The Association of Assisted Reproductive Technology with Placental and Umbilical Abnormalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ethical and Reporting Standards
2.3. Population and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Multivariable Regression Analyses
3.2. Sensitivity Analyses via Propensity Score Matching
4. Discussion
4.1. Primary Findings
4.2. Interpretation of the Findings
4.3. Possible Clinical Implications
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ART | Assisted reproductive technology |
IVF | In vitro fertilization |
ICSI | Intracytoplasmic sperm injection |
SGA | Small for gestational age |
PSM | Propensity score matching |
References
- Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; Goossens, V. ART in Europe, 2018: Results generated from European registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac022. [Google Scholar] [CrossRef] [PubMed]
- Gerkowicz, S.A.; Crawford, S.B.; Hipp, H.S.; Boulet, S.L.; Kissin, D.M.; Kawwass, J.F. Assisted reproductive technology with donor sperm: National trends and perinatal outcomes. Am. J. Obstet. Gynecol. 2018, 218, 421.e1–421.e10. [Google Scholar] [CrossRef]
- Rosenwaks, Z.; Pereira, N. The pioneering of intracytoplasmic sperm injection: Historical perspectives. Reproduction 2017, 154, F71–F77. [Google Scholar] [CrossRef]
- Singh, K.; Dewani, D. Recent Advancements in In Vitro Fertilisation. Cureus 2022, 14, e30116. [Google Scholar] [CrossRef] [PubMed]
- Boucret, L.; Tramon, L.; Saulnier, P.; Ferré-L’Hôtellier, V.; Bouet, P.E.; May-Panloup, P. Change in the Strategy of Embryo Selection with Time-Lapse System Implementation-Impact on Clinical Pregnancy Rates. J. Clin. Med. 2021, 10, 4111. [Google Scholar] [CrossRef]
- Qin, J.; Liu, X.; Sheng, X.; Wang, H.; Gao, S. Assisted reproductive technology and the risk of pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: A meta-analysis of cohort studies. Fertil. Steril. 2016, 105, e71–e76. [Google Scholar] [CrossRef] [PubMed]
- Sullivan-Pyke, C.S.; Senapati, S.; Mainigi, M.A.; Barnhart, K.T. In Vitro fertilization and adverse obstetric and perinatal outcomes. Semin. Perinatol. 2017, 41, 345–353. [Google Scholar] [CrossRef]
- Luke, B. Pregnancy and birth outcomes in couples with infertility with and without assisted reproductive technology: With an emphasis on US population-based studies. Am. J. Obstet. Gynecol. 2017, 217, 270–281. [Google Scholar] [CrossRef]
- Berntsen, S.; Söderström-Anttila, V.; Wennerholm, U.B.; Laivuori, H.; Loft, A.; Oldereid, N.B.; Romundstad, L.B.; Bergh, C.; Pinborg, A. The health of children conceived by ART: ‘the chicken or the egg?’. Hum. Reprod. Update 2019, 25, 137–158. [Google Scholar] [CrossRef]
- Al Fahdi, M.; Riyami, N.A.; Ahmed, B. Placental histopathological abnormalities in adverse obstetric outcomes: A retrospective cross-sectional study at Sultan Qaboos University Hospital. BMC Women’s Health 2024, 24, 613. [Google Scholar] [CrossRef]
- Shevell, T.; Malone, F.D.; Vidaver, J.; Porter, T.F.; Luthy, D.A.; Comstock, C.H.; Hankins, G.D.; Eddleman, K.; Dolan, S.; Dugoff, L.; et al. Assisted reproductive technology and pregnancy outcome. Obstet. Gynecol. 2005, 106, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.K.; Wen, S.W.; Bottomley, J.; Smith, G.N.; Leader, A.; Walker, M.C. In vitro fertilization is associated with an increased risk for preeclampsia. Hypertens. Pregnancy 2009, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gusella, A.; Martignoni, G.; Giacometti, C. Behind the Curtain of Abnormal Placentation in Pre-Eclampsia: From Molecular Mechanisms to Histological Hallmarks. Int. J. Mol. Sci. 2024, 25, 7886. [Google Scholar] [CrossRef]
