Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry
Abstract
:1. Introduction
2. X-ray Polarization from Relativistic Jets
2.1. Theoretical Expectations
2.2. IXPE Observations of High Synchrotron Peak Blazars
2.3. IXPE Observations of Intermediate and Low Synchrotron Peak Blazars
3. X-ray Polarization from Hot Coronae
3.1. Theoretical Expectations
3.2. IXPE Observations of Unobscured Radio-Quiet AGN
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woo, J.H.; Urry, C.M. Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities. Astrophys. J. 2002, 579, 530–544. [Google Scholar] [CrossRef]
- Perna, M.; Lanzuisi, G.; Brusa, M.; Mignoli, M.; Cresci, G. An X-ray/SDSS sample. I. Multi-phase outflow incidence and dependence on AGN luminosity. Astron. Astrophys. 2017, 603, A99. [Google Scholar] [CrossRef]
- Bambi, C.; Sangangelo, A. Handbook of X-ray and GAMMA-ray Astrophysics; Springer: Singapore, 2022. [Google Scholar]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Weisskopf, M.C.; Soffitta, P.; Baldini, L.; Ramsey, B.D.; O’Dell, S.L.; Romani, R.W.; Matt, G.; Deininger, W.D.; Baumgartner, W.H.; Bellazzini, R.; et al. The Imaging X-ray Polarimetry Explorer (IXPE): Pre-Launch. J. Astron. Telesc. Instrum. Syst. 2022, 8, 026002. [Google Scholar] [CrossRef]
- Costa, E.; Soffitta, P.; Bellazzini, R.; Brez, A.; Lumb, N.; Spandre, G. An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 2001, 411, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 2017, 1, 0194. [Google Scholar] [CrossRef]
- Hovatta, T.; Lindfors, E.; Blinov, D.; Pavlidou, V.; Nilsson, K.; Kiehlmann, S.; Angelakis, E.; Fallah Ramazani, V.; Liodakis, I.; Myserlis, I.; et al. Optical polarization of high-energy BL Lacertae objects. Astron. Astrophys. 2016, 596, A78. [Google Scholar] [CrossRef]
- Jones, T.W.; O’Dell, S.L.; Stein, W.A. Physics of Compact Nonthermal Sources. I. Theory of Radiation Processes. Astrophys. J. 1974, 188, 353–368. [Google Scholar] [CrossRef]
- Maraschi, L.; Ghisellini, G.; Celotti, A. A Jet Model for the Gamma-Ray–emitting Blazar 3C 279. Astrophys. J. Lett. 1992, 397, L5. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R. Model for the High-Energy Emission from Blazars. Astrophys. J. 1993, 416, 458. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Begelman, M.C.; Sikora, M. Inverse Compton Scattering of Ambient Radiation by a Cold Relativistic Jet: A Source of Beamed, Polarized X-ray and Optical Observations of X-ray–selected BL Lacertae Objects. Astrophys. J. 1987, 322, 650. [Google Scholar] [CrossRef]
- Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76. [Google Scholar] [CrossRef]
- Aharonian, F.A. TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. New Astron. 2000, 5, 377–395. [Google Scholar] [CrossRef]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Arkharov, A.A.; Axelsson, M.; Bach, U.; et al. The Spectral Energy Distribution of Fermi Bright Blazars. Astrophys. J. 2010, 716, 30–70. [Google Scholar] [CrossRef]
