Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = relativistic jets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 713 KB  
Article
Super-Accreting Active Galactic Nuclei as Neutrino Sources
by Gustavo E. Romero and Pablo Sotomayor
Universe 2025, 11(9), 288; https://doi.org/10.3390/universe11090288 - 25 Aug 2025
Abstract
Active galactic nuclei (AGNs) often exhibit broad-line regions (BLRs), populated by high-velocity clouds in approximately Keplerian orbits around the central supermassive black hole (SMBH) at subparsec scales. During episodes of intense accretion at super-Eddington rates, the accretion disk can launch a powerful, radiation-driven [...] Read more.
Active galactic nuclei (AGNs) often exhibit broad-line regions (BLRs), populated by high-velocity clouds in approximately Keplerian orbits around the central supermassive black hole (SMBH) at subparsec scales. During episodes of intense accretion at super-Eddington rates, the accretion disk can launch a powerful, radiation-driven wind. This wind may overtake the BLR clouds, forming bowshocks around them. Two strong shocks arise: one propagating into the wind, and the other into the cloud. If the shocks are adiabatic, electrons and protons can be efficiently accelerated via a Fermi-type mechanism to relativistic energies. In sufficiently dense winds, the resulting high-energy photons are absorbed and reprocessed within the photosphere, while neutrinos produced in inelastic pp collisions escape. In this paper, we explore the potential of super-accreting AGNs as neutrino sources. We propose a new class of neutrino emitter: an AGN lacking jets and gamma-ray counterparts, but hosting a strong, opaque, disk-driven wind. As a case study, we consider a supermassive black hole with MBH=106M and accretion rates consistent with tidal disruption events (TDEs). We compute the relevant cooling processes for the relativistic particles under such conditions and show that super-Eddington accreting SMBHs can produce detectable neutrino fluxes with only weak electromagnetic counterparts. The neutrino flux may be observable by the next-generation IceCube Observatory (IceCube-Gen2) in nearby galaxies with a high BLR cloud filling factor. For galaxies hosting more massive black holes, detection is also possible with moderate filling factors if the source is sufficiently close, or at larger distances if the filling factor is high. Our model thus provides a new and plausible scenario for high-energy extragalactic neutrino sources, where both the flux and timescale of the emission are determined by the number of clouds orbiting the black hole and the duration of the super-accreting phase. Full article
Show Figures

Figure 1

18 pages, 1462 KB  
Article
From Gamma Rays to Cosmic Rays: Lepto-Hadronic Modeling of Blazar Sources as Candidates for Ultra-High-Energy Cosmic Rays
by Luiz Augusto Stuani Pereira and Samuel Victor Bernardo da Silva
Universe 2025, 11(8), 266; https://doi.org/10.3390/universe11080266 - 14 Aug 2025
Viewed by 222
Abstract
Ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1019 eV are believed to originate from extragalactic environments, potentially associated with relativistic jets in active galactic nuclei (AGN). Among AGNs, blazars, particularly those detected in very-high-energy (VHE) gamma rays, are promising candidates for UHECR [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1019 eV are believed to originate from extragalactic environments, potentially associated with relativistic jets in active galactic nuclei (AGN). Among AGNs, blazars, particularly those detected in very-high-energy (VHE) gamma rays, are promising candidates for UHECR acceleration and high-energy neutrino production. In this work, we investigate three blazar sources, AP Librae, 1H 1914–194, and PKS 0735+178, using multiwavelength spectral energy distribution (SED) modeling. These sources span a range of synchrotron peak classes and redshifts, providing a diverse context to explore the physical conditions in relativistic jets. We employ both leptonic and lepto-hadronic models to describe their broadband emission from radio to TeV energies, aiming to constrain key jet parameters such as magnetic field strength, emission region size, and particle energy distributions. Particular attention is given to evaluating their potential as sources of UHECRs and high-energy neutrinos. Our results shed light on the complex interplay between particle acceleration mechanisms, radiative processes, and multi-messenger signatures in extreme astrophysical environments. Full article
(This article belongs to the Special Issue Ultra-High Energy Cosmic Rays: Past, Present and Future)
Show Figures