- Siargkas, A.; Tsakiridis, I.; Pachi, C.; Mamopoulos, A.; Athanasiadis, A.; Dagklis, T. Impact of velamentous cord insertion on perinatal outcomes: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2023, 5, 100812. [Google Scholar] [CrossRef]
- Siargkas, A.; Tsakiridis, I.; Pachi, C.; Mamopoulos, A.; Athanasiadis, A.; Dagklis, T. Impact of marginal cord insertion on perinatal outcomes: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2023, 5, 100876. [Google Scholar] [CrossRef] [PubMed]
- Siargkas, A.; Tsakiridis, I.; Gatsis, A.; De Paco Matallana, C.; Gil, M.M.; Chaveeva, P.; Dagklis, T. Risk Factors of Velamentous Cord Insertion in Singleton Pregnancies—A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 5551. [Google Scholar] [CrossRef]
- Siargkas, A.; Tsakiridis, I.; Gatsis, A.; De Paco Matallana, C.; Gil, M.M.; Chaveeva, P.; Dagklis, T. Risk Factors of Marginal Cord Insertion in Singleton Pregnancies: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 7438. [Google Scholar] [CrossRef]
- Sahu, S.A.; Shrivastava, D. Maternal and Perinatal Outcomes in Placenta Previa: A Comprehensive Review of Evidence. Cureus 2024, 16, e59737. [Google Scholar] [CrossRef]
- Kong, F.; Fu, Y.; Shi, H.; Li, R.; Zhao, Y.; Wang, Y.; Qiao, J. Placental Abnormalities and Placenta-Related Complications Following In-Vitro Fertilization: Based on National Hospitalized Data in China. Front. Endocrinol. 2022, 13, 924070. [Google Scholar] [CrossRef]
- Schachter, M.; Tovbin, Y.; Arieli, S.; Friedler, S.; Ron-El, R.; Sherman, D. In vitro fertilization is a risk factor for vasa previa. Fertil. Steril. 2002, 78, 642–643. [Google Scholar] [CrossRef]
- Siargkas, A.; Giouleka, S.; Tsakiridis, I.; Mamopoulos, A.; Kalogiannidis, I.; Athanasiadis, A.; Dagklis, T. Prenatal Diagnosis of Isolated Single Umbilical Artery: Incidence, Risk Factors and Impact on Pregnancy Outcomes. Medicia 2023, 59, 1080. [Google Scholar] [CrossRef] [PubMed]
- Romundstad, L.B.; Romundstad, P.R.; Sunde, A.; von Düring, V.; Skjaerven, R.; Vatten, L.J. Increased risk of placenta previa in pregnancies following IVF/ICSI; a comparison of ART and non-ART pregnancies in the same mother. Hum. Reprod. 2006, 21, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Vermey, B.G.; Buchanan, A.; Chambers, G.M.; Kolibianakis, E.M.; Bosdou, J.; Chapman, M.G.; Venetis, C.A. Are singleton pregnancies after assisted reproduction technology (ART) associated with a higher risk of placental anomalies compared with non-ART singleton pregnancies? A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 209–218. [Google Scholar] [CrossRef]
- Mansour, R. Minimizing embryo expulsion after embryo transfer: A randomized controlled study. Hum. Reprod. 2005, 20, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Baba, K.; Ishihara, O.; Hayashi, N.; Saitoh, M.; Taya, J.; Kinoshita, K. Where does the embryo implant after embryo transfer in humans? Fertil. Steril. 2000, 73, 123–125. [Google Scholar] [CrossRef]
- Coroleu, B.; Barri, P.N.; Carreras, O.; Martínez, F.; Parriego, M.; Hereter, L.; Parera, N.; Veiga, A.; Balasch, J. The influence of the depth of embryo replacement into the uterine cavity on implantation rates after IVF: A controlled, ultrasound-guided study. Hum. Reprod. 2002, 17, 341–346. [Google Scholar] [CrossRef]
