Accurate Decomposition of Galaxies with Spiral Arms: Dust Properties and Distribution
Abstract
:1. Introduction
2. Data
NGC 1097 | NGC 1566 | NGC 3627 | |
---|---|---|---|
R.A. (J2000) | 2h46m19.12s | 4h20m00.42s | 11h20m15.02s |
D.A. (J2000) | −30°16′30″ | −54°56′16″ | +12°59′30″ |
Type | SBb | SABb | Sb |
i | 54.8° | 49.1° | 67.5° |
P.A. | 134° | 44° | 168° |
Distance | 13.6 ± 2.0 Mpc | 17.7 ± 2.0 Mpc | 11.3 ± 0.5 Mpc |
Linear scale | 394 pc/pix | 513 pc/pix | 501 pc/pix |
<B−V> | 0.68 mag | 0.57 mag | 0.63 mag |
B magnitude | 9.69 mag | 9.97 mag | 9.09 mag |
r25 | 314 arcsec | 217 arcsec | 307 arcsec |
3. Methodology
3.1. Decomposition
3.2. SED Fitting with HerBIE
4. Results and Discussion
4.1. Decomposition Results
4.2. Presence of Density Wave
4.3. SED Fitting Results
Component | InqAF | Δ | Tdust | Δ | log Mdust | Δ | Total |
---|---|---|---|---|---|---|---|
NGC1097 | −2.33 | 0.02 | 24.47 | 0.69 | 7.71 | 0.02 | 7.42 |
Central | −2.52 | 0.11 | 27.63 | 1.68 | 6.51 | 0.15 | 12% |
Bar | −1.65 | 0.09 | 21.42 | 0.81 | 6.39 | 0.09 | 9% |
Disk | −1.99 | 0.14 | 13.35 | 1.45 | 7.18 | 0.23 | 57% |
Spiral A | −1.95 | 0.10 | 18.43 | 0.51 | 6.42 | 0.07 | 10% |
Spiral B | −2.01 | 0.10 | 18.78 | 0.63 | 6.48 | 0.08 | 11% |
NGC1566 | −2.19 | 0.12 | 22.76 | 0.98 | 7.68 | 0.03 | 7.55 |
Central | −2.51 | 0.17 | 22.09 | 2.12 | 5.85 | 0.23 | 2% |
Disk | −1.78 | 0.11 | 15.31 | 1.42 | 7.48 | 0.22 | 84% |
Spiral Ain | −1.62 | 0.11 | 26.11 | 0.98 | 6.10 | 0.08 | 4% |
Spiral Bin | −1.47 | 0.10 | 25.49 | 0.82 | 6.00 | 0.07 | 3% |
Spiral Aout | −1.78 | 0.11 | 20.74 | 1.06 | 6.08 | 0.12 | 3% |
Spiral Bout | −2.17 | 0.13 | 18.76 | 1.22 | 6.19 | 0.16 | 4% |
NGC3627 | −2.86 | 0.06 | 24.62 | 0.67 | 7.53 | 0.03 | 7.07 |
Central | −4.11 | 0.24 | 26.14 | 2.66 | 5.39 | 0.24 | 2% |
Bar | −2.12 | 0.12 | 36.47 | 1.11 | 5.15 | 0.06 | 1% |
Disk | −1.93 | 0.10 | 22.74 | 0.57 | 6.55 | 0.06 | 30% |
Spiral A | −1.85 | 0.11 | 19.50 | 1.45 | 6.60 | 0.18 | 34% |
Spiral B | −1.73 | 0.10 | 22.30 | 1.14 | 6.58 | 0.12 | 32% |
5. Conclusions
- (i)
- The parameters of the spiral arms in the IR bands are similar to those obtained earlier for M 51 and other galaxies. Specifically, the spiral contribution to total luminosity ranges from 20% to 60%, increasing in the FIR bands. The width of the arms is minimal at 24–70 μm.
- (ii)
- Regarding dust distribution, we find that, in all cases, the emission profile is well described by an exponential disk, provided that non-axisymmetric components such as spiral arms and bars are properly accounted for. This effect is most evident in NGC 3627, where the atypical dust distribution profile (Sérsic index ) results from a bump induced by the influence of spiral arms. For NGC 1097, the large Sérsic index () is attributed to the presence of a bright AGN and a nuclear ring. Although these three cases do not fully resolve the question of the central dust depletion raised in [25], they illustrate how careful modeling in late-type galaxies can address this issue.
