The Accreting White Dwarfs in Cataclysmic Variables
Abstract
:1. Introduction
2. The Critically Important Masses of Accreting CV White Dwarfs
2.1. Supernovae Type Ia
2.2. Tests of AML Braking Laws
2.3. Binary Population Synthesis Models (BPS)
2.4. Precise CV WD Effective Temperatures
2.5. WD Core Compositions
3. CV White Dwarf Rotational Velocities
4. Chemical Abundances of Accreting White Dwarfs in CVs
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zorotovic, M.; Schreiber, M.R.; Gänsicke, B.T. Post common envelope binaries from SDSS. XI. The white dwarf mass distributions of CVs and pre-CVs. Astron. Astrophys. 2011, 536, A42. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, P.; Wesemael, F.; Dufour, P.; Beauchamp, A.L.; A Hunter, C.; Saffer, R.A.; Gianninas, A.; Ruiz, M.T.; Limoges, M.-M.; Dufour, P.; et al. A Comprehensive Spectroscopic Analysis of DB White Dwarfs. Astrophys. J. 2011, 737, 28. [Google Scholar] [CrossRef] [Green Version]
- Nomoto, K. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms. Astrophys. J. 1982, 253, 798–810. [Google Scholar] [CrossRef]
- Whelan, J.; Iben, I. Binaries in Supernovae Type Ia. Astrophys. J. 1973, 186, 1007. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Idan, I.; Shaviv, N.J.; Shaviv, G. The fate of a WD accreting H-rich material at high accretion rates. Mon. Not. R. Astron. Soc. 2013, 433, 2884–2892. [Google Scholar] [CrossRef] [Green Version]
- Prialnik, D.; Kovetz, A. An extended Grid of Multicycle Nova Evolution Models. Astrophys. J. 1995, 445, 789. [Google Scholar] [CrossRef]
- Starrfield, S.; Timmes, F.X.; Iliadis, C.; Hix, W.R.; Arnett, W.D.; Meakin, C.; Sparks, W.M. Hydrodynamic Studies of the Evolution of Recurrent, Symbiotic and Dwarf Novae: The White Dwarf Components are Growing in Mass. Balt. Astron. 2012, 21, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Yaron, O.; Prialnik, D.; Shara, M.M.; Kovetz, A. An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts. Astrophys. J. 2005, 623, 398–410. [Google Scholar] [CrossRef]
- Iben, I.; Tutukov, A.V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 1984, 54, 335–372. [Google Scholar] [CrossRef]
- Webbink, R.F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 1984, 277, 355–360. [Google Scholar] [CrossRef]
- Livio, M.; Pringle, J.E. On Identifying the Progenitors of Type Ia Supernovae. Astrophys. J. Lett. 2011, 740, L18. [Google Scholar] [CrossRef] [Green Version]
- Townsley, D.; Gänsicke, B. Cataclysmic Variable Primary Effective Temperatures: Constraints on Binary Angular Momentum Loss. Astrophys. J. 2009, 693, 1007–1021. [Google Scholar] [CrossRef]
- Pala, A.F.; Gänsicke, B.T.; Townsley, D.; Boyd, D.; Cook, M.J.; de Martino, D.; Godon, P.; Haislip, J.B.; Henden, A.A.; Hubeny, I.; et al. Effective temperatures of cataclysmic-variable white dwarfs as a probe of their evolution. Mon. Not. R. Astron. Soc. 2017, 466, 2855–2878. [Google Scholar] [CrossRef]
- Pala, A.F.; Gänsicke, B.T.; Belloni, D.; Parsons, S.G.; Marsh, T.R.; Schreiber, M.R.; Breedt, E.; Knigge, C.; Sion, E.M.; Szkody, P.; et al. Constraining the Evolution of Cataclysmic Variables via the Masses and Accretion Rates of their Underlying White Dwarfs. Mon. Not. R. Astron. Soc. 2021; in press. [Google Scholar] [CrossRef]
- McAllister, M.; Littlefair, S.P.; Parsons, S.G.; Dhillon, V.; Marsh, T.R.; Gänsicke, B.T.; Breedt, E.; Copperwheat, C.; Green, M.J.; Knigge, C.; et al. The evolutionary status of Cataclysmic Variables: Eclipse modelling of 15 systems. Mon. Not. R. Astron. Soc. 2019, 486, 5535–5551. [Google Scholar] [CrossRef] [Green Version]
- de Martino, D.; Bernardini, A.; Mukai, K.; Falangaf, M.; Masetti, H. Hard X-ray Cataclysmic Variables. Adv. Space Res. 2020, 66, 1209–1225. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.W.; Heinke, C.; Mukai, K. Hard X-ray view on intermediate polars in the Gaia era. Mon. Not. R. Astron. Soc. 2020, 498, 3857. [Google Scholar]
- Suleimanov, V.F.; Doroshenko, V.; Werner, K. Measuring the masses of magnetic white dwarfs: A NuSTAR legacy survey. Mon. Not. R. Astron. Soc. 2019, 482, 3622. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yu, Z.; Li, X. The Fe Line Flux Ratio as a Diagnostic of the Maximum Temperature and the White Dwarf Mass of Cataclysmic Variables. Astrophys. J. 2019, 878, 53. [Google Scholar] [CrossRef]