Figure 1

19 pages, 2592 KB  
Article
Investigating the Variation and Periodicity of TXS 0506+056
by Xianglin Miao and Yunguo Jiang
Universe 2025, 11(7), 204; https://doi.org/10.3390/universe11070204 - 23 Jun 2025
Viewed by 391
Abstract
TXS 0506+056 is a blazar associated with neutrino events. The study on its variation mechanics and periodicity analysis is meaningful to understand other BL Lac objects. The local cross-correlation function (LCCF) analysis presents a 3σ correlation in both the γ-ray versus [...] Read more.
TXS 0506+056 is a blazar associated with neutrino events. The study on its variation mechanics and periodicity analysis is meaningful to understand other BL Lac objects. The local cross-correlation function (LCCF) analysis presents a 3σ correlation in both the γ-ray versus optical and optical versus radio light curves. The time lag analysis suggests that the optical and γ-ray band share the same emission region, located upstream of the radio band in the jet. We use both the weighted wavelet Z-transform and generalized Lomb–Scargle methods to analyze the periodicity. We find two plausible quasi-periodic oscillations (QPOs) at 50656+133 days and 1757+15 days for the light curve of the optical band. For the γ-ray band, we find that the spectrum varies with the softer when brighter (SWB) trend, which could be explained naturally if a stable very high energy component exists. For the optical band, TXS 0506+056 exhibits a harder when brighter (HWB) trend. We discover a trend transition from HWB to SWB in the X-ray band, which could be modeled by the shift in peak frequency assuming that the X-ray emission is composed of the synchrotron and the inverse Compton (IC) components. The flux correlations of γ-ray and optical bands behave anomalously during the period of neutrino events, indicating that there are possible other hadronic components associated with neutrino. Full article
(This article belongs to the Special Issue Blazar Bursts: Theory and Observation)
Show Figures

Figure 1

17 pages, 858 KB  
Article
Optical Photometric Monitoring of the Blazar OT 355 and Local Standard Stars’ Calibration
by R. Bachev, Tushar Tripathi, Alok C. Gupta, A. Kurtenkov, Y. Nikolov, A. Strigachev, S. Boeva, G. Latev, B. Spassov, M. Minev, E. Ovcharov, W.-X. Yang, Yi Liu and J.-H. Fan
Universe 2025, 11(6), 171; https://doi.org/10.3390/universe11060171 - 27 May 2025
Viewed by 661
Abstract
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the [...] Read more.
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the physical processes in relativistic jets operating in blazar-type active galactic nuclei. OT 355 was observed in four colors (BVRI) during 41 nights between 2017 and 2023 using three 1 and 2 m class telescopes. The object was also monitored on intra-night timescales, for about 100 h in total. In addition, secondary standard stars in the field of OT 355 were calibrated in order to facilitate future photometric studies. We detected significant intra-night and night-to-night variations of up to 0.5 mag. Variability characteristics, color changes, and a possible “rms-flux” relation were studied and discussed. Using simple arguments, we show that a negative “rms-flux” relation should be expected if many independent processes/regions drive the short-term variability via Doppler factor changes, which is not observed in this and other cases. This finding raises arguments for the idea that more complex multiplicative processes are responsible for blazar variability. Studying blazar variability, especially on the shortest possible timescales, can help to estimate the strength and geometry of their magnetic fields, the linear sizes of the emitting regions, and other aspects, which may be of importance for constraining and modeling blazars’ emitting mechanisms. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