- Haardt, F.; Maraschi, L. A Two-Phase Model for the X-ray Emission from Seyfert Galaxies. Astrophys. J. Lett. 1991, 380, L51. [Google Scholar] [CrossRef]
- Marin, F.; Dovčiak, M.; Kammoun, E.S. Contribution of parsec-scale material on to the polarized X-ray spectrum of type 1 Seyfert galaxies. Mon. Not. R. Astron. Soc. 2018, 478, 950–960. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Wu, X.B.; Han, J.L. Inclinations and Black Hole Masses of Seyfert 1 Galaxies. Astrophys. J. Lett. 2001, 561, L59–L62. [Google Scholar] [CrossRef]
- Singha, M.; Husemann, B.; Urrutia, T.; O’Dea, C.P.; Scharwächter, J.; Gaspari, M.; Combes, F.; Nevin, R.; Terrazas, B.A.; Pérez-Torres, M.; et al. The Close AGN Reference Survey (CARS). Locating the [O III] wing component in luminous local Type 1 AGN. Astron. Astrophys. 2022, 659, A123. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Titarchuk, L.G. Comptonization of X-rays in Plasma Clouds - Typical Radiation Spectra. Astron. Astrophys. 1980, 86, 121. [Google Scholar]
- Di Matteo, T. Magnetic reconnection: Flares and coronal heating in active galactic nuclei. Mon. Not. R. Astron. Soc. 1998, 299, L15–L20. [Google Scholar] [CrossRef]
- Ghisellini, G.; Haardt, F.; Matt, G. Aborted jets and the X-ray emission of radio-quiet AGNs. Astron. Astrophys. 2004, 413, 535–545. [Google Scholar] [CrossRef]
- Markoff, S.; Nowak, M.A.; Wilms, J. Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? Astrophys. J. 2005, 635, 1203–1216. [Google Scholar] [CrossRef]
- Haardt, F.; Matt, G. X-ray polarization in the two-phase model for AGN and X-ray binaries. Mon. Not. R. Astron. Soc. 1993, 261, 346–352. [Google Scholar] [CrossRef]
- Matt, G.; Perola, G.C.; Costa, E.; Piro, L. X-ray polarization of the reprocessed emission from accretion disk in Seyfert galaxies. In Two Topics in X-ray Astronomy, Volume 1: X Ray Binaries. Volume 2: AGN and the X Ray Background; Hunt, J., Battrick, B., Eds.; ESA Special Publication: Paris, France, 1989; Volume 296, pp. 991–993. [Google Scholar]
- Matt, G.; Fabian, A.C.; Ross, R.R. X-ray photoionized accretion discs: UV and X-ray continuum spectra and polarization. Mon. Not. R. Astron. Soc. 1993, 264, 839–852. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Lister, M.L.; Stirling, A.M.; Cawthorne, T.V.; Gear, W.K.; Gómez, J.L.; Stevens, J.A.; Smith, P.S.; Forster, J.R.; et al. Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array. Astron. J. 2005, 130, 1418–1465. [Google Scholar] [CrossRef]
- Kiehlmann, S.; Blinov, D.; Pearson, T.J.; Liodakis, I. Optical EVPA rotations in blazars: Testing a stochastic variability model with RoboPol data. Mon. Not. R. Astron. Soc. 2017, 472, 3589–3604. [Google Scholar] [CrossRef]
- Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Liodakis, I.; Panopoulou, G.V.; Angelakis, E.; Baloković, M.; Hovatta, T.; King, O.G.; et al. RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars. Mon. Not. R. Astron. Soc. 2018, 474, 1296–1306. [Google Scholar] [CrossRef]
