The Structure and Evolution of Stars: Introductory Remarks
Abstract
:1. Introduction
- 1.
- Joyce and Tayar: 1D convection in stellar modelling
- 2.
- Alecian and Deal: Opacities and atomic diffusion
- 3.
- Keszthelyi: Magnetism in high-mass stars
- 4.
- Lecoanet and Edelmann: Multi-D simulations of core convection
- 5.
- Anders and Pedersen: Convective boundary mixing in main-sequence stars
- 6.
- Jiang: Radiation dominated envelopes of massive stars
2. Chapter 1: 1D Convection in Stellar Modelling
3. Chapter 2: Opacities and Atomic Diffusion
4. Chapter 3: Magnetism in High-Mass Stars
5. Chapter 4: Multi-D Simulations of Core Convection
6. Chapter 5: Convective Boundary Mixing in Main-Sequence Stars
7. Chapter 6: Radiation-Dominated Envelopes of Massive Stars
8. Discussion and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BinaMIcS | Binarity and Magnetic Interactions in various classes of Stars |
CBM | Convective Boundary Mixing |
HR | Hertzsprung–Russell |
NLTE | Non-Local Thermodynamic Equilibrium |
MiMeS | Magnetism in Massive Stars |
MLT | Mixing Length Theory |
SLF | Stochastic Low Frequency |
References
- Maeder, A.; Meynet, G. The Evolution of Rotating Stars. Annu. Rev. Astron. Astrophys. 2000, 38, 143–190. [Google Scholar] [CrossRef]
- Maeder, A. Physics, Formation and Evolution of Rotating Stars; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Langer, N. Presupernova Evolution of Massive Single and Binary Stars. Annu. Rev. Astron. Astrophys. 2012, 50, 107–164. [Google Scholar] [CrossRef]
- Espinosa Lara, F.; Rieutord, M. Gravity darkening in rotating stars. Astron. Astrophys. 2011, 533, A43. [Google Scholar] [CrossRef]
- Espinosa Lara, F.; Rieutord, M. Self-consistent 2D models of fast-rotating early-type stars. Astron. Astrophys. 2013, 552, A35. [Google Scholar] [CrossRef]
- Rieutord, M.; Espinosa Lara, F.; Putigny, B. An algorithm for computing the 2D structure of fast rotating stars. J. Comput. Phys. 2016, 318, 277–304. [Google Scholar] [CrossRef]
- Joyce, M.; Tayar, J. A Review of the Mixing Length Theory of Convection in 1D Stellar Modeling. Galaxies 2023, 11, 75. [Google Scholar] [CrossRef]
- Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. Z. Astrophys. 1958, 46, 108. [Google Scholar]
- Arnett, W.D.; Meakin, C.; Viallet, M.; Campbell, S.W.; Lattanzio, J.C.; Mocák, M. Beyond Mixing-length Theory: A Step toward 321D. Astrophys. J. 2015, 809, 30. [Google Scholar] [CrossRef]
- Christensen-Dalsgaard, J. Helioseismology. Rev. Mod. Phys. 2002, 74, 1073–1129. [Google Scholar] [CrossRef]
- Aerts, C.; Christensen-Dalsgaard, J.; Kurtz, D.W. Asteroseismology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Basu, S. Global seismology of the Sun. Living Rev. Sol. Phys. 2016, 13, 2. [Google Scholar] [CrossRef]
- Kurtz, D.W. Asteroseismology Across the Hertzsprung-Russell Diagram. Annu. Rev. Astron. Astrophys. 2022, 60, 31–71. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.G.; Borucki, W.J.; Basri, G.; Batalha, N.M.; Brown, T.M.; Caldwell, D.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; Dunham, E.W.; et al. Kepler Mission Design, Realized Photometric Performance, and Early Science. Astrophys. J. Lett. 2010, 713, L79–L86. [Google Scholar] [CrossRef]
- Chaplin, W.J.; Miglio, A. Asteroseismology of Solar-Type and Red-Giant Stars. Annu. Rev. Astron. Astrophys. 2013, 51, 353–392. [Google Scholar] [CrossRef]
- Hekker, S.; Christensen-Dalsgaard, J. Giant star seismology. Astron. Astrophys. Rev. 2017, 25, 1. [Google Scholar] [CrossRef]