16 pages, 10616 KB  
Article
Superluminal Motion and Jet Parameters in the High-Redshift Blazar J1429+5406
by Dávid Koller and Sándor Frey
Universe 2025, 11(5), 157; https://doi.org/10.3390/universe11050157 - 11 May 2025
Viewed by 1653
Abstract
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar [...] Read more.
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar J1429+5406 was observed at a high angular resolution using the method of very long baseline interferometry over more than two decades, between 1994 and 2018. These observations were conducted at five radio frequencies, covering a wide range from 1.7 to 15 GHz. The outer jet components at ∼20–40 milliarcsecond (mas) separations from the core do not show discernible apparent motion. On the other hand, three jet components within the central 10 mas region exhibit significant proper motion in the range of (0.045–0.16) mas year−1, including one that is among the fastest-moving jet components at z3 known to date. Based on the proper motion of the innermost jet component and the measured brightness temperature of the core, we estimated the Doppler factor, the bulk Lorentz factor, and the inclination angle of the jet with respect to the line of sight. The core brightness temperature is at least 3.6×1011 K, well exceeding the equipartition limit, indicating Doppler-boosted radio emission. The low jet inclination (≲5.4°) firmly places J1429+5406 into the blazar category. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

10 pages, 281 KB  
Article
Solid Identification of Extragalactic Gamma-Ray Source Using High-Resolution Radio Interferometric Observation
by Krisztina Éva Gabányi, Sándor Frey, Krisztina Perger and Emma Kun
Universe 2025, 11(3), 83; https://doi.org/10.3390/universe11030083 - 1 Mar 2025
Cited by 1 | Viewed by 1346
Abstract
The dominant fraction of the extragalactic γ-ray sources are blazars, active galactic nuclei with jets inclined ata small angle to the line of sight. Apart from blazars, a few dozen narrow-line Seyfert 1 galaxies (NLS1) and a number of radio galaxies are [...] Read more.
The dominant fraction of the extragalactic γ-ray sources are blazars, active galactic nuclei with jets inclined ata small angle to the line of sight. Apart from blazars, a few dozen narrow-line Seyfert 1 galaxies (NLS1) and a number of radio galaxies are associated with γ-ray sources. The identification of γ-ray sources requires multiwavelength follow-up observations since several candidates could reside within the relatively large γ-ray localisation area. The γ-ray source 4FGL 0959.6+4606 was originally associated with a radio galaxy. However, follow-up multiwavelength work suggested a nearby NLS1 as the more probable origin of the γ-ray emission. We performed high-resolution very long baseline interferometry (VLBI) observation at 5 GHz of both proposed counterparts of 4FGL 0959.6+4606. We clearly detected the NLS1 source SDSS J095909.51+460014.3 with relativistically boosted jet emission. On the other hand, we did not detect milliarcsecond-scale compact emission in the radio galaxy 2MASX J09591976+4603515. Our VLBI imaging results suggest that the NLS1 object is the origin of the γ-ray emission in 4FGL 0959.6+4606. Full article
Show Figures

Figure 1

10 pages, 1843 KB  
Article
Random Asymmetric Jets Driven by Black-Hole Hyperaccretion in Gamma-Ray Bursts
by Zi-Ou Yang, Yan-Qing Qi and Tong Liu
Universe 2025, 11(2), 43; https://doi.org/10.3390/universe11020043 - 28 Jan 2025
Viewed by 731
Abstract
The relativistic jets of gamma-ray bursts (GRBs) might be powered by a black-hole (BH) hyperaccretion system. The inherent asymmetry in these jets generates recoil forces, inducing oscillations and positional deviations of the BH from equilibrium. In this study, we explore the influence of [...] Read more.
The relativistic jets of gamma-ray bursts (GRBs) might be powered by a black-hole (BH) hyperaccretion system. The inherent asymmetry in these jets generates recoil forces, inducing oscillations and positional deviations of the BH from equilibrium. In this study, we explore the influence of different initial BH mass, spin, and mass accretion rate, as well as their evolutions on the dynamical properties of BH under the effect of asymmetric jets. Our results reveal that the initial mass and accretion rate significantly impact the BH’s acceleration, velocity, and displacement, while the different initial spin plays a negligible role in shaping the overall dynamical evolution. Additionally, we calculate the gravitational wave (GW) strains associated with the asymmetric jets, finding that the resulting GW signals are too weak to be detected, even for nearby GRBs. These findings provide critical insights into the dynamical response of BHs to asymmetric jets and the associated GW radiation, advancing our understanding of BH physics in GRBs. Full article
Show Figures