- Larionov, V.M.; Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Blinov, D.A.; Hagen-Thorn, V.A.; Konstantinova, T.S.; Kopatskaya, E.N.; Larionova, L.V.; Larionova, E.G.; et al. The Outburst of the Blazar S5 0716+71 in 2011 October: Shock in a Helical Jet. Astrophys. J. 2013, 768, 40. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; D’Arcangelo, F.D.; Smith, P.S.; Williams, G.G.; Larionov, V.M.; Oh, H.; Olmstead, A.R.; Aller, M.F.; Aller, H.D.; et al. The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature 2008, 452, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Lyutikov, M.; Kravchenko, E.V. Polarization swings in blazars. Mon. Not. R. Astron. Soc. 2017, 467, 3876–3886. [Google Scholar] [CrossRef]
- Marscher, A.P. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars. Astrophys. J. 2014, 780, 87. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; Williamson, K.E. Modeling the Time-Dependent Polarization of Blazars. Galaxies 2017, 5, 63. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G. Frequency and Time Dependence of Linear Polarization in Turbulent Jets of Blazars. Galaxies 2021, 9, 27. [Google Scholar] [CrossRef]
- Achterberg, A.; Gallant, Y.A.; Kirk, J.G.; Guthmann, A.W. Particle acceleration by ultrarelativistic shocks: Theory and simulations. Mon. Not. R. Astron. Soc. 2001, 328, 393–408. [Google Scholar] [CrossRef]
- Spitkovsky, A. Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last? Astrophys. J. 2008, 682, L5. [Google Scholar] [CrossRef]
- Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.I.; Hardee, P.E. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. I. Instability of a Static Column. Astrophys. J. 2009, 700, 684–693. [Google Scholar] [CrossRef]
- Alves, E.P.; Zrake, J.; Fiuza, F. Efficient Nonthermal Particle Acceleration by the Kink Instability in Relativistic Jets. Phys. Rev. Lett. 2018, 121, 245101. [Google Scholar] [CrossRef]
- Sironi, L.; Spitkovsky, A. Relativistic Reconnection: An Efficient Source of Non-thermal Particles. Astrophys. J. Lett. 2014, 783, L21. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.; Daughton, W.; Liu, Y.H. Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Phys. Rev. Lett. 2014, 113, 155005. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Guo, F.; Giannios, D. Large-amplitude Blazar Polarization Angle Swing as a Signature of Magnetic Reconnection. Astrophys. J. Lett. 2018, 862, L25. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Giannios, D.; Guo, F.; Thiersen, H.; Böttcher, M.; Lewis, T.; Venters, T. Radiation and Polarization Signatures from Magnetic Reconnection in Relativistic Jets. II. Connection with γ-Rays. Astrophys. J. 2022, 924, 90. [Google Scholar] [CrossRef]
- Tavecchio, F. Probing Magnetic Fields and Acceleration Mechanisms in Blazar Jets with X-ray Polarimetry. Galaxies 2021, 9, 37. [Google Scholar] [CrossRef]
- Di Gesu, L.; Tavecchio, F.; Donnarumma, I.; Marscher, A.; Pesce-Rollins, M.; Landoni, M. Testing particle acceleration models for BL Lac jets with the Imaging X-ray Polarimetry Explorer. Astron. Astrophys. 2022, 662, A83. [Google Scholar] [CrossRef]