- Royster, G.D.t.; Krishnamoorthy, K.; Csokmay, J.M.; Yauger, B.J.; Chason, R.J.; DeCherney, A.H.; Wolff, E.F.; Hill, M.J. Are intracytoplasmic sperm injection and high serum estradiol compounding risk factors for adverse obstetric outcomes in assisted reproductive technology? Fertil. Steril. 2016, 106, 363–370.e363. [Google Scholar] [CrossRef]
- Jing, S.; Li, X.; Zhang, S.; Gong, F.; Lu, G.; Lin, G. The risk of placenta previa and cesarean section associated with a thin endometrial thickness: A retrospective study of 5251 singleton births during frozen embryo transfer in China. Arch. Gynecol. Obstet. 2019, 300, 1227–1237. [Google Scholar] [CrossRef]
- Fuchs Weizman, N.; Wyse, B.A.; Gat, I.; Balakier, H.; Sangaralingam, M.; Caballero, J.; Kenigsberg, S.; Librach, C.L. Triggering method in assisted reproduction alters the cumulus cell transcriptome. Reprod. Biomed. Online 2019, 39, 211–224. [Google Scholar] [CrossRef]
- Cottrell, H.N.; Deepak, V.; Spencer, J.B.; Sidell, N.; Rajakumar, A. Effects of Supraphysiologic Levels of Estradiol on Endometrial Decidualization, sFlt1, and HOXA10 Expression. Reprod. Sci. 2019, 26, 1626–1632. [Google Scholar] [CrossRef]
- Jeon, H.; Min, J.; Kim, D.K.; Seo, H.; Kim, S.; Kim, Y.S. Women with Endometriosis, Especially Those Who Conceived with Assisted Reproductive Technology, Have Increased Risk of Placenta Previa: Meta-analyses. J. Korean Med. Sci. 2018, 33, e234. [Google Scholar] [CrossRef]
- Takemura, Y.; Osuga, Y.; Fujimoto, A.; Oi, N.; Tsutsumi, R.; Koizumi, M.; Yano, T.; Taketani, Y. Increased risk of placenta previa is associated with endometriosis and tubal factor infertility in assisted reproductive technology pregnancy. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2013, 29, 113–115. [Google Scholar] [CrossRef]
- Larcher, L.; Jauniaux, E.; Lenzi, J.; Ragnedda, R.; Morano, D.; Valeriani, M.; Michelli, G.; Farina, A.; Contro, E. Ultrasound diagnosis of placental and umbilical cord anomalies in singleton pregnancies resulting from in-vitro fertilization. Placenta 2023, 131, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Giouleka, S.; Siargkas, A.; Tsakiridis, I.; Mamopoulos, A.; Athanasiadis, A.; Dagklis, T. Prenatal diagnosis of bilobate placenta: Incidence, risk factors and impact on pregnancy outcomes. J. Perinat. Med. 2023, 51, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Malter, H.E.; Cohen, J. Blastocyst formation and hatching in vitro following zona drilling of mouse and human embryos. Gamete Res. 1989, 24, 67–80. [Google Scholar] [CrossRef]
- Ganer Herman, H.; Volodarsky-Perel, A.; Ton Nu, T.N.; Machado-Gedeon, A.; Cui, Y.; Shaul, J.; Dahan, M.H. Placental histology following assisted hatching in fresh transfer cycles. Arch. Gynecol. Obstet. 2022, 306, 1267–1272. [Google Scholar] [CrossRef]
- Ebbing, C.; Kessler, J.; Moster, D.; Rasmussen, S. Single umbilical artery and risk of congenital malformation: Population-based study in Norway. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2020, 55, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Abuhamad, A.Z.; Shaffer, W.; Mari, G.; Copel, J.A.; Hobbins, J.C.; Evans, A.T. Single umbilical artery: Does it matter which artery is missing? Am. J. Obstet. Gynecol. 1995, 173, 728–732. [Google Scholar] [CrossRef]