- (iii)
- By utilizing bands associated with old stars (which trace the gravitational potential) and recent star formation, and considering the full light distribution along the spiral arms, we tested the predictions of the stationary density wave theory. The measured pitch angles are approximately 20°, and the angles in different wavelengths do not reveal expected inequalities, and thus do not support the presence of a stationary density wave. Furthermore, the angular offsets between individual tracers also fail to align with this theory. Given the presence of companion galaxies in all cases, it is more likely that the spiral arms have a dynamic or tidal origin rather than being driven by a stationary density wave.
- (iv)
- We performed SED fitting in the wavelength range of 3.6 μm to 250 μm for individual galaxy components, including spiral arms, which has not been performed in this manner before. Our results indicate that the average PAH fraction (qPAH) is nearly identical in the disk and spiral arms. Additionally, spiral arms contain a significant (10–60%) fraction of the total dust in galaxies, with an estimated dust temperature (Tdust) of approximately 18–20 K, indicating that the dust is predominantly cold. Furthermore, we observe evidence of a dust temperature gradient in NGC 1566, where the separate modeling of the inner and outer spiral arms revealed a systematic variation in Tdust.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SED | Spectral energy distribution |
BIC | Bayesian information criterion |
CR | Corotation radius |
PSF | Point spread function |
FWHM | Full width at half maximum |
SPIRE | Spectral and Photometric Imaging REceiver |
PACS | Photodetector Array Camera and Spectrometer |
IRAC | InfraRed Array Camera |
NIR | Near-infrared |
MIR | Mid-infrared |
FIR | Far-infrared |
Appendix A. Models for All Bands
Appendix B. HerBIE SED Fitting Example
1 | http://dustpedia.astro.noa.gr/ (accessed on 10 June 2024). |
2 | https://archive.eso.org/dss/dss (accessed on 10 June 2024). |
3 | https://irsa.ipac.caltech.edu/ (accessed on 10 June 2024). |
4 | The latest version is available at https://github.com/IVChugunov/IMFIT_spirals (accessed on 20 March 2025). |
5 | Available at http://www.ias.u-psud.fr/themis/ (accessed on 10 June 2024). |
References
- Popescu, C.C.; Tuffs, R.J. The percentage of stellar light re-radiated by dust in late-type Virgo Cluster galaxies. Not. R. Astron. Soc. 2002, 335, L41–L44. [Google Scholar] [CrossRef]
- Wolfire, M.G.; Hollenbach, D.; McKee, C.F.; Tielens, A.G.G.M.; Bakes, E.L.O. The Neutral Atomic Phases of the Interstellar Medium. Astrophys. J. 1995, 443, 152. [Google Scholar] [CrossRef]
- Draine, B.T. Photoelectric heating of interstellar gas. Astrophys. J. Suppl. 1978, 36, 595–619. [Google Scholar] [CrossRef]
- Calzetti, D.; Kennicutt, R.C.; Engelbracht, C.W.; Leitherer, C.; Draine, B.T.; Kewley, L.; Moustakas, J.; Sosey, M.; Dale, D.A.; Gordon, K.D.; et al. The Calibration of Mid-Infrared Star Formation Rate Indicators. Astrophys. J. 2007, 666, 870–895. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr.; Hao, C.N.; Calzetti, D.; Moustakas, J.; Dale, D.A.; Bendo, G.; Engelbracht, C.W.; Johnson, B.D.; Lee, J.C. Dust-corrected Star Formation Rates of Galaxies. I. Combinations of Hα and Infrared Tracers. Astrophys. J. 2009, 703, 1672–1695. [Google Scholar] [CrossRef]