- Tavecchio, F.; Landoni, M.; Sironi, L.; Coppi, P. Probing shock acceleration in BL Lac jets through X-ray polarimetry: The time-dependent view. Mon. Not. R. Astron. Soc. 2020, 498, 599–608. [Google Scholar] [CrossRef]
- Tavecchio, F.; Landoni, M.; Sironi, L.; Coppi, P. Probing dissipation mechanisms in BL Lac jets through X-ray polarimetry. Mon. Not. R. Astron. Soc. 2018, 480, 2872–2880. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Y.H.; Daughton, W.; Li, H. Particle Acceleration and Plasma Dynamics during Magnetic Reconnection in the Magnetically Dominated Regime. Astrophys. J. 2015, 806, 167. [Google Scholar] [CrossRef]
- Zhang, H.; Böttcher, M. X-ray and Gamma-Ray Polarization in Leptonic and Hadronic Jet Models of Blazars. Astrophys. J. 2013, 774, 18. [Google Scholar] [CrossRef]
- Peirson, A.L.; Romani, R.W. The Polarization Behavior of Relativistic Synchrotron Self-Compton Jets. Astrophys. J. 2019, 885, 76. [Google Scholar] [CrossRef]
- Liodakis, I.; Marscher, A.P.; Agudo, I.; Berdyugin, A.V.; Bernardos, M.I.; Bonnoli, G.; Borman, G.A.; Casadio, C.; Casanova, V.; Cavazzuti, E.; et al. Polarized blazar X-rays imply particle acceleration in shocks. Nature 2022, 611, 677–681. [Google Scholar] [CrossRef]
- Di Gesu, L.; Donnarumma, I.; Tavecchio, F.; Agudo, I.; Barnounin, T.; Cibrario, N.; Di Lalla, N.; Di Marco, A.; Escudero, J.; Errando, M.; et al. The X-ray Polarization View of Mrk 421 in an Average Flux State as Observed by the Imaging X-ray Polarimetry Explorer. Astrophys. J. Lett. 2022, 938, L7. [Google Scholar] [CrossRef]
- Di Gesu, L.; Marshall, H.L.; Ehlert, S.R.; Kim, D.E.; Donnarumma, I.; Tavecchio, F.; Liodakis, I.; Kiehlmann, S.; Agudo, I.; Jorstad, S.G.; et al. Discovery of X-ray polarization angle rotation in the jet from blazar Mrk 421. Nat. Astron. 2023, 7, 1245–1258. [Google Scholar] [CrossRef]
- Kim, D.E.; Di Gesu, L.; Liodakis, I.; Marscher, A.P.; Jorstad, S.G.; Middei, R.; Marshall, H.L.; Pacciani, L.; Agudo, I.; Tavecchio, F.; et al. Magnetic field properties inside the jet of Mrk 421. Multiwavelength polarimetry, including the Imaging X-ray Polarimetry Explorer. Astron. Astrophys. 2024, 681, A12. [Google Scholar] [CrossRef]
- Errando, M.; Liodakis, I.; Marscher, A.P.; Marshall, H.L.; Middei, R.; Negro, M.; Peirson, A.L.; Perri, M.; Puccetti, S.; Rabinowitz, P.L.; et al. Detection of X-ray Polarization from the Blazar 1ES 1959+650 with the Imaging X-ray Polarimetry Explorer. arXiv 2024, arXiv:2401.04420. [Google Scholar] [CrossRef]
- Middei, R.; Perri, M.; Puccetti, S.; Liodakis, I.; Di Gesu, L.; Marscher, A.P.; Rodriguez Cavero, N.; Tavecchio, F.; Donnarumma, I.; Laurenti, M.; et al. IXPE and Multiwavelength Observations of Blazar PG 1553+113 Reveal an Orphan Optical Polarization Swing. Astrophys. J. Lett. 2023, 953, L28. [Google Scholar] [CrossRef]