- Silva Aguirre, V.; Lund, M.N.; Antia, H.M.; Ball, W.H.; Basu, S.; Christensen-Dalsgaard, J.; Lebreton, Y.; Reese, D.R.; Verma, K.; Casagrande, L.; et al. Standing on the Shoulders of Dwarfs: The Kepler Asteroseismic LEGACY Sample. II.Radii, Masses, and Ages. Astrophys. J. 2017, 835, 173. [Google Scholar] [CrossRef]
- García, R.A.; Ballot, J. Asteroseismology of solar-type stars. Living Rev. Sol. Phys. 2019, 16, 4. [Google Scholar] [CrossRef]
- Bowman, D.M. Asteroseismology of high-mass stars: New insights of stellar interiors with space telescopes. Front. Astron. Space Sci. 2020, 7, 70. [Google Scholar] [CrossRef]
- Eggenberger, P.; Montalbán, J.; Miglio, A. Angular momentum transport in stellar interiors constrained by rotational splittings of mixed modes in red giants. Astron. Astrophys. 2012, 544, L4. [Google Scholar] [CrossRef]
- Eggenberger, P.; Lagarde, N.; Miglio, A.; Montalbán, J.; Ekström, S.; Georgy, C.; Meynet, G.; Salmon, S.; Ceillier, T.; García, R.A.; et al. Constraining the efficiency of angular momentum transport with asteroseismology of red giants: The effect of stellar mass. Astron. Astrophys. 2017, 599, A18. [Google Scholar] [CrossRef]
- Eggenberger, P.; Deheuvels, S.; Miglio, A.; Ekström, S.; Georgy, C.; Meynet, G.; Lagarde, N.; Salmon, S.; Buldgen, G.; Montalbán, J.; et al. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. I. Efficiency of transport during the subgiant phase. Astron. Astrophys. 2019, 621, A66. [Google Scholar] [CrossRef]
- Eggenberger, P.; den Hartogh, J.W.; Buldgen, G.; Meynet, G.; Salmon, S.J.A.J.; Deheuvels, S. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. II. Test of a revised prescription for transport by the Tayler instability. Astron. Astrophys. 2019, 631, L6. [Google Scholar] [CrossRef]
- Li, G.; Van Reeth, T.; Bedding, T.R.; Murphy, S.J.; Antoci, V.; Ouazzani, R.M.; Barbara, N.H. Gravity-mode period spacings and near-core rotation rates of 611 ɤ Doradus stars with Kepler. Mon. Not. R. Astron. Soc. 2020, 491, 3586–3605. [Google Scholar] [CrossRef]
- Aerts, C. Probing the interior physics of stars through asteroseismology. Rev. Mod. Phys. 2021, 93, 015001. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Aerts, C.; Pápics, P.I.; Michielsen, M.; Gebruers, S.; Rogers, T.M.; Molenberghs, G.; Burssens, S.; Garcia, S.; Bowman, D.M. Internal mixing of rotating stars inferred from dipole gravity modes. Nat. Astron. 2021, 5, 715–722. [Google Scholar] [CrossRef]
- Pedersen, M.G. Internal Rotation and Inclinations of Slowly Pulsating B Stars: Evidence of Interior Angular Momentum Transport. Astrophys. J. 2022, 940, 49. [Google Scholar] [CrossRef]
- Mombarg, J.S.G. Calibrating angular momentum transport in intermediate-mass stars from gravity-mode asteroseismology. arXiv 2023, arXiv:2306.17211. [Google Scholar] [CrossRef]
- Tayar, J.; Somers, G.; Pinsonneault, M.H.; Stello, D.; Mints, A.; Johnson, J.A.; Zamora, O.; García-Hernández, D.A.; Maraston, C.; Serenelli, A.; et al. The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era. Astrophys. J. 2017, 840, 17. [Google Scholar] [CrossRef]
- Joyce, M.; Chaboyer, B. Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models. Astrophys. J. 2018, 856, 10. [Google Scholar] [CrossRef]
- Joyce, M.; Chaboyer, B. Classically and Asteroseismically Constrained 1D Stellar Evolution Models of α Centauri A and B Using Empirical Mixing Length Calibrations. Astrophys. J. 2018, 864, 99. [Google Scholar] [CrossRef]
- Moravveji, E.; Aerts, C.; Pápics, P.I.; Triana, S.A.; Vandoren, B. Tight asteroseismic constraints on core overshooting and diffusive mixing in the slowly rotating pulsating B8.3V star KIC 10526294. Astron. Astrophys. 2015, 580, A27. [Google Scholar] [CrossRef]