- Di Stefano, R. The Progenitors of Type Ia Supernovae. II. Are they Double-degenerate Binaries? The Symbiotic Channel. Astrophys. J. 2010, 719, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Hachisu, I.; Kato, M.; Nomoto, K. Supersoft X-ray Phase of Single Degenerate Type Ia Supernova Progenitors in Early-type Galaxies. Astrophys. J. Lett. 2010, 724, L212. [Google Scholar]
- Wijnen, T.P.G.; Zorotovic, M.; Schreiber, M.R. White dwarf masses in cataclysmic variables. Astron. Astrophys. 2015, 577, A143. [Google Scholar] [CrossRef]
- Godon, P.; Sion, E.M. White Dwarf Photospheric Abundances in Cataclysmic Variables. II. White Dwarfs with and without a Mask. Astrophys. J. 2022; submitted. [Google Scholar]
- Schreiber, M.R.; Zorotovic, M.; Wijnen, T.P.G. Three in one go: Consequential angular momentum loss can solve major problems of CV evolution. Mon. Not. R. Astron. Soc. 2016, 455, L16. [Google Scholar] [CrossRef]
- Sparks, W.M.; Sion, E.M. Nova-produced Common Envelope: Source of the Nonsolar Abundances and an Additional Frictional Angular Momentum Loss in Cataclysmic Variables. Astrophys. J. 2021, 914, 5. [Google Scholar] [CrossRef]
- Nelemans, G.; Siess, L.; Repetto, S.; Toonen, S.; Phinney, S. The Formation of Cataclysmic Variables: The Influence of Nova Eruptions. Astrophys. J. 2016, 817, 69. [Google Scholar] [CrossRef] [Green Version]
- Zorotovic, M.; Schreiber, M.R. Cataclysmic variable evolution and the white dwarf mass problem: A Review. Adv. Space Res. 2019, 66, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Nauenberg, M. Analytic Approximations to the Mass-Radius Relation and Energy of Zero-Temperature Stars. Astrophys. J. 1972, 175, 417. [Google Scholar] [CrossRef]
- Panei, J.A.; Althaus, L.G.; Benvenuto, O.G. Mass-radius relations for white dwarf stars of different internal compositions. Astron. Astrophys. 2000, 353, 970. [Google Scholar]
- Wood, M.A. Theoretical White Dwarf Luminosity Functions: DA Models. In White Dwarfs, Proceedings of the 9th European Workshop on White Dwarfs, Kiel, Germany, 29 August–1 September 1994; Lecture Notes in Physics; Koester, D., Werner, K., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995; Volume 443, p. 41. [Google Scholar]
- Townsley, D.; Bildsten, L. Measuring White Dwarf Accretion Rates via Their Effective Temperatures. Astrophys. J. 2003, 596, L227–L230. [Google Scholar] [CrossRef]
- Lauffer, G.; Romero, A.D.; Kepler, S.O. New full evolutionary sequences of H- and He-atmosphere massive white dwarf stars using MESA. Mon. Not. R. Astron. Soc. 2018, 480, 1547–1562. [Google Scholar] [CrossRef]
- Garcia-Berro, E.; Ritossa, C.; Iben, J.I. On the Evolution of Stars that Form Electron-Degenerate Cores Processed by Carbon Burning. III. The Inward Propagation of a Carbon-Burning Flame and Other Properties of a 9M⊙ Model Star. Astrophys. J. 1997, 485, 765–784. [Google Scholar] [CrossRef]
- Siess, L. Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars. Astron. Astrophys. 2007, 476, 893–909. [Google Scholar] [CrossRef]
- Denissenkov, P.A.; Herwig, F.; Bildtsen, L.; Paxton, B. MESA Models of Classical Nova Outbursts: The Multicycle Evolution and Effects of Convective Boundary Mixing. Astrophys. J. 2013, 762, 8. [Google Scholar] [CrossRef] [Green Version]
- Livio, M.; Pringle, J.E. The Rotation Rates of White Dwarfs and Pulsars. Astrophys. J. 1998, 503, 339–343. [Google Scholar] [CrossRef]
- Wang, B.; Justham, S.; Liu, Z.-W.; Zhang, J.-J.; Liu, D.-D.; Han, Z. On the evolution of rotating accreting white dwarfs and Type Ia supernovae. Mon. Not. R. Astron. Soc. 2014, 445, 2340–2352. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Popham, R. Angular Momentum of Accreting White Dwarfs: Implications for Millisecond Pulsar Formation. Astrophys. J. 1989, 346, L25. [Google Scholar] [CrossRef]
- Yoon, S.-C.; Langer, N. Helium accreting CO white dwarfs with rotation: Helium novae instead of double detonation. Astron. Astrophys. 2004, 419, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Bailyn, C.; Grindlay, J. Neutron Stars and Millisecond Pulsars from Accretion-induced Collapse in Globular Clusters. Astrophys. J. 1990, 353, 159–167. [Google Scholar] [CrossRef]