- Dopcke, G.; Glover, S.C.O.; Clark, P.C.; Klessen, R.S. The Effect of Dust Cooling on Low-metallicity Star-forming Clouds. Astrophys. J. 2011, 729, L3. [Google Scholar] [CrossRef]
- Baes, M.; Dejonghe, H. Diffuse Dust and its Effects on the Kinematic Structure of Early-type Galaxies. In Proceedings of the Dynamics of Galaxies: From the Early Universe to the Present, Paris, France, 9–13 July 1999; Combes, F., Mamon, G.A., Charmandaris, V., Eds.; NASA: Washington, DC, USA, 2000; Volume 197, p. 237. [Google Scholar]
- Grosbøl, P.J.; Block, D.L.; Patsis, P.A. Dust Lanes in Spiral Galaxies. Astrophys. Space Sci. 1999, 269–270, 423–426. [Google Scholar] [CrossRef]
- Köhler, M.; Ysard, N.; Jones, A.P. Dust evolution in the transition towards the denser ISM: Impact on dust temperature, opacity, and spectral index. Astron. Astrophys. 2015, 579, A15. [Google Scholar] [CrossRef]
- Fisher, R.; Bowler, R.A.A.; Stefanon, M.; Rowland, L.E.; Algera, H.S.B.; Aravena, M.; Bouwens, R.; Dayal, P.; Ferrara, A.; Fudamoto, Y.; et al. REBELS-IFU: Dust attenuation curves of 12 massive galaxies at z ≃ 7. arXiv 2025, arXiv:2501.10541. [Google Scholar] [CrossRef]
- Algera, H.; Rowland, L.; Stefanon, M.; Palla, M.; Sommovigo, L.; Inami, H.; Bouwens, R.; Aravena, M.; Bowler, R.; Dayal, P.; et al. REBELS-IFU: Dust Build-up in Massive Galaxies at Redshift 7. arXiv 2025, arXiv:2501.10508. [Google Scholar] [CrossRef]
- Draine, B.T. Interstellar Dust Grains. Annu. Rev. Astron. Astrophys. 2003, 41, 241–289. [Google Scholar] [CrossRef]
- Galliano, F.; Galametz, M.; Jones, A.P. The Interstellar Dust Properties of Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2018, 56, 673–713. [Google Scholar] [CrossRef]
- Popescu, C.C.; Misiriotis, A.; Kylafis, N.D.; Tuffs, R.J.; Fischera, J. Modelling the spectral energy distribution of galaxies. I. Radiation fields and grain heating in the edge-on spiral NGC 891. Astron. Astrophys. 2000, 362, 138–150. [Google Scholar] [CrossRef]
- Alton, P.B.; Xilouris, E.M.; Misiriotis, A.; Dasyra, K.M.; Dumke, M. The emissivity of dust grains in spiral galaxies. Astron. Astrophys. 2004, 425, 109–120. [Google Scholar] [CrossRef]
- Baes, M.; Fritz, J.; Gadotti, D.A.; Smith, D.J.B.; Dunne, L.; da Cunha, E.; Amblard, A.; Auld, R.; Bendo, G.J.; Bonfield, D.; et al. Herschel-ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 4754. Astron. Astrophys. 2010, 518, L39. [Google Scholar] [CrossRef]
- De Looze, I.; Baes, M.; Bendo, G.J.; Ciesla, L.; Cortese, L.; de Geyter, G.; Groves, B.; Boquien, M.; Boselli, A.; Brondeel, L.; et al. The dust energy balance in the edge-on spiral galaxy NGC 4565. Not. R. Astron. Soc. 2012, 427, 2797–2811. [Google Scholar] [CrossRef]
- Mosenkov, A.V.; Allaert, F.; Baes, M.; Bianchi, S.; Camps, P.; De Geyter, G.; De Looze, I.; Fritz, J.; Gentile, G.; Hughes, T.M.; et al. HERschel Observations of Edge-on Spirals (HEROES). III. Dust energy balance study of IC 2531. Astron. Astrophys. 2016, 592, A71. [Google Scholar] [CrossRef]