- Moravveji, E.; Townsend, R.H.D.; Aerts, C.; Mathis, S. Sub-inertial Gravity Modes in the B8V Star KIC 7760680 Reveal Moderate Core Overshooting and Low Vertical Diffusive Mixing. Astrophys. J. 2016, 823, 130. [Google Scholar] [CrossRef]
- Deheuvels, S.; Brandão, I.; Silva Aguirre, V.; Ballot, J.; Michel, E.; Cunha, M.S.; Lebreton, Y.; Appourchaux, T. Measuring the extent of convective cores in low-mass stars using Kepler data: Toward a calibration of core overshooting. Astron. Astrophys. 2016, 589, A93. [Google Scholar] [CrossRef]
- Bellinger, E.P.; Basu, S.; Hekker, S.; Christensen-Dalsgaard, J. Testing Stellar Evolution with Asteroseismic Inversions of a Main-sequence Star Harboring a Small Convective Core. Astrophys. J. 2019, 885, 143. [Google Scholar] [CrossRef]
- Mombarg, J.S.G.; Van Reeth, T.; Pedersen, M.G.; Molenberghs, G.; Bowman, D.M.; Johnston, C.; Tkachenko, A.; Aerts, C. Asteroseismic masses, ages, and core properties of ɤ Doradus stars using gravito-inertial dipole modes and spectroscopy. Mon. Not. R. Astron. Soc. 2019, 485, 3248–3263. [Google Scholar] [CrossRef]
- Mombarg, J.S.G.; Dotter, A.; Van Reeth, T.; Tkachenko, A.; Gebruers, S.; Aerts, C. Asteroseismic Modeling of Gravity Modes in Slowly Rotating A/F Stars with Radiative Levitation. Astrophys. J. 2020, 895, 51. [Google Scholar] [CrossRef]
- Mombarg, J.S.G.; Van Reeth, T.; Aerts, C. Constraining stellar evolution theory with asteroseismology of ɤ Doradus stars using deep learning. Stellar masses, ages, and core-boundary mixing. Astron. Astrophys. 2021, 650, A58. [Google Scholar] [CrossRef]
- Michielsen, M.; Aerts, C.; Bowman, D.M. Probing the temperature gradient in the core boundary layer of stars with gravito-inertial modes. The case of KIC 7760680. Astron. Astrophys. 2021, 650, A175. [Google Scholar] [CrossRef]
- Pedersen, M.G. On the Diversity of Mixing and Helium Core Masses of B-type Dwarfs from Gravity-mode Asteroseismology. Astrophys. J. 2022, 930, 94. [Google Scholar] [CrossRef]
- Dupret, M.A.; Thoul, A.; Scuflaire, R.; Daszyńska-Daszkiewicz, J.; Aerts, C.; Bourge, P.O.; Waelkens, C.; Noels, A. Asteroseismology of the β Cep star HD 129929. II. Seismic constraints on core overshooting, internal rotation and stellar parameters. Astron. Astrophys. 2004, 415, 251–257. [Google Scholar] [CrossRef]
- Mazumdar, A.; Briquet, M.; Desmet, M.; Aerts, C. An asteroseismic study of the β Cephei star β Canis Majoris. Astron. Astrophys. 2006, 459, 589–596. [Google Scholar] [CrossRef]
- Briquet, M.; Morel, T.; Thoul, A.; Scuflaire, R.; Miglio, A.; Montalbán, J.; Dupret, M.A.; Aerts, C. An asteroseismic study of the β Cephei star θ Ophiuchi: Constraints on global stellar parameters and core overshooting. Mon. Not. R. Astron. Soc. 2007, 381, 1482–1488. [Google Scholar] [CrossRef]
- Briquet, M.; Neiner, C.; Aerts, C.; Morel, T.; Mathis, S.; Reese, D.R.; Lehmann, H.; Costero, R.; Echevarria, J.; Handler, G.; et al. Multisite spectroscopic seismic study of the β Cep star V2052 Ophiuchi: Inhibition of mixing by its magnetic field. Mon. Not. R. Astron. Soc. 2012, 427, 483–493. [Google Scholar] [CrossRef]
- Salmon, S.J.A.J.; Eggenberger, P.; Montalbán, J.; Miglio, A.; Noels, A.; Buldgen, G.; Moyano, F.; Meynet, G. Asteroseismology of β Cephei stars: The stellar inferences tested in hare and hound exercises. Astron. Astrophys. 2022, 659, A142. [Google Scholar] [CrossRef]
- Salmon, S.J.A.J.; Moyano, F.D.; Eggenberger, P.; Haemmerlé, L.; Buldgen, G. Backtracing the internal rotation history of the β Cep star HD 129929. Astron. Astrophys. 2022, 664, L1. [Google Scholar] [CrossRef]