- Hasegawa, J.; Iwasaki, S.; Matsuoka, R.; Ichizuka, K.; Sekizawa, A.; Okai, T. Velamentous cord insertion caused by oblique implantation after in vitro fertilization and embryo transfer. J. Obstet. Gynaecol. Res. 2011, 37, 1698–1701. [Google Scholar] [CrossRef]
- Jansen, C.; Kastelein, A.W.; Kleinrouweler, C.E.; Van Leeuwen, E.; De Jong, K.H.; Pajkrt, E.; Van Noorden, C.J.F. Development of placental abnormalities in location and anatomy. Acta Obstet. Gynecol. Scand. 2020, 99, 983–993. [Google Scholar] [CrossRef]
- Pavalagantharajah, S.; Villani, L.A.; D’Souza, R. Vasa previa and associated risk factors: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2020, 2, 100117. [Google Scholar] [CrossRef] [PubMed]
- Attilakos, G.; David, A.L.; Tunn, R.; Knight, M.; Brocklehurst, P. Incidence and outcomes of vasa praevia in the United Kingdom. NIHR Open Res. 2024, 4, 49. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Heilbronn, L.K. The health outcomes of human offspring conceived by assisted reproductive technologies (ART). J. Dev. Orig. Health Dis. 2017, 8, 388–402. [Google Scholar] [CrossRef] [PubMed]
- de Ganzo Suárez, T.; de Paco Matallana, C.; Plasencia, W. Spiral, uterine artery doppler and placental ultrasound in relation to preeclampsia. Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 92, 102426. [Google Scholar] [CrossRef]
- Benirschke, K.; Burton, G.; Baergen, R. Pathology of the Human Placenta, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–941. [Google Scholar]
Variable | Level | Overall | Natural Conception | Conception via ART | p-Value |
---|---|---|---|---|---|
n = 13,854 | n = 13,207 | n = 647 | |||
Parity ‡ | Multiparity | 47.8% (46.9–48.6%) | 49.2% (48.4–50.1%) | 18.2% (15.3–21.4%) | <0.001 |
NA | 0.06% (0.02–0.11%) | 0.06% (0.03–0.12%) | 0.00% (0.00–0.57%) | ||
Preexisting Diabetes Mellitus ‡ | 0.39% (0.29–0.51%) | 0.36% (0.26–0.47%) | 1.08% (0.44–2.22%) | 0.012 | |
Thyroid disease ‡ | 8.08% (7.64–8.55%) | 7.77% (7.32–8.24%) | 14.5% (11.9–17.5%) | <0.001 | |
Maternal Age * | 31.4 (31.3–31.5) | 31.1 (31.0–31.2) | 37.3 (36.9–37.7) | <0.001 | |
BMI † | 23.1 (23.0–23.1) | 23.1 (23.0–23.1) | 23.0 (22.7–23.4) | 0.694 | |
Smoking ‡ | No smoking | 57.1% (56.3–58.0%) | 57.1% (56.2–57.9%) | 58.0% (54.0–61.8%) | <0.001 |
Quitted in pregnancy | 26.8% (26.1–27.6%) | 26.4% (25.7–27.2%) | 34.6% (31.0–38.4%) | ||
Smoking | 12.3% (11.8–12.9%) | 12.6% (12.0–13.1%) | 6.80% (4.98–9.02%) | ||
NA | 3.75% (3.44–4.08%) | 3.90% (3.58–4.24%) | 0.62% (0.17–1.58%) | ||
Gestational Diabetes Mellitus ‡ | 8.96% (8.49–9.45%) | 8.60% (8.13–9.09%) | 16.4% (13.6–19.5%) | <0.001 | |
Previous cesarean delivery ‡ | 19.5% (18.8–20.2%) | 19.8% (19.2–20.5%) | 12.1% (9.65–14.8%) | <0.001 | |
Placental site ‡ | Anterior | 44.8% (43.9–45.6%) | 44.9% (44.0–45.8%) | 42.2% (38.4–46.1%) | 0.004 |
Posterior | 43.3% (42.5–44.1%) | 43.3% (42.5–44.2%) | 42.5% (38.7–46.4%) | ||
Lateral | 9.10% (8.63–9.59%) | 8.99% (8.51–9.49%) | 11.4% (9.09–14.1%) | ||
Fundal | 2.47% (2.22–2.74%) | 2.46% (2.20–2.74%) | 2.63% (1.54–4.17%) | ||
Complete Previa | 0.38% (0.28–0.49%) | 0.33% (0.24–0.45%) | 1.24% (0.54–2.42%) | ||
Lateral Placenta ‡ | 9.10% (8.63–9.59%) | 8.99% (8.51–9.49%) | 11.4% (9.09–14.1%) | 0.040 | |
Placental height from cervical os ‡ | High | 86.0% (85.4–86.6%) | 86.6% (86.0–87.2%) | 73.9% (70.3–77.2%) | <0.001 |
Low-lying | 13.1% (12.5–13.6%) | 12.6% (12.0–13.1%) | 23.3% (20.1–26.8%) | ||