- Mosenkov, A.V.; Allaert, F.; Baes, M.; Bianchi, S.; Camps, P.; Clark, C.J.R.; Decleir, M.; De Geyter, G.; De Looze, I.; Fritz, J.; et al. HERschel Observations of Edge-on Spirals (HEROES). IV. Dust energy balance problem. Astron. Astrophys. 2018, 616, A120. [Google Scholar] [CrossRef]
- Bendo, G.J.; Boselli, A.; Dariush, A.; Pohlen, M.; Roussel, H.; Sauvage, M.; Smith, M.W.L.; Wilson, C.D.; Baes, M.; Cooray, A.; et al. Investigations of dust heating in M81, M83 and NGC 2403 with the Herschel Space Observatory. Not. R. Astron. Soc. 2012, 419, 1833–1859. [Google Scholar] [CrossRef]
- Nersesian, A.; Xilouris, E.M.; Bianchi, S.; Galliano, F.; Jones, A.P.; Baes, M.; Casasola, V.; Cassarà, L.P.; Clark, C.J.R.; Davies, J.I.; et al. Old and young stellar populations in DustPedia galaxies and their role in dust heating. Astron. Astrophys. 2019, 624, A80. [Google Scholar] [CrossRef]
- Nersesian, A.; Verstocken, S.; Viaene, S.; Baes, M.; Xilouris, E.M.; Bianchi, S.; Casasola, V.; Clark, C.J.R.; Davies, J.I.; De Looze, I.; et al. High-resolution, 3D radiative transfer modelling. III. The DustPedia barred galaxies. Astron. Astrophys. 2020, 637, A25. [Google Scholar] [CrossRef]
- Misiriotis, A.; Kylafis, N.D.; Papamastorakis, J.; Xilouris, E.M. Is the exponential distribution a good approximation of dusty galactic disks? Astron. Astrophys. 2000, 353, 117–123. [Google Scholar] [CrossRef]
- Muñoz-Mateos, J.C.; Gil de Paz, A.; Boissier, S.; Zamorano, J.; Dale, D.A.; Pérez-González, P.G.; Gallego, J.; Madore, B.F.; Bendo, G.; Thornley, M.D.; et al. Radial Distribution of Stars, Gas, and Dust in Sings Galaxies. II. Derived Dust Properties. Astrophys. J. 2009, 701, 1965–1991. [Google Scholar] [CrossRef]
- Mosenkov, A.V.; Baes, M.; Bianchi, S.; Casasola, V.; Cassarà, L.P.; Clark, C.J.R.; Davies, J.; De Looze, I.; De Vis, P.; Fritz, J.; et al. Dust emission profiles of DustPedia galaxies. Astron. Astrophys. 2019, 622, A132. [Google Scholar] [CrossRef]
- Mattsson, L.; Andersen, A.C. On the dust abundance gradients in late-type galaxies—II. Analytical models as evidence for massive interstellar dust growth in SINGS galaxies. Not. R. Astron. Soc. 2012, 423, 38–48. [Google Scholar] [CrossRef]
- Viaene, S.; Baes, M.; Tamm, A.; Tempel, E.; Bendo, G.; Blommaert, J.A.D.L.; Boquien, M.; Boselli, A.; Camps, P.; Cooray, A.; et al. The Herschel Exploitation of Local Galaxy Andromeda (HELGA). VII. A SKIRT radiative transfer model and insights on dust heating. Astron. Astrophys. 2017, 599, A64. [Google Scholar] [CrossRef]
- Williams, T.G.; Baes, M.; De Looze, I.; Relaño, M.; Smith, M.W.L.; Verstocken, S.; Viaene, S. High-resolution radiative transfer modelling of M33. Not. R. Astron. Soc. 2019, 487, 2753–2770. [Google Scholar] [CrossRef]
- Verstocken, S.; Nersesian, A.; Baes, M.; Viaene, S.; Bianchi, S.; Casasola, V.; Clark, C.J.R.; Davies, J.I.; De Looze, I.; De Vis, P.; et al. High-resolution, 3D radiative transfer modelling. II. The early-type spiral galaxy M 81. Astron. Astrophys. 2020, 637, A24. [Google Scholar] [CrossRef]