- Burssens, S.; Bowman, D.M.; Michielsen, M.; Simón-Díaz, S.; Aerts, C.; Vanlaer, V.; Banyard, G.; Nardetto, N.; Townsend, R.H.D.; Handler, G.; et al. A calibration point for stellar evolution from massive star asteroseismology. Nat. Astron. 2023, 7, 913–930. [Google Scholar] [CrossRef]
- Dotter, A.; Conroy, C.; Cargile, P.; Asplund, M. The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging. Astrophys. J. 2017, 840, 99. [Google Scholar] [CrossRef]
- Semenova, E.; Bergemann, M.; Deal, M.; Serenelli, A.; Hansen, C.J.; Gallagher, A.J.; Bayo, A.; Bensby, T.; Bragaglia, A.; Carraro, G.; et al. The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations. Astron. Astrophys. 2020, 643, A164. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rogers, F.J. Radiative Opacities for Carbon- and Oxygen-rich Mixtures. Astrophys. J. 1993, 412, 752. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rogers, F.J. Updated Opal Opacities. Astrophys. J. 1996, 464, 943. [Google Scholar] [CrossRef]
- Seaton, M.J.; Yan, Y.; Mihalas, D.; Pradhan, A.K. Opacities for Stellar Envelopes. Mon. Not. R. Astron. Soc. 1994, 266, 805. [Google Scholar] [CrossRef]
- Seaton, M.J. Opacity Project data on CD for mean opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 2005, 362, L1–L3. [Google Scholar] [CrossRef]
- Sander, A.A.C.; Vink, J.S.; Hamann, W.R. Driving classical Wolf-Rayet winds: A Γ- and Z-dependent mass-loss. Mon. Not. R. Astron. Soc. 2020, 491, 4406–4425. [Google Scholar] [CrossRef]
- Poniatowski, L.G.; Kee, N.D.; Sundqvist, J.O.; Driessen, F.A.; Moens, N.; Owocki, S.P.; Gayley, K.G.; Decin, L.; de Koter, A.; Sana, H. Method and new tabulations for flux-weighted line opacity and radiation line force in supersonic media. Astron. Astrophys. 2022, 667, A113. [Google Scholar] [CrossRef]
- Pamyatnykh, A.A. Pulsational Instability Domains in the Upper Main Sequence. Acta Astron. 1999, 49, 119–148. [Google Scholar]
- Walczak, P.; Fontes, C.J.; Colgan, J.; Kilcrease, D.P.; Guzik, J.A. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities. Astron. Astrophys. 2015, 580, L9. [Google Scholar] [CrossRef]
- Paxton, B.; Marchant, P.; Schwab, J.; Bauer, E.B.; Bildsten, L.; Cantiello, M.; Dessart, L.; Farmer, R.; Hu, H.; Langer, N.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions. Astrophys. J. Supp. 2015, 220, 15. [Google Scholar] [CrossRef]
- Moravveji, E. The impact of enhanced iron opacity on massive star pulsations: Updated instability strips. Mon. Not. R. Astron. Soc. 2016, 455, L67–L71. [Google Scholar] [CrossRef]
- Turcotte, S.; Richer, J.; Michaud, G.; Christensen-Dalsgaard, J. The effect of diffusion on pulsations of stars on the upper main sequence—δ Scuti and metallic A stars. Astron. Astrophys. 2000, 360, 603–616. [Google Scholar]
- Mombarg, J.S.G.; Dotter, A.; Rieutord, M.; Michielsen, M.; Van Reeth, T.; Aerts, C. Predictions for Gravity-mode Periods and Surface Abundances in Intermediate-mass Dwarfs from Shear Mixing and Radiative Levitation. Astrophys. J. 2022, 925, 154. [Google Scholar] [CrossRef]
- Alecian, G.; Deal, M. Opacities and Atomic Diffusion. Galaxies 2023, 11, 62. [Google Scholar] [CrossRef]
- Borra, E.F.; Landstreet, J.D.; Mestel, L. Magnetic stars. Annu. Rev. Astron. Astrophys. 1982, 20, 191–220. [Google Scholar] [CrossRef]
- Donati, J.F.; Landstreet, J.D. Magnetic Fields of Nondegenerate Stars. Annu. Rev. Astron. Astrophys. 2009, 47, 333–370. [Google Scholar] [CrossRef]