- Sion, E.M.; Long, K.S.; Szkody, P.; Huang, M. Hubble Space Telescope Goddard High-Resolution Spectrograph Observation of U Geminorum during Quiescence: Evidence for a Slowly Rotating White Dwarf. Astrophys. J. 1994, 430, L53–L56. [Google Scholar] [CrossRef]
- Sion, E.M.; Huang, M.; Szkody, P.; Cheng, F.-H. Hubble Space Telescope High-Resolution Spectroscopy of the Exposed White Dwarf in the Dwarf Nova VW Hydri in Quiescence: A Rapidly Rotating White Dwarf. Astrophys. J. 1995, 445, L31–L34. [Google Scholar] [CrossRef]
- Sion, E.M. White Dwarfs in Cataclysmic Variables. Publ. Astron. Soc. Pac. 1999, 111, 532–555. [Google Scholar] [CrossRef]
- Lasota, J.-P.; Kuulkers, E.; Charles, P. WZ Sagittae as a DQ Herculis star. Mon. Not. R. Astron. Soc. 1999, 305, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Matthews, O.M.; Speith, R.; Wynn, G.A.; West, R.G. Magnetically moderated outbursts of WZ Sagittae. Mon. Not. R. Astron. Soc. 2007, 375, 105–114. [Google Scholar] [CrossRef]
- Welsh, W.F.; Sion, E.M.; Godon, P.; Gänsicke, B.T.; Knigge, C.; Long, K.S.; Szkody, P. Hubble Space Telescope Observations of Ultraviolet Oscillations in WZ Sagittae During the Decline from Outburst. Astrophys. J. 2003, 599, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Sio, E.M. Accreting White Dwarfs; Institute of Physics Publishing: London, UK, 2022; in preparation. [Google Scholar]
- Gansicke, B.T.; Szkody, P.; de Martino, D.; Beuermann, K.; Long, K.S.; Sion, E.M.; Knigge, C.; Marsh, T.; Hubeny, I. Anomalous Ultraviolet Line Flux Ratios in the Cataclysmic Variables 1RXS J232953.9+062814, CE 315, BZ Ursae Majoris, and EY Cygni, Observed with the Hubble Space Telescope Space Telescope Imaging Spectrograph. Astrophys. J. 2003, 594, 443–448. [Google Scholar] [CrossRef]
- Gänsicke, B.T.; Szkody, P.; Howell, S.B.; Sion, E.M. Hubble Space Telescope STIS Observations of the Accreting White Dwarfs in BW Sculptoris, BC Ursae Majoris, and SW Ursae Majoris. Astrophys. J. 2005, 629, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Long, K.S.; Gillil, R.L. GHRS Observations of the White Dwarf in U Geminorum. Astrophys. J. 1999, 511, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Long, K.S.; Brammer, G.; Froning, C.S. FUSE Spectroscopy of the White Dwarf in U Geminorum. Astrophys. J. 2006, 648, 541. [Google Scholar] [CrossRef] [Green Version]
- Iliadis, C.; Villanova University, Villanova, PA, USA. Private communication, 2018.
- Godon, P.; Sion, E.M. White Dwarf Photospheric Abundances in Cataclysmic Variables. I. SS Aurigae and TU Mensae. Astrophys. J. 2021, 908, 173. [Google Scholar] [CrossRef]
- Hubeny, I. A computer program for calculating non-LTE model stellar atmospheres. Comput. Phys. Commun. 1988, 52, 103–132. [Google Scholar] [CrossRef]
- Hubeny, I.; Lanz, T. Non-LTE Line-blanketed Model Atmospheres of Hot Stars. I. Hybrid Complete Linearization/Accelerated Lambda Iteration Method. Astrophys. J. 1995, 439, 875–904. [Google Scholar] [CrossRef]
- Shafter, A.W. On the Masses of White Dwarfs in Cataclysmic Binaries. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 1983. [Google Scholar]
- Zorotovic, M.; Schreiber, M.R.; Parsons, S.; Gänsicke, B.T.; Hardy, A.; Agurto-Gangas, C.; Gómez-Morán, A.N.; Rebassa-Mansergas, A.; Schwope, A.D. Detached cataclysmic variables are crossing the orbital period gap. Mon. Not. R. Astron. Soc. 2016, 457, 3867–3877. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sion, E.M.; Godon, P. The Accreting White Dwarfs in Cataclysmic Variables. Galaxies 2022, 10, 43. https://doi.org/10.3390/galaxies10020043
Sion EM, Godon P. The Accreting White Dwarfs in Cataclysmic Variables. Galaxies. 2022; 10(2):43. https://doi.org/10.3390/galaxies10020043
Chicago/Turabian StyleSion, Edward M., and Patrick Godon. 2022. "The Accreting White Dwarfs in Cataclysmic Variables" Galaxies 10, no. 2: 43. https://doi.org/10.3390/galaxies10020043
APA StyleSion, E. M., & Godon, P. (2022). The Accreting White Dwarfs in Cataclysmic Variables. Galaxies, 10(2), 43. https://doi.org/10.3390/galaxies10020043