- Nersesian, A.; Viaene, S.; De Looze, I.; Baes, M.; Xilouris, E.M.; Smith, M.W.L.; Bianchi, S.; Casasola, V.; Cassarà, L.P.; Clark, C.J.R.; et al. High-resolution, 3D radiative transfer modelling. V. A detailed model of the M 51 interacting pair. Astron. Astrophys. 2020, 643, A90. [Google Scholar] [CrossRef]
- Thirlwall, J.J.; Popescu, C.C.; Tuffs, R.J.; Natale, G.; Norris, M.; Rushton, M.; Grootes, M.; Carroll, B. A radiative transfer model for the spiral galaxy M33. Not. R. Astron. Soc. 2020, 495, 835–863. [Google Scholar] [CrossRef]
- Inman, C.J.; Popescu, C.C.; Rushton, M.T.; Murphy, D. Deriving the intrinsic properties of M51 with radiative transfer models. Not. R. Astron. Soc. 2023, 526, 118–137. [Google Scholar] [CrossRef]
- Xilouris, E.M.; Kylafis, N.D.; Papamastorakis, J.; Paleologou, E.V.; Haerendel, G. The distribution of stars and dust in spiral galaxies: The edge-on spiral UGC 2048. Astron. Astrophys. 1997, 325, 135–143. [Google Scholar]
- Bianchi, S. The dust distribution in edge-on galaxies. Radiative transfer fits of V and K’-band images. Astron. Astrophys. 2007, 471, 765–773. [Google Scholar] [CrossRef]
- De Geyter, G.; Baes, M.; Fritz, J.; Camps, P. FitSKIRT: Genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code. Astron. Astrophys. 2013, 550, A74. [Google Scholar] [CrossRef]
- Baes, M.; Verstappen, J.; De Looze, I.; Fritz, J.; Saftly, W.; Vidal Pérez, E.; Stalevski, M.; Valcke, S. Efficient Three-dimensional NLTE Dust Radiative Transfer with SKIRT. Astrophys. J. Suppl. 2011, 196, 22. [Google Scholar] [CrossRef]
- Camps, P.; Baes, M. SKIRT: An advanced dust radiative transfer code with a user-friendly architecture. Astron. Comput. 2015, 9, 20–33. [Google Scholar] [CrossRef]
- Galliano, F.; Nersesian, A.; Bianchi, S.; De Looze, I.; Roychowdhury, S.; Baes, M.; Casasola, V.; Cassará, L.P.; Dobbels, W.; Fritz, J.; et al. A nearby galaxy perspective on dust evolution. Scaling relations and constraints on the dust build-up in galaxies with the DustPedia and DGS samples. Astron. Astrophys. 2021, 649, A18. [Google Scholar] [CrossRef]
- Dale, D.A.; Boquien, M.; Turner, J.A.; Calzetti, D.; Kennicutt, R.C.; Lee, J.C. Spectral Energy Distributions for 258 Local Volume Galaxies. Astron. J. 2023, 165, 260. [Google Scholar] [CrossRef]
- Boselli, A.; Ciesla, L.; Buat, V.; Cortese, L.; Auld, R.; Baes, M.; Bendo, G.J.; Bianchi, S.; Bock, J.; Bomans, D.J.; et al. FIR colours and SEDs of nearby galaxies observed with Herschel. Astron. Astrophys. 2010, 518, L61. [Google Scholar] [CrossRef]
- Aniano, G.; Draine, B.T.; Calzetti, D.; Dale, D.A.; Engelbracht, C.W.; Gordon, K.D.; Hunt, L.K.; Kennicutt, R.C.; Krause, O.; Leroy, A.K.; et al. Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946. Astrophys. J. 2012, 756, 138. [Google Scholar] [CrossRef]
- Chastenet, J.; Sandstrom, K.; Leroy, A.K.; Bot, C.; Chiang, I.D.; Chown, R.; Gordon, K.D.; Koch, E.W.; Roussel, H.; Sutter, J.; et al. The Resolved Behavior of Dust Mass, Polycyclic Aromatic Hydrocarbon Fraction, and Radiation Field in ∼800 Nearby Galaxies. Astrophys. J. Suppl. 2025, 276, 2. [Google Scholar] [CrossRef]