- Kochukhov, O. Magnetic fields of M dwarfs. Astron. Astrophys. Rev. 2021, 29, 1. [Google Scholar] [CrossRef]
- Aerts, C.; Mathis, S.; Rogers, T.M. Angular Momentum Transport in Stellar Interiors. Annu. Rev. Astron. Astrophys. 2019, 57, 35–78. [Google Scholar] [CrossRef]
- Skumanich, A. Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion. Astrophys. J. 1972, 171, 565. [Google Scholar] [CrossRef]
- Barnes, S.A. Ages for Illustrative Field Stars Using Gyrochronology: Viability, Limitations, and Errors. Astrophys. J. 2007, 669, 1167–1189. [Google Scholar] [CrossRef]
- Fuller, J.; Cantiello, M.; Stello, D.; Garcia, R.A.; Bildsten, L. Asteroseismology can reveal strong internal magnetic fields in red giant stars. Science 2015, 350, 423–426. [Google Scholar] [CrossRef]
- Bugnet, L.; Prat, V.; Mathis, S.; Astoul, A.; Augustson, K.; García, R.A.; Mathur, S.; Amard, L.; Neiner, C. Magnetic signatures on mixed-mode frequencies. I. An axisymmetric fossil field inside the core of red giants. Astron. Astrophys. 2021, 650, A53. [Google Scholar] [CrossRef]
- Bugnet, L. Magnetic signatures on mixed-mode frequencies. II. Period spacings as a probe of the internal magnetism of red giants. Astron. Astrophys. 2022, 667, A68. [Google Scholar] [CrossRef]
- Li, G.; Deheuvels, S.; Ballot, J.; Lignières, F. Magnetic fields of 30 to 100 kG in the cores of red giant stars. Nature 2022, 610, 43–46. [Google Scholar] [CrossRef]
- Wade, G.A.; Neiner, C.; Alecian, E.; Grunhut, J.H.; Petit, V.; de Batz, B.; Bohlender, D.A.; Cohen, D.H.; Henrichs, H.F.; Kochukhov, O.; et al. The MiMeS survey of magnetism in massive stars: Introduction and overview. Mon. Not. R. Astron. Soc. 2016, 456, 2–22. [Google Scholar] [CrossRef]
- Alecian, E.; Neiner, C.; Wade, G.A.; Mathis, S.; Bohlender, D.; Cébron, D.; Folsom, C.; Grunhut, J.; Le Bouquin, J.B.; Petit, V.; et al. The BinaMIcS project: Understanding the origin of magnetic fields in massive stars through close binary systems. In New Windows on Massive Stars, Proceedings of the IAU Symposium, Geneva, Switzerland, 23–27 June 2014; Meynet, G., Georgy, C., Groh, J., Stee, P., Eds.; Cambridge University Press: Cambridge, UK, 2015; Volume 307, pp. 330–335. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Ohlmann, S.T.; Podsiadlowski, P.; Röpke, F.K.; Balbus, S.A.; Pakmor, R.; Springel, V. Stellar mergers as the origin of magnetic massive stars. Nature 2019, 574, 211–214. [Google Scholar] [CrossRef]
- Keszthelyi, Z.; Meynet, G.; Georgy, C.; Wade, G.A.; Petit, V.; David-Uraz, A. The effects of surface fossil magnetic fields on massive star evolution: I. Magnetic field evolution, mass-loss quenching, and magnetic braking. Mon. Not. R. Astron. Soc. 2019, 485, 5843–5860. [Google Scholar] [CrossRef]
- Keszthelyi, Z.; Meynet, G.; Shultz, M.E.; David-Uraz, A.; ud-Doula, A.; Townsend, R.H.D.; Wade, G.A.; Georgy, C.; Petit, V.; Owocki, S.P. The effects of surface fossil magnetic fields on massive star evolution—II. Implementation of magnetic braking in MESA and implications for the evolution of surface rotation in OB stars. Mon. Not. R. Astron. Soc. 2020, 493, 518–535. [Google Scholar] [CrossRef]
- Keszthelyi, Z.; Meynet, G.; Martins, F.; de Koter, A.; David-Uraz, A. The effects of surface fossil magnetic fields on massive star evolution—III. The case of τ Sco. Mon. Not. R. Astron. Soc. 2021, 504, 2474–2492. [Google Scholar] [CrossRef]
- Buysschaert, B.; Aerts, C.; Bowman, D.M.; Johnston, C.; Van Reeth, T.; Pedersen, M.G.; Mathis, S.; Neiner, C. Forward seismic modeling of the pulsating magnetic B-type star HD 43317. Astron. Astrophys. 2018, 616, A148. [Google Scholar] [CrossRef]