Figure 1

17 pages, 332 KB  
Article
Black Holes and Baryon Number Violation: Unveiling the Origins of Early Galaxies and the Low-Mass Gap
by Merab Gogberashvili and Alexander S. Sakharov
Galaxies 2025, 13(1), 4; https://doi.org/10.3390/galaxies13010004 - 3 Jan 2025
Viewed by 1494
Abstract
We propose that modifications to the Higgs potential within a narrow atmospheric layer near the event horizon of an astrophysical black hole could significantly enhance the rate of sphaleron transitions, as well as transform the Chern–Simons number into a dynamic variable. As a [...] Read more.
We propose that modifications to the Higgs potential within a narrow atmospheric layer near the event horizon of an astrophysical black hole could significantly enhance the rate of sphaleron transitions, as well as transform the Chern–Simons number into a dynamic variable. As a result, sphaleron transitions in this region occur without suppression, in contrast to low-temperature conditions, and each transition may generate a substantially greater baryon number than would be produced by winding around the Higgs potential in Minkowski spacetime. This effect amplifies baryon number violation near the black hole horizon, potentially leading to a considerable generation of matter. Given the possibility of a departure from equilibrium during the absorption of matter and the formation of relativistic jets in supermassive black holes, we conjecture that this process could contribute to the creation of a significant amount of matter around such black holes. This phenomenon may offer an alternative explanation for the rapid growth of supermassive black holes and their surrounding galaxies in the early Universe, as suggested by recent observations from the James Webb Space Telescope. Furthermore, this mechanism may provide insights into the low-mass gap puzzle, addressing the observed scarcity of black holes with masses near the Oppenheimer–Volkoff limit. Full article
33 pages, 1413 KB  
Review
Gamma-Ray Bursts: What Do We Know Today That We Did Not Know 10 Years Ago?
by Asaf Pe’er
Galaxies 2025, 13(1), 2; https://doi.org/10.3390/galaxies13010002 - 31 Dec 2024
Viewed by 2519
Abstract
I discuss here the progress made in the last decade on a few of the key open problems in GRB physics. These include (1) the nature of GRB progenitors, and the outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became [...] Read more.
I discuss here the progress made in the last decade on a few of the key open problems in GRB physics. These include (1) the nature of GRB progenitors, and the outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became evident following GRB/GW170817; (3) the great progress made in understanding the GRB jet launching mechanisms, enabled by general-relativistic magnetohydrodynamic (GR-MHD) codes; (4) recent studies of magnetic reconnection as a valid energy dissipation mechanism; (5) the early afterglow, which may be highly affected by a wind bubble, as well as recent indication that in many GRBs, the Lorentz factor is only a few tens, rather than a few hundreds. I highlight some recent observational progress, including the major breakthrough in detecting TeV photons and the on-going debate about their origin, polarization measurements, as well as the pair annihilation line recently detected in GRB 221009A, and its implications for prompt emission physics. I probe into some open questions that I anticipate will be at the forefront of GRB research in the next decade. Full article
Show Figures

Figure 1

18 pages, 1635 KB  
Review
Jet Precession in Gamma-Ray Bursts
by Bao-Quan Huang and Tong Liu
Universe 2024, 10(12), 438; https://doi.org/10.3390/universe10120438 - 27 Nov 2024
Viewed by 979
Abstract
Jet precession is thought to be a ubiquitous phenomenon in astronomical events of various scales, including gamma-ray bursts (GRBs). If GRB jets undergo precession, periodic features might be introduced into their light curves. Detecting these periodic signals is therefore crucial for confirming the [...] Read more.
Jet precession is thought to be a ubiquitous phenomenon in astronomical events of various scales, including gamma-ray bursts (GRBs). If GRB jets undergo precession, periodic features might be introduced into their light curves. Detecting these periodic signals is therefore crucial for confirming the properties of GRBs’ central engines. However, periodic signals are always missing from observed GRB light curves. Against this backdrop, the broader effects of jet precession on GRBs have been widely studied. In this review, we summarize recent research progress on jet precession in GRBs. The main content focuses on four aspects of the effects of jet precession on GRBs: light curves, jet structures, polarization, and gravitational waves. Full article
Show Figures