- Abdurro’uf, Y.T.; Hirashita, H.; Morishita, T.; Tacchella, S.; Akiyama, M.; Takeuchi, T.T.; Wu, P.F. Dissecting Nearby Galaxies with piXedfit. I. Spatially Resolved Properties of Stars, Dust, and Gas as Revealed by Panchromatic SED Fitting. Astrophys. J. 2022, 926, 81. [Google Scholar] [CrossRef]
- Scaloni, L.; Rodighiero, G.; Enia, A.; Gruppioni, C.; Annibali, F.; Bisigello, L.; Cassata, P.; Corsini, E.M.; Casasola, V.; Lofaro, C.M.; et al. The impact of stellar bars on star-formation quenching: Insights from a spatially resolved analysis in the local Universe. Astron. Astrophys. 2024, 687, A255. [Google Scholar] [CrossRef]
- Sun, B.; Calzetti, D.; Battisti, A.J. The Role of Spiral Arms in Galaxies. Astrophys. J. 2024, 973, 137. [Google Scholar] [CrossRef]
- Boquien, M.; Burgarella, D.; Roehlly, Y.; Buat, V.; Ciesla, L.; Corre, D.; Inoue, A.K.; Salas, H. CIGALE: A python Code Investigating GALaxy Emission. Astron. Astrophys. 2019, 622, A103. [Google Scholar] [CrossRef]
- da Cunha, E.; Charlot, S.; Elbaz, D. A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. Not. R. Astron. Soc. 2008, 388, 1595–1617. [Google Scholar] [CrossRef]
- Kriek, M.; van Dokkum, P.G.; Labbé, I.; Franx, M.; Illingworth, G.D.; Marchesini, D.; Quadri, R.F. An Ultra-Deep Near-Infrared Spectrum of a Compact Quiescent Galaxy at z = 2.2. Astrophys. J. 2009, 700, 221–231. [Google Scholar] [CrossRef]
- Galliano, F. A dust spectral energy distribution model with hierarchical Bayesian inference—I. Formalism and benchmarking. Not. R. Astron. Soc. 2018, 476, 1445–1469. [Google Scholar] [CrossRef]
- Jones, A.P.; Köhler, M.; Ysard, N.; Bocchio, M.; Verstraete, L. The global dust modelling framework THEMIS. Astron. Astrophys. 2017, 602, A46. [Google Scholar] [CrossRef]
- Hensley, B.S.; Draine, B.T. The Astrodust+PAH Model: A Unified Description of the Extinction, Emission, and Polarization from Dust in the Diffuse Interstellar Medium. Astrophys. J. 2023, 948, 55. [Google Scholar] [CrossRef]
- da Cunha, E.; Eminian, C.; Charlot, S.; Blaizot, J. New insight into the relation between star formation activity and dust content in galaxies. Not. R. Astron. Soc. 2010, 403, 1894–1908. [Google Scholar] [CrossRef]
- Cortese, L.; Ciesla, L.; Boselli, A.; Bianchi, S.; Gomez, H.; Smith, M.W.L.; Bendo, G.J.; Eales, S.; Pohlen, M.; Baes, M.; et al. The dust scaling relations of the Herschel Reference Survey. Astron. Astrophys. 2012, 540, A52. [Google Scholar] [CrossRef]
- Erwin, P. IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting. Astrophys. J. 2015, 799, 226. [Google Scholar] [CrossRef]
- Peng, C.Y.; Ho, L.C.; Impey, C.D.; Rix, H.W. Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models. Astron. J. 2010, 139, 2097–2129. [Google Scholar] [CrossRef]
- Savchenko, S.S.; Poliakov, D.M.; Mosenkov, A.V.; Smirnov, A.A.; Marchuk, A.A.; Il’in, V.B.; Gontcharov, G.A.; Seguine, J.; Baes, M. The problem of dust attenuation in photometric decomposition of edge-on galaxies and possible solutions. Not. R. Astron. Soc. 2023, 524, 4729–4745. [Google Scholar] [CrossRef]
- Gong, J.Y.; Mao, Y.W.; Gao, H.; Yu, S.Y. Multiwavelength Bulge-Disk Decomposition for the Galaxy M81 (NGC 3031). I. Morphology. Astrophys. J. Suppl. 2023, 267, 26. [Google Scholar] [CrossRef]