- Ehlert, S.R.; Liodakis, I.; Middei, R.; Marscher, A.P.; Tavecchio, F.; Agudo, I.; Kouch, P.M.; Lindfors, E.; Nilsson, K.; Myserlis, I.; et al. X-ray Polarization of the BL Lacertae Type Blazar 1ES 0229+200. Astrophys. J. 2023, 959, 61. [Google Scholar] [CrossRef]
- Kislat, F.; Clark, B.; Beilicke, M.; Krawczynski, H. Analyzing the data from X-ray polarimeters with Stokes parameters. Astroparticle Physics 2015, 68, 45–51, [arXiv:astro-ph.IM/1409.6214]. [Google Scholar] [CrossRef]
- Strohmayer, T.E. X-ray Spectro-polarimetry with Photoelectric Polarimeters. Astrophys. J. 2017, 838, 72. [Google Scholar] [CrossRef]
- Massaro, E.; Perri, M.; Giommi, P.; Nesci, R. Log-parabolic spectra and particle acceleration in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray data set. Astron. Astrophys. 2004, 413, 489–503. [Google Scholar] [CrossRef]
- Peirson, A.L.; Negro, M.; Liodakis, I.; Middei, R.; Kim, D.E.; Marscher, A.P.; Marshall, H.L.; Pacciani, L.; Romani, R.W.; Wu, K.; et al. X-ray Polarization of BL Lacertae in Outburst. Astrophys. J. Lett. 2023, 948, L25. [Google Scholar] [CrossRef]
- Middei, R.; Liodakis, I.; Perri, M.; Puccetti, S.; Cavazzuti, E.; Di Gesu, L.; Ehlert, S.R.; Madejski, G.; Marscher, A.P.; Marshall, H.L.; et al. X-ray Polarization Observations of BL Lacertae. Astrophys. J. Lett. 2023, 942, L10. [Google Scholar] [CrossRef]
- Marshall, H.L.; Liodakis, I.; Marscher, A.P.; Di Lalla, N.; Jorstad, S.G.; Kim, D.E.; Middei, R.; Negro, M.; Omodei, N.; Peirson, A.L.; et al. Observations of Low and Intermediate Spectral Peak Blazars with the Imaging X-ray Polarimetry Explorer. arXiv 2023, arXiv:2310.11510. [Google Scholar] [CrossRef]
- Poutanen, J.; Veledina, A.; Beloborodov, A.M. Polarized X-rays from Windy Accretion in Cygnus X-1. Astrophys. J. Lett. 2023, 949, L10. [Google Scholar] [CrossRef]
- Henri, G.; Pelletier, G. Relativistic Electron-Positron Beam Formation in the Framework of the Two-Flow Model for Active Galactic Nuclei. Astrophys. J. Lett. 1991, 383, L7. [Google Scholar] [CrossRef]
- Henri, G.; Petrucci, P.O. Anisotropic illumination of AGN’s accretion disk by a non thermal source. I. General theory and application to the Newtonian geometry. Astron. Astrophys. 1997, 326, 87–98. [Google Scholar] [CrossRef]
- Martocchia, A.; Matt, G. Iron Kalpha line intensity from accretion discs around rotating black holes. Mon. Not. R. Astron. Soc. 1996, 282, L53–L57. [Google Scholar] [CrossRef]
- Miniutti, G.; Fabian, A.C. A light bending model for the X-ray temporal and spectral properties of accreting black holes. Mon. Not. R. Astron. Soc. 2004, 349, 1435–1448. [Google Scholar] [CrossRef]
- Wilkins, D.R.; Fabian, A.C. Understanding X-ray reflection emissivity profiles in AGN: Locating the X-ray source. Mon. Not. R. Astron. Soc. 2012, 424, 1284–1296. [Google Scholar] [CrossRef]
- Zhang, W.; Dovčiak, M.; Bursa, M. Constraining the Size of the Corona with Fully Relativistic Calculations of Spectra of Extended Coronae. I. The Monte Carlo Radiative Transfer Code. Astrophys. J. 2019, 875, 148. [Google Scholar] [CrossRef]