Figure 1

28 pages, 10407 KB  
Article
On the Viscous Ringed Disk Evolution in the Kerr Black Hole Spacetime
by Daniela Pugliese, Zdenek Stuchlík and Vladimir Karas
Universe 2024, 10(12), 435; https://doi.org/10.3390/universe10120435 - 22 Nov 2024
Cited by 1 | Viewed by 873
Abstract
Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation [...] Read more.
Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation orientations with respect to the central Kerr BH. Such ringed structures can be characterized by peculiar internal dynamics, where co-rotating and counter-rotating accretion stages can be mixed and distinguished by tori interaction, drying–feeding processes, screening effects, and inter-disk jet emission. A ringed accretion disk (RAD) is a full general relativistic model of a cluster of toroidal disks, an aggregate of axi-symmetric co-rotating and counter-rotating disks orbiting in the equatorial plane of a single central Kerr SMBH. In this work, we discuss the time evolution of a ringed disk. Our analysis is a detailed numerical study of the evolving RAD properties formed by relativistic thin disks, using a thin disk model and solving a diffusion-like evolution equation for an RAD in the Kerr spacetime, adopting an initial wavy (ringed) density profile. The RAD reaches a single-disk phase, building accretion to the inner edge regulated by the inner edge boundary conditions. The mass flux, the radial drift, and the disk mass of the ringed disk are evaluated and compared to each of its disk components. During early inter-disk interaction, the ring components spread, destroying the internal ringed structure and quickly forming a single disk with timescales governed by ring viscosity prescriptions. Different viscosities and boundary conditions have been tested. We propose that a system of viscously spreading accretion rings can originate as a product of tidal disruption of a multiple stellar system that comes too close to an SMBH. Full article
Show Figures

Figure 1

8 pages, 285 KB  
Article
Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission
by Theodora Papavasileiou, Odysseas Kosmas and Theocharis Kosmas
Particles 2024, 7(4), 879-886; https://doi.org/10.3390/particles7040052 - 1 Oct 2024
Viewed by 1237
Abstract
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary [...] Read more.
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary systems range from radio to high-energy gamma rays. The emission mechanisms exhibit thermal origins from the disk, stellar companion, and non-thermal jet-related components (i.e., synchrotron emission, inverse comptonization of less energetic photons, etc.). In many attempts at fitting the emitted spectra, a static black hole is often assumed regarding the accretion disk modeling, ignoring the Kerr metric properties that significantly impact the geometry around the usually rotating black hole. In this work, we study the possible implications of the spin inclusion in predictions of the X-ray binary spectrum. We mainly focus on the most significant aspect inserted by the Kerr geometry, the innermost stable circular orbit radius dictating the disk’s inner boundary. The outcome suggests a higher-peaked and hardened X-ray spectrum from the accretion disk and a substantial increase in the inverse Compton component of disk-originated photons. Jet-photon absorption is also heavily affected at higher energy regimes dominated by hadron-induced emission mechanisms. Nevertheless, a complete investigation requires the full examination of the spin contribution and the resulting relativistic effects beyond the disk truncation. Full article
Show Figures