- Conselice, C.J. The fundamental properties of galaxies and a new galaxy classification system. Not. R. Astron. Soc. 2006, 373, 1389–1408. [Google Scholar] [CrossRef]
- Willett, K.W.; Lintott, C.J.; Bamford, S.P.; Masters, K.L.; Simmons, B.D.; Casteels, K.R.V.; Edmondson, E.M.; Fortson, L.F.; Kaviraj, S.; Keel, W.C.; et al. Galaxy Zoo 2: Detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Not. R. Astron. Soc. 2013, 435, 2835–2860. [Google Scholar] [CrossRef]
- Chugunov, I.V.; Marchuk, A.A.; Mosenkov, A.V. Less Wound and More Asymmetric: JWST Confirms the Evolution of Spiral Structure in Galaxies at z ≲ 3. arXiv 2025, arXiv:2501.11670. [Google Scholar] [CrossRef]
- Kuhn, V.; Guo, Y.; Martin, A.; Bayless, J.; Gates, E.; Puleo, A. JWST Reveals a Surprisingly High Fraction of Galaxies Being Spiral-like at 0.5 ≤ z ≤ 4. Astrophys. J. 2024, 968, L15. [Google Scholar] [CrossRef]
- Salcedo, J.M.E.; Pastras, S.; Vácha, J.; Pulsoni, C.; Genzel, R.; Schreiber, N.M.F.; Jolly, J.B.; Barfety, C.; Chen, J.; Tozzi, G.; et al. Galaxy Morphologies at Cosmic Noon with JWST: A Foundation for Exploring Gas Transport with Bars and Spiral Arms. arXiv 2025, arXiv:2503.21738v1. [Google Scholar]
- Savchenko, S.; Marchuk, A.; Mosenkov, A.; Grishunin, K. A multiwavelength study of spiral structure in galaxies. I. General characteristics in the optical. Not. R. Astron. Soc. 2020, 493, 390–409. [Google Scholar] [CrossRef]
- Marchuk, A.A.; Chugunov, I.V.; Gontcharov, G.A.; Mosenkov, A.V.; Il’in, V.B.; Savchenko, S.S.; Smirnov, A.A.; Poliakov, D.M.; Seguine, J.; Chazov, M.I. Galaxies decomposition with spiral arms—II. A multiwavelength case study of M 51. Not. R. Astron. Soc. 2024, 528, 1276–1295. [Google Scholar] [CrossRef]
- Chugunov, I.V.; Marchuk, A.A.; Mosenkov, A.V.; Savchenko, S.S.; Shishkina, E.V.; Chazov, M.I.; Nazarova, A.E.; Skryabina, M.N.; Smirnova, P.I.; Smirnov, A.A. Galaxies decomposition with spiral arms—I: 29 galaxies from S4G. Not. R. Astron. Soc. 2024, 527, 9605–9624. [Google Scholar] [CrossRef]
- White, R.E., III; Keel, W.C.; Conselice, C.J. Seeing Galaxies through Thick and Thin. I. Optical Opacity Measures in Overlapping Galaxies. Astrophys. J. 2000, 542, 761–778. [Google Scholar] [CrossRef]
- Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations. Astron. Astrophys. 2018, 611, L2. [Google Scholar] [CrossRef]
- Popescu, C.C.; Tuffs, R.J. Modelling the SEDs of spiral galaxies. Eur. Astron. Soc. Publ. Ser. 2009, 34, 247–256. [Google Scholar] [CrossRef]
- Schechtman-Rook, A.; Bershady, M.A.; Wood, K. The Three-dimensional Distribution of Dust in NGC 891. Astrophys. J. 2012, 746, 70. [Google Scholar] [CrossRef]
- Gebek, A.; Diemer, B.; Martorano, M.; van der Wel, A.; Pantoni, L.; Baes, M.; Gabrielpillai, A.; Kapoor, A.U.; Osinga, C.; Nersesian, A.; et al. The mass-dependent UVJ diagram at cosmic noon: A challenge for galaxy evolution models and dust radiative transfer. arXiv 2025, arXiv:2501.12008. [Google Scholar] [CrossRef]
- Rushton, M.T.; Popescu, C.C.; Inman, C.; Natale, G.; Pricopi, D. Decoding NGC 628 with radiative transfer methods. Not. R. Astron. Soc. 2022, 514, 113–138. [Google Scholar] [CrossRef]