Previa | 0.93% (0.78–1.11%) | 0.84% (0.69–1.01%) | 2.78% (1.66–4.36%) | ||
Bilobate placenta ‡ | 2.16% (1.92–2.41%) | 1.94% (1.71–2.19%) | 6.65% (4.85–8.85%) | <0.001 | |
Single umbilical artery ‡ | 0.61% (0.49–0.76%) | 0.60% (0.47–0.74%) | 0.93% (0.34–2.01%) | 0.301 | |
Umbilical cord insertion ‡ | Central/eccentric | 86.7% (86.2–87.3%) | 87.3% (86.7–87.9%) | 75.3% (71.8–78.6%) | <0.001 |
Marginal | 11.9% (11.4–12.5%) | 11.5% (10.9–12.0%) | 20.9% (17.8–24.2%) | ||
Velamentous | 1.34% (1.16–1.55%) | 1.22% (1.04–1.42%) | 3.86% (2.52–5.65%) | ||
Vasa previa ‡ | 0.12% (0.07–0.19%) | 0.09% (0.05–0.16%) | 0.62% (0.17–1.58%) | 0.005 | |
UtA PI z † | 0.01 (−0.01–+0.02) | 0.02 (+0.00–+0.04) | −0.26 (−0.36–−0.17) | <0.001 | |
UtA PI percentile † | 47.1 (46.3–48.0) | 47.7 (46.8–48.5) | 34.1 (29.8–38.4) | <0.001 | |
UtA PI > 95th percentile ‡ | Above 95th percentile | 7.31% (6.88–7.76%) | 7.34% (6.90–7.79%) | 6.80% (4.98–9.02%) | 0.789 |
NA | 0.08% (0.04–0.14%) | 0.08% (0.04–0.15%) | 0.00% (0.00–0.57%) | ||
Uterine Artery Notch ‡ | None | 93.9% (93.5–94.3%) | 93.9% (93.4–94.3%) | 95.4% (93.4–96.9%) | 0.361 |
Unilateral | 4.52% (4.18–4.88%) | 4.55% (4.20–4.92%) | 3.86% (2.52–5.65%) | ||
Bilateral | 1.49% (1.29–1.70%) | 1.52% (1.32–1.75%) | 0.77% (0.25–1.79%) | ||
NA | 0.06% (0.02–0.11%) | 0.06% (0.03–0.12%) | 0.00% (0.00–0.57%) |
Variable | aOR | 95% CI | p-Value |
---|---|---|---|
Bilobate placenta | 2.81 | 1.92–4.11 | 0.000 |
Fundal vs. anterior placenta | 1.45 | 0.84–2.52 | 0.183 |
Posterior vs. anterior placenta | 1.06 | 0.88–1.27 | 0.567 |
Lateral vs. anterior placenta | 1.12 | 0.84–1.49 | 0.424 |
Lateral vs. non-lateral placenta | 1.08 | 0.82–1.41 | 0.587 |
Placenta previa vs. high placenta | 1.99 | 1.10–3.61 | 0.023 |
Low-lying vs. high placenta | 1.71 | 1.38–2.11 | <0.001 |
Single umbilical artery | 2.62 | 1.02–6.72 | 0.045 |
Marginal vs. Central/eccentric cord insertion | 1.63 | 1.32–2.01 | <0.001 |
Velamentous vs. Central/eccentric cord insertion | 3.13 | 1.98–4.95 | <0.001 |
Vasa previa | 5.51 | 1.28–23.76 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siargkas, A.; Tsakiridis, I.; Giouleka, S.; Chaveeva, P.; Mar Gil, M.; Plasencia, W.; De Paco Matallana, C.; Kolibianakis, E.M.; Dagklis, T. The Association of Assisted Reproductive Technology with Placental and Umbilical Abnormalities. J. Pers. Med. 2025, 15, 176. https://doi.org/10.3390/jpm15050176
Siargkas A, Tsakiridis I, Giouleka S, Chaveeva P, Mar Gil M, Plasencia W, De Paco Matallana C, Kolibianakis EM, Dagklis T. The Association of Assisted Reproductive Technology with Placental and Umbilical Abnormalities. Journal of Personalized Medicine. 2025; 15(5):176. https://doi.org/10.3390/jpm15050176
Chicago/Turabian StyleSiargkas, Antonios, Ioannis Tsakiridis, Sonia Giouleka, Petya Chaveeva, Maria Mar Gil, Walter Plasencia, Catalina De Paco Matallana, Efstratios M. Kolibianakis, and Themistoklis Dagklis. 2025. "The Association of Assisted Reproductive Technology with Placental and Umbilical Abnormalities" Journal of Personalized Medicine 15, no. 5: 176. https://doi.org/10.3390/jpm15050176
APA StyleSiargkas, A., Tsakiridis, I., Giouleka, S., Chaveeva, P., Mar Gil, M., Plasencia, W., De Paco Matallana, C., Kolibianakis, E. M., & Dagklis, T. (2025). The Association of Assisted Reproductive Technology with Placental and Umbilical Abnormalities. Journal of Personalized Medicine, 15(5), 176. https://doi.org/10.3390/jpm15050176