Figure 1

19 pages, 12053 KB  
Article
A Comprehensive Study on the Mid-Infrared Variability of Blazars
by Xuemei Zhang, Zhipeng Hu, Weitian Huang and Lisheng Mao
Universe 2024, 10(9), 360; https://doi.org/10.3390/universe10090360 - 7 Sep 2024
Viewed by 1414
Abstract
We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL [...] Read more.
We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL Lac objects (BL Lacs), and 795 blazars of uncertain type (BCUs). Considering Fermi Large Area Telescope detection, we classify 2331 as Fermi blazars and 1485 as non-Fermi blazars. Additionally, based on synchrotron peak frequency, the sample includes 2264 low-synchrotron peaked (LSP), 512 intermediate-synchrotron peaked (ISP), and 655 high-synchrotron peaked (HSP) sources. We conduct a comparative analysis of short- and long-term intrinsic variability amplitude (σm), duty cycle (DC), and ensemble structure function (ESF) across blazar subclasses. The median short-term σm values were 0.1810.106+0.153, 0.1040.054+0.101, 0.1350.076+0.154, 0.1730.097+0.158, 0.1770.100+0.156, 0.0960.050+0.109, and 0.1060.058+0.100 mag for FSRQs, BL Lacs, Fermi blazars, non-Fermi blazars, LSPs, ISPs, and HSPs, respectively. The median DC values were 71.0322.48+14.17, 64.0222.86+16.97, 68.9625.52+15.66, 69.4022.17+14.42, 71.2421.36+14.25, 63.0333.19+16.93, and 64.6324.26+15.88 percent for the same subclasses. The median long-term σm values were 0.1370.105+0.408, 0.1710.132+0.206, 0.2820.184+0.332, 0.0710.062+0.143, 0.2180.174+0.386, 0.1730.132+0.208, and 0.1010.077+0.161 mag for the same subclasses, respectively. Our results reveal significant differences in 3.4 μm flux variability among these subclasses. FSRQs (LSPs) exhibit larger σm and DC values compared to BL Lacs (ISPs and HSPs). Fermi blazars display higher long-term σm but lower short-term σm relative to non-Fermi blazars, while DC distributions between the two groups are similar. ESF analysis further confirms the greater variability of FSRQs, LSPs, and Fermi blazars across a wide range of time scales compared to BL Lacs, ISPs/HSPs, and non-Fermi blazars. These findings highlight a close correlation between MIR variability and blazar properties, providing valuable insights into the underlying physical mechanisms responsible for their emission. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

11 pages, 4044 KB  
Article
Characteristics of Powerful Radio Galaxies
by Chandra B. Singh, Michael Williams, David Garofalo, Luis Rojas Castillo, Landon Taylor and Eddie Harmon
Universe 2024, 10(8), 319; https://doi.org/10.3390/universe10080319 - 8 Aug 2024
Cited by 1 | Viewed by 1531
Abstract
Mature radio galaxies such as M87 belong to a specific subclass of active galaxies (AGN) whose evolution in time endows them with five distinguishing characteristics, including (1) low excitation emission, (2) low star formation rates, (3) high bulge stellar-velocity dispersion, (4) bright stellar [...] Read more.
Mature radio galaxies such as M87 belong to a specific subclass of active galaxies (AGN) whose evolution in time endows them with five distinguishing characteristics, including (1) low excitation emission, (2) low star formation rates, (3) high bulge stellar-velocity dispersion, (4) bright stellar nuclei, and (5) weak or nonexistent merger signatures. We show how to understand these seemingly disparate characteristics as originating from the time evolution of powerful radio quasars and describe a new model prediction that tilted accretion disks in AGN are expected to occur in bright quasars but not in other subclasses of AGN. The picture we present should be understood as the most compelling evidence for counter-rotation as a key element in feedback from accreting black holes. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

26 pages, 2267 KB  
Article
Reconstruction of Fermi and eROSITA Bubbles from Magnetized Jet Eruption with Simulations
by Che-Jui Chang and Jean-Fu Kiang
Universe 2024, 10(7), 279; https://doi.org/10.3390/universe10070279 - 27 Jun 2024
Cited by 1 | Viewed by 1748
Abstract
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied [...] Read more.
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied to simulate a jet eruption from our galactic center and to reconstruct the observed Fermi bubbles and eROSITA bubbles. High-energy non-thermal electrons are excited around forward shock and discontinuity transition regions in the simulated plasma distributions. The γ-ray and X-ray emissions from these electrons manifest patterns on the skymap that match the observed Fermi bubbles and eROSITA bubbles, respectively, in shape, size and radiation intensity. The influence of the background magnetic field, initial mass distribution in the Galaxy, and the jet parameters on the plasma distributions and hence these bubbles is analyzed. Subtle effects on the evolution of plasma distributions attributed to the adoption of a galactic disk model versus a spiral-arm model are also studied. Full article
(This article belongs to the Special Issue Black Holes and Relativistic Jets)
Show Figures

Figure 1

Back to TopTop