- Lecoanet, D.; Bowman, D.M.; Van Reeth, T. Asteroseismic inference of the near-core magnetic field strength in the main-sequence B star HD 43317. Mon. Not. R. Astron. Soc. 2022, 512, L16–L20. [Google Scholar] [CrossRef]
- Pápics, P.I.; Briquet, M.; Baglin, A.; Poretti, E.; Aerts, C.; Degroote, P.; Tkachenko, A.; Morel, T.; Zima, W.; Niemczura, E.; et al. Gravito-inertial and pressure modes detected in the B3 IV CoRoT target HD 43317. Astron. Astrophys. 2012, 542, A55. [Google Scholar] [CrossRef]
- Briquet, M.; Neiner, C.; Leroy, B.; Pápics, P.I.; MiMeS Collaboration. Discovery of a magnetic field in the CoRoT hybrid B-type pulsator HD 43317. Astron. Astrophys. 2013, 557, L16. [Google Scholar] [CrossRef]
- Buysschaert, B.; Neiner, C.; Briquet, M.; Aerts, C. Magnetic characterization of the SPB/β Cep hybrid pulsator HD 43317. Astron. Astrophys. 2017, 605, A104. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef]
- Keszthelyi, Z. Magnetism in High-Mass Stars. Galaxies 2023, 11, 40. [Google Scholar] [CrossRef]
- Freytag, B.; Ludwig, H.G.; Steffen, M. Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun. Astron. Astrophys. 1996, 313, 497–516. [Google Scholar]
- Herwig, F. The evolution of AGB stars with convective overshoot. Astron. Astrophys. 2000, 360, 952–968. [Google Scholar]
- Scott, L.J.A.; Hirschi, R.; Georgy, C.; Arnett, W.D.; Meakin, C.; Kaiser, E.A.; Ekström, S.; Yusof, N. Convective core entrainment in 1D main-sequence stellar models. Mon. Not. R. Astron. Soc. 2021, 503, 4208–4220. [Google Scholar] [CrossRef]
- Herwig, F.; Woodward, P.R.; Mao, H.; Thompson, W.R.; Denissenkov, P.; Lau, J.; Blouin, S.; Andrassy, R.; Paul, A. 3D hydrodynamic simulations of massive main-sequence stars. I. Dynamics and mixing of convection and internal gravity waves. Mon. Not. R. Astron. Soc. 2023, 525, 1601–1629. [Google Scholar] [CrossRef]
- Andrassy, R.; Higl, J.; Mao, H.; Mocák, M.; Vlaykov, D.G.; Arnett, W.D.; Baraffe, I.; Campbell, S.W.; Constantino, T.; Edelmann, P.V.F.; et al. Dynamics in a stellar convective layer and at its boundary: Comparison of five 3D hydrodynamics codes. Astron. Astrophys. 2022, 659, A193. [Google Scholar] [CrossRef]
- Lecoanet, D.; Edelmann, P.V.F. Multidimensional Simulations of Core Convection. Galaxies 2023, 11, 89. [Google Scholar] [CrossRef]
- Bowman, D.M.; Aerts, C.; Johnston, C.; Pedersen, M.G.; Rogers, T.M.; Edelmann, P.V.F.; Simón-Díaz, S.; Van Reeth, T.; Buysschaert, B.; Tkachenko, A.; et al. Photometric detection of internal gravity waves in upper main-sequence stars. I. Methodology and application to CoRoT targets. Astron. Astrophys. 2019, 621, A135. [Google Scholar] [CrossRef]
- Bowman, D.M.; Burssens, S.; Pedersen, M.G.; Johnston, C.; Aerts, C.; Buysschaert, B.; Michielsen, M.; Tkachenko, A.; Rogers, T.M.; Edelmann, P.V.F.; et al. Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat. Astron. 2019, 3, 760–765. [Google Scholar] [CrossRef]
- Bowman, D.M.; Burssens, S.; Simón-Díaz, S.; Edelmann, P.V.F.; Rogers, T.M.; Horst, L.; Röpke, F.K.; Aerts, C. Photometric detection of internal gravity waves in upper main-sequence stars. II. Combined TESS photometry and high-resolution spectroscopy. Astron. Astrophys. 2020, 640, A36. [Google Scholar] [CrossRef]
- Bowman, D.M.; Dorn-Wallenstein, T.Z. Photometric detection of internal gravity waves in upper main-sequence stars. III. Comparison of amplitude spectrum fitting and Gaussian process regression using CELERITE2. Astron. Astrophys. 2022, 668, A134. [Google Scholar] [CrossRef]