- Ursini, F.; Matt, G.; Bianchi, S.; Marinucci, A.; Dovčiak, M.; Zhang, W. Prospects for differentiating extended coronal geometries in AGNs with the IXPE mission. Mon. Not. R. Astron. Soc. 2022, 510, 3674–3687. [Google Scholar] [CrossRef]
- Gianolli, V.E.; Kim, D.E.; Bianchi, S.; Agís-González, B.; Madejski, G.; Marin, F.; Marinucci, A.; Matt, G.; Middei, R.; Petrucci, P.O.; et al. Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE. Mon. Not. R. Astron. Soc. 2023, 523, 4468–4476. [Google Scholar] [CrossRef]
- Ingram, A.; Ewing, M.; Marinucci, A.; Tagliacozzo, D.; Rosario, D.J.; Veledina, A.; Kim, D.E.; Marin, F.; Bianchi, S.; Poutanen, J.; et al. The X-ray polarization of the Seyfert 1 galaxy IC 4329A. Mon. Not. R. Astron. Soc. 2023, 525, 5437–5449. [Google Scholar] [CrossRef]
- Tagliacozzo, D.; Marinucci, A.; Ursini, F.; Matt, G.; Bianchi, S.; Baldini, L.; Barnouin, T.; Cavero Rodriguez, N.; De Rosa, A.; Di Gesu, L.; et al. The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry. Mon. Not. R. Astron. Soc. 2023, 525, 4735–4743. [Google Scholar] [CrossRef]
- Marinucci, A.; Muleri, F.; Dovciak, M.; Bianchi, S.; Marin, F.; Matt, G.; Ursini, F.; Middei, R.; Marshall, H.L.; Baldini, L.; et al. Polarization constraints on the X-ray corona in Seyfert Galaxies: MCG-05-23-16. Mon. Not. R. Astron. Soc. 2022, 516, 5907–5913. [Google Scholar] [CrossRef]
- Williams, D.R.A.; McHardy, I.M.; Baldi, R.D.; Beswick, R.J.; Argo, M.K.; Dullo, B.T.; Knapen, J.H.; Brinks, E.; Fenech, D.M.; Mundell, C.G.; et al. Radio jets in NGC 4151: Where eMERLIN meets HST. Mon. Not. R. Astron. Soc. 2017, 472, 3842–3853. [Google Scholar] [CrossRef]
- Harrison, B.; Pedlar, A.; Unger, S.W.; Burgess, P.; Graham, D.A.; Preuss, E. The parsec-scale structure of the radio nucleus of NGC 4151. Mon. Not. R. Astron. Soc. 1986, 218, 775–784. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Roy, A.L.; Colbert, E.J.M.; Wilson, A.S. A Subparsec Radio Jet or Disk in NGC 4151. Astrophys. J. 1998, 496, 196–202. [Google Scholar] [CrossRef]
- Evans, I.N.; Tsvetanov, Z.; Kriss, G.A.; Ford, H.C.; Caganoff, S.; Koratkar, A.P. Hubble Space Telescope Imaging of the Narrow-Line Region of NGC 4151. Astrophys. J. 1993, 417, 82. [Google Scholar] [CrossRef]
- Das, V.; Crenshaw, D.M. Mapping the Kinematics of the Narrow-Line Regions in NGC 4151 and NGC 1068. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 2003; Volume 203, p. 56.01. [Google Scholar]
- Wang, J.; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C.G.; Dumas, G.; Schinnerer, E. A Deep Chandra ACIS Study of NGC 4151. III. The Line Emission and Spectral Analysis of the Ionization Cone. Astrophys. J. 2011, 742, 23. [Google Scholar] [CrossRef]
- Ferruit, P.; Wilson, A.S.; Mulchaey, J. Hubble Space Telescope WFPC2 Imaging of a Sample of Early-Type Seyfert Galaxies. Astrophys. J. Suppl. 2000, 128, 139–169. [Google Scholar] [CrossRef]
