, P. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: A systematic review and meta-analysis. Br. J. Radiol. 2024, 97, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.L.; Zheng, Q.Y.; Tian, J.H.; He, D.L.; Zhao, J.X.; Zhao, L.P.; Huang, G. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 1026216. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. npj Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Shool, S.; Adimi, S.; Saboori Amleshi, R.; Bitaraf, E.; Golpira, R.; Tara, M. A systematic review of large language model (LLM) evaluations in clinical medicine. BMC Med. Inform. Decis. Mak. 2025, 25, 117. [Google Scholar] [CrossRef]
- Ye, Z.; Ban, H.; Li, C.; Chen, S. Advanced NLP-Driven Predictive Modeling for Tailored Treatment Strategies in Gastrointestinal Cancer. SLAS Technol. 2025, 32, 100264. [Google Scholar] [CrossRef]
- Stammers, M.; Ramgopal, B.; Owusu Nimako, A.; Vyas, A.; Nouraei, R.; Metcalf, C.; Batchelor, J.; Shepherd, J.; Gwiggner, M. A foundation systematic review of natural language processing applied to gastroenterology & hepatology. BMC Gastroenterol. 2025, 25, 58. [Google Scholar]
- Wang, L.; Fu, S.; Wen, A.; Ruan, X.; He, H.; Liu, S.; Moon, S.; Mai, M.; Riaz, I.B.; Wang, N.; et al. Assessment of Electronic Health Record for Cancer Research and Patient Care Through a Scoping Review of Cancer Natural Language Processing. JCO Clin. Cancer Inform. 2022, 6, e2200006. [Google Scholar] [CrossRef]
- Pai, R.K.; Hartman, D.; Schaeffer, D.F.; Rosty, C.; Shivji, S.; Kirsch, R.; Pai, R.K. Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. Histopathology 2021, 79, 391–405. [Google Scholar] [CrossRef]
- Bektaş, M.; Tuynman, J.B.; Costa Pereira, J.; Burchell, G.L.; van der Peet, D.L. Machine Learning Algorithms for Predicting Surgical Outcomes after Colorectal Surgery: A Systematic Review. World J. Surg. 2022, 46, 3100–3110. [Google Scholar] [CrossRef]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med. 2019, 16, e1002730. [Google Scholar] [CrossRef]
- Abbaspour, E.; Karimzadhagh, S.; Monsef, A.; Joukar, F.; Mansour-Ghanaei, F.; Hassanipour, S. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: A systematic review and meta-analysis. Int. J. Surg. 2024, 110, 3795–3813. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, R.; Morooka, K.; Omori, K.; Toyota, S.; Tanaka, Y.; Hasuda, H.; Koga, N.; Nonaka, K.; Hu, Q.; Nakaji, Y.; et al. Artificial Intelligence-Based Prediction of Recurrence after Curative Resection for Colorectal Cancer from Digital Pathological Images. Ann. Surg. Oncol. 2023, 30, 3506–3514. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.; Melling, N.; Giannou, A.D.; Reeh, M.; Mann, O.; Hackert, T.; Izbicki, J.R.; Perez, D.; Grass, J.K. Lymphatic Mapping in Colon Cancer Depending on Injection Time and Tracing Agent: A Systematic Review and Meta-Analysis of Prospective Designed Studies. Cancers 2023, 15, 3196. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised nutrition and health. BMJ 2018, 361, bmj k2173. [Google Scholar] [CrossRef]
- Disalvo, D.; Garcia, M.V.; Soo, W.K.; Phillips, J.; Lane, H.; Treleaven, E.; To, T.; Power, J.; Amgarth-Duff, I.; Agar, M. The effect of comprehensive geriatric assessment on treatment decisions, supportive care received, and postoperative outcomes in older adults with cancer undergoing surgery: A systematic review. J. Geriatr. Oncol. 2025, 16, 102197. [Google Scholar] [CrossRef]
- Montroni, I.; Rostoft, S.; Spinelli, A.; Van Leeuwen, B.L.; Ercolani, G.; Saur, N.M.; Jaklitsch, M.T.; Somasundar, P.S.; de Liguori Carino, N.; Ghignone, F.; et al. GOSAFE—Geriatric Oncology Surgical Assessment and Functional rEcovery after Surgery: Early analysis on 977 patients. J. Geriatr. Oncol. 2020, 11, 244–255. [Google Scholar] [CrossRef]
- Takamoto, T.; Ban, D.; Nara, S.; Mizui, T.; Nagashima, D.; Esaki, M.; Shimada, K. Automated Three-Dimensional Liver Reconstruction with Artificial Intelligence for Virtual Hepatectomy. J. Gastrointest. Surg. 2022, 26, 2119–2127. [Google Scholar] [CrossRef]
- Hameed, B.S.; Krishnan, U.M. Artificial Intelligence-Driven Diagnosis of Pancreatic Cancer. Cancers 2022, 14, 5382. [Google Scholar] [CrossRef]
- Elhaddad, M.; Hamam, S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus 2024, 16, e57728. [Google Scholar] [CrossRef]
- Ayaz, M.; Pasha, M.F.; Alzahrani, M.Y.; Budiarto, R.; Stiawan, D. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities. JMIR Med. Inform. 2021, 9, e21929. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H. Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives. J. Pers. Med. 2025, 15, 175. https://doi.org/10.3390/jpm15050175
Kim DH. Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives. Journal of Personalized Medicine. 2025; 15(5):175. https://doi.org/10.3390/jpm15050175
Chicago/Turabian StyleKim, Dae Hoon. 2025. "Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives" Journal of Personalized Medicine 15, no. 5: 175. https://doi.org/10.3390/jpm15050175
APA StyleKim, D. H. (2025). Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives. Journal of Personalized Medicine, 15(5), 175. https://doi.org/10.3390/jpm15050175