- Rogers, T.M.; Lin, D.N.C.; McElwaine, J.N.; Lau, H.H.B. Internal Gravity Waves in Massive Stars: Angular Momentum Transport. Astrophys. J. 2013, 772, 21. [Google Scholar] [CrossRef]
- Rogers, T.M. On the Differential Rotation of Massive Main-sequence Stars. Astrophys. J. Lett. 2015, 815, L30. [Google Scholar] [CrossRef]
- Rogers, T.M.; McElwaine, J.N. On the Chemical Mixing Induced by Internal Gravity Waves. Astrophys. J. Lett. 2017, 848, L1. [Google Scholar] [CrossRef]
- Krtička, J.; Feldmeier, A. Light variations due to the line-driven wind instability and wind blanketing in O stars. Astron. Astrophys. 2018, 617, A121. [Google Scholar] [CrossRef]
- Krtička, J.; Feldmeier, A. Stochastic light variations in hot stars from wind instability: Finding photometric signatures and testing against the TESS data. Astron. Astrophys. 2021, 648, A79. [Google Scholar] [CrossRef]
- Edelmann, P.V.F.; Ratnasingam, R.P.; Pedersen, M.G.; Bowman, D.M.; Prat, V.; Rogers, T.M. Three-dimensional Simulations of Massive Stars. I. Wave Generation and Propagation. Astrophys. J. 2019, 876, 4. [Google Scholar] [CrossRef]
- Cantiello, M.; Lecoanet, D.; Jermyn, A.S.; Grassitelli, L. On the Origin of Stochastic, Low-Frequency Photometric Variability in Massive Stars. Astrophys. J. 2021, 915, 112. [Google Scholar] [CrossRef]
- Schultz, W.C.; Bildsten, L.; Jiang, Y.F. Stochastic Low-frequency Variability in Three-dimensional Radiation Hydrodynamical Models of Massive Star Envelopes. Astrophys. J. Lett. 2022, 924, L11. [Google Scholar] [CrossRef]
- Thompson, W.; Herwig, F.; Woodward, P.R.; Mao, H.; Denissenkov, P.; Bowman, D.M.; Blouin, S. 3D hydrodynamic simulations of massive main-sequence stars II. Convective excitation and spectra of internal gravity waves. arXiv 2023, arXiv:2303.06125. [Google Scholar]
- Kaiser, E.A.; Hirschi, R.; Arnett, W.D.; Georgy, C.; Scott, L.J.A.; Cristini, A. Relative importance of convective uncertainties in massive stars. Mon. Not. R. Astron. Soc. 2020, 496, 1967–1989. [Google Scholar] [CrossRef]
- Zahn, J.P. Convective penetration in stellar interiors. Astron. Astrophys. 1991, 252, 179–188. [Google Scholar]
- Augustson, K.C.; Mathis, S. A Model of Rotating Convection in Stellar and Planetary Interiors. I. Convective Penetration. Astrophys. J. 2019, 874, 83. [Google Scholar] [CrossRef]
- Anders, E.H.; Jermyn, A.S.; Lecoanet, D.; Brown, B.P. Stellar Convective Penetration: Parameterized Theory and Dynamical Simulations. Astrophys. J. 2022, 926, 169. [Google Scholar] [CrossRef]
- Jermyn, A.S.; Anders, E.H.; Lecoanet, D.; Cantiello, M. Convective Penetration in Early-type Stars. Astrophys. J. 2022, 929, 182. [Google Scholar] [CrossRef]
- Claret, A.; Torres, G. The dependence of convective core overshooting on stellar mass. Astron. Astrophys. 2016, 592, A15. [Google Scholar] [CrossRef]
- Martinet, S.; Meynet, G.; Ekström, S.; Simón-Díaz, S.; Holgado, G.; Castro, N.; Georgy, C.; Eggenberger, P.; Buldgen, G.; Salmon, S.; et al. Convective core sizes in rotating massive stars. I. Constraints from solar metallicity OB field stars. Astron. Astrophys. 2021, 648, A126. [Google Scholar] [CrossRef]
- Johnston, C. One size does not fit all: Evidence for a range of mixing efficiencies in stellar evolution calculations. Astron. Astrophys. 2021, 655, A29. [Google Scholar] [CrossRef]
- Anders, E.H.; Pedersen, M.G. Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints. Galaxies 2023, 11, 56. [Google Scholar] [CrossRef]
- Gräfener, G.; Owocki, S.P.; Vink, J.S. Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables. Astron. Astrophys. 2012, 538, A40. [Google Scholar] [CrossRef]
- Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Supp. 2011, 192, 3. [Google Scholar] [CrossRef]
- Paxton, B.; Cantiello, M.; Arras, P.; Bildsten, L.; Brown, E.F.; Dotter, A.; Mankovich, C.; Montgomery, M.H.; Stello, D.; Timmes, F.X.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars. Astrophys. J. Supp. 2013, 208, 4. [Google Scholar] [CrossRef]
- Paxton, B.; Schwab, J.; Bauer, E.B.; Bildsten, L.; Blinnikov, S.; Duffell, P.; Farmer, R.; Goldberg, J.A.; Marchant, P.; Sorokina, E.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions. Astrophys. J. Supp. 2018, 234, 34. [Google Scholar] [CrossRef]
- Paxton, B.; Smolec, R.; Schwab, J.; Gautschy, A.; Bildsten, L.; Cantiello, M.; Dotter, A.; Farmer, R.; Goldberg, J.A.; Jermyn, A.S.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. Astrophys. J. Supp. 2019, 243, 10. [Google Scholar] [CrossRef]
- Jermyn, A.S.; Bauer, E.B.; Schwab, J.; Farmer, R.; Ball, W.H.; Bellinger, E.P.; Dotter, A.; Joyce, M.; Marchant, P.; Mombarg, J.S.G.; et al. Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure. Astrophys. J. Supp. 2023, 265, 15. [Google Scholar] [CrossRef]
- Shaviv, N.J. The Porous Atmosphere of η Carinae. Astrophys. J. Lett. 2000, 532, L137–L140. [Google Scholar] [CrossRef]
- Cantiello, M.; Langer, N.; Brott, I.; de Koter, A.; Shore, S.N.; Vink, J.S.; Voegler, A.; Lennon, D.J.; Yoon, S.C. Sub-surface convection zones in hot massive stars and their observable consequences. Astron. Astrophys. 2009, 499, 279–290. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Cantiello, M.; Bildsten, L.; Quataert, E.; Blaes, O. Local Radiation Hydrodynamic Simulations of Massive Star Envelopes at the Iron Opacity Peak. Astrophys. J. 2015, 813, 74. [Google Scholar] [CrossRef]
- Vink, J.S.; Muijres, L.E.; Anthonisse, B.; de Koter, A.; Gräfener, G.; Langer, N. Wind modelling of very massive stars up to 300 solar masses. Astron. Astrophys. 2011, 531, A132. [Google Scholar] [CrossRef]
- Gräfener, G.; Owocki, S.P.; Grassitelli, L.; Langer, N. On the optically thick winds of Wolf-Rayet stars. Astron. Astrophys. 2017, 608, A34. [Google Scholar] [CrossRef]
- Moens, N.; Poniatowski, L.G.; Hennicker, L.; Sundqvist, J.O.; El Mellah, I.; Kee, N.D. First 3D radiation-hydrodynamic simulations of Wolf-Rayet winds. Astron. Astrophys. 2022, 665, A42. [Google Scholar] [CrossRef]
- Jiang, Y.F. Multi-D simulations of core convection. Galaxies, 2023; under review. [Google Scholar]
- Petrovic, J.; Pols, O.; Langer, N. Are luminous and metal-rich Wolf-Rayet stars inflated? Astron. Astrophys. 2006, 450, 219–225. [Google Scholar] [CrossRef]
- Grassitelli, L.; Langer, N.; Mackey, J.; Gräfener, G.; Grin, N.J.; Sander, A.A.C.; Vink, J.S. Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables. Astron. Astrophys. 2021, 647, A99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowman, D.M.; van Saders, J.; Vink, J.S. The Structure and Evolution of Stars: Introductory Remarks. Galaxies 2023, 11, 94. https://doi.org/10.3390/galaxies11050094
Bowman DM, van Saders J, Vink JS. The Structure and Evolution of Stars: Introductory Remarks. Galaxies. 2023; 11(5):94. https://doi.org/10.3390/galaxies11050094
Chicago/Turabian StyleBowman, Dominic M., Jennifer van Saders, and Jorick S. Vink. 2023. "The Structure and Evolution of Stars: Introductory Remarks" Galaxies 11, no. 5: 94. https://doi.org/10.3390/galaxies11050094
APA StyleBowman, D. M., van Saders, J., & Vink, J. S. (2023). The Structure and Evolution of Stars: Introductory Remarks. Galaxies, 11(5), 94. https://doi.org/10.3390/galaxies11050094