- Serafinelli, R.; Marinucci, A.; De Rosa, A.; Bianchi, S.; Middei, R.; Matt, G.; Reeves, J.N.; Braito, V.; Tombesi, F.; Gianolli, V.E.; et al. A remarkably stable accretion disc in the Seyfert galaxy MCG-5-23-16. Mon. Not. R. Astron. Soc. 2023, 526, 3540–3547. [Google Scholar] [CrossRef]
- Unger, S.W.; Lawrence, A.; Wilson, A.S.; Elvis, M.; Wright, A.E. Radio observations of a hard X-ray selected sample of active galaxies. Mon. Not. R. Astron. Soc. 1987, 228, 521–531. [Google Scholar] [CrossRef]
Source | X-ray | Optical & IR a | Radio a | |||
---|---|---|---|---|---|---|
Mrk 501 I 1 | 10 ± 2 | 134 ± 5 | 4 ± 1 | 119 ± 9 | 1.5 ± 0.5 | 152 ± 10 |
Mrk 501 II 1 | 11 ± 2 | 115 ± 4 | 5 ± 1 | 117 ± 3 | – | – |
Mrk 421 I 2 | 15 ± 2 | 35 ± 4 | 2.9 ± 0.5 | 32 ± 5 | 3.4 ± 0.4 | 55 ± 2 |
Mrk 421 II 3 | 10 ± 1 | Rotation | 4.4 ± 0.4 | 140 ± 6 | 2.4 ± 0.1 | 139 ± 8 |
Mrk 421 III 3 | 10 ± 1 | Rotation | 5.4 ± 0.4 | 145 ± 1 | – | – |
Mrk 421 IV 4 | 14 ± 1 | 107 ± 3 | 4.6 ± 1.3 | 206 ± 9 | 1.8 ± 0.1 | 167 ± 4 |
1ES1959+650 I 5 | 8 ± 2 | 123 ± 8 | 4.5 ± 0.2 | 159 ± 1 | – | – |
1ES1959+650 II 5 | <5 | – | 4.7 ± 0.6 | 151 ± 19 | <1.6 | – |
PG1553+113 6 | 10 ± 2 | 86 ± 8 | 4.2 ± 0.5 | Rotation | 2.6 ± 0.7 | 133 ± 7 |
1ES0229+200 7 | 18 ± 3 | 25 ± 5 | 3.2 ± 0.7 | −5 ± 9 | <7 | – |
Source | Photon Index | Flux2–8 keV | Telescopes |
---|---|---|---|
(×10−11 erg s−1 cm−2) | |||
Mrk 501 I 1 | 2.27 ± 0.01 | 10.0 ± 0.5 | IXPE + Swift-XRT+NuSTAR |
Mrk 501 II 1 | 2.05 ± 0.02 | 21.0 ± 0.6 | IXPE + Swift-XRT |
Mrk 421 I 2 | 2.97 ± 0.01 | 8.67 ± 0.03 | IXPE + XMM-Newton+NuSTAR |
Mrk 421 II 3 | 2.32 ± 0.01 a | 15.7 ± 0.1 | Swift-XRT |
Mrk 421 III 3 | 2.13 ± 0.01 a | 30.2 ± 0.2 | Swift-XRT |
Mrk 421 IV 4 | 2.82 ± 0.01 | 22.5 ± 0.4 | IXPE + XMM-Newton |
1ES1959+650 I 5 | 2.50 ± 0.02 | 12.4 ± 0.2 | IXPE + XMM-Newton |
1ES1959+650 II 5 | 2.29 ± 0.01 | 14.7 ± 0.1 | IXPE + XMM-Newton |
PG1553+113 6 | 2.49 ± 0.01 | 2.55 ± 0.03 | IXPE + XMM-Newton |
1ES0229+200 7 | 1.82 ± 0.01 | 0.84 ± – | IXPE + XMM-Newton |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.E.; Di Gesu, L.; Marin, F.; Marscher, A.P.; Matt, G.; Soffitta, P.; Tombesi, F.; Costa, E.; Donnarumma, I. Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry. Galaxies 2024, 12, 20. https://doi.org/10.3390/galaxies12030020
Kim DE, Di Gesu L, Marin F, Marscher AP, Matt G, Soffitta P, Tombesi F, Costa E, Donnarumma I. Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry. Galaxies. 2024; 12(3):20. https://doi.org/10.3390/galaxies12030020
Chicago/Turabian StyleKim, Dawoon E., Laura Di Gesu, Frédéric Marin, Alan P. Marscher, Giorgio Matt, Paolo Soffitta, Francesco Tombesi, Enrico Costa, and Immacolata Donnarumma. 2024. "Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry" Galaxies 12, no. 3: 20. https://doi.org/10.3390/galaxies12030020
APA StyleKim, D. E., Di Gesu, L., Marin, F., Marscher, A. P., Matt, G., Soffitta, P., Tombesi, F., Costa, E., & Donnarumma, I. (2024). Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry. Galaxies, 12(3), 20. https://doi.org/10.3390/galaxies12030020