- Pricopi, D.; Popescu, C.C.; Rushton, M.T.; Murphy, D.; Inman, C.J.; Toma, R. Uncovering the truth about M101, NGC 3938, and their significant others through radiative transfer. Not. R. Astron. Soc. 2025, 537, 56–83. [Google Scholar] [CrossRef]
- Querejeta, M.; Leroy, A.K.; Meidt, S.E.; Schinnerer, E.; Belfiore, F.; Emsellem, E.; Klessen, R.S.; Sun, J.; Sormani, M.; Bešlić, I.; et al. Do spiral arms enhance star formation efficiency? Astron. Astrophys. 2024, 687, A293. [Google Scholar] [CrossRef]
- Vogler, A.; Madden, S.C.; Beck, R.; Lundgren, A.A.; Sauvage, M.; Vigroux, L.; Ehle, M. Dissecting the spiral galaxy M 83: Mid-infrared emission and comparison with other tracers of star formation. Astron. Astrophys. 2005, 441, 491–511. [Google Scholar] [CrossRef]
- Gao, H.; Ho, L.C. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies. Astrophys. J. 2017, 845, 114. [Google Scholar] [CrossRef]
- Salo, H.; Laurikainen, E.; Laine, J.; Comerón, S.; Gadotti, D.A.; Buta, R.; Sheth, K.; Zaritsky, D.; Ho, L.; Knapen, J.; et al. The Spitzer Survey of Stellar Structure in Galaxies (S4G): Multi-component Decomposition Strategies and Data Release. Astrophys. J. Suppl. 2015, 219, 4. [Google Scholar] [CrossRef]
- Clark, C.J.R.; Verstocken, S.; Bianchi, S.; Fritz, J.; Viaene, S.; Smith, M.W.L.; Baes, M.; Casasola, V.; Cassara, L.P.; Davies, J.I.; et al. DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands. Astron. Astrophys. 2018, 609, A37. [Google Scholar] [CrossRef]
- Miller, R.; Kennefick, D.; Kennefick, J.; Shameer Abdeen, M.; Monson, E.; Eufrasio, R.T.; Shields, D.W.; Davis, B.L. Investigating the Origins of Spiral Structure in Disk Galaxies through a Multiwavelength Study. Astrophys. J. 2019, 874, 177. [Google Scholar] [CrossRef]
- Koekemoer, A.M.; Aussel, H.; Calzetti, D.; Capak, P.; Giavalisco, M.; Kneib, J.P.; Leauthaud, A.; Le Fèvre, O.; McCracken, H.J.; Massey, R.; et al. The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing. Astrophys. J. Suppl. 2007, 172, 196–202. [Google Scholar] [CrossRef]
- Bagley, M.B.; Finkelstein, S.L.; Koekemoer, A.M.; Ferguson, H.C.; Arrabal Haro, P.; Dickinson, M.; Kartaltepe, J.S.; Papovich, C.; Pérez-González, P.G.; Pirzkal, N.; et al. CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results. Astrophys. J. 2023, 946, L12. [Google Scholar] [CrossRef]
- Bunker, A.J.; Cameron, A.J.; Curtis-Lake, E.; Jakobsen, P.; Carniani, S.; Curti, M.; Witstok, J.; Maiolino, R.; D’Eugenio, F.; Looser, T.J.; et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: Redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Astron. Astrophys. 2024, 690, A288. [Google Scholar] [CrossRef]
- Reshetnikov, V.P.; Marchuk, A.A.; Chugunov, I.V.; Usachev, P.A.; Mosenkov, A.V. Evolution of the Spiral Structure of Galaxies from HST COSMOS Field Data. Astron. Lett. 2022, 48, 644–652. [Google Scholar] [CrossRef]
- Reshetnikov, V.P.; Marchuk, A.A.; Chugunov, I.V.; Usachev, P.A.; Mosenkov, A.V. The possible evolution of pitch angles of spiral galaxies. Astron. Astrophys. 2023, 680, L14. [Google Scholar] [CrossRef]
- Funakoshi, N.; Matsunaga, N.; Kawata, D.; Baba, J.; Taniguchi, D.; Fujii, M. Clues to growth and disruption of two neighbouring spiral arms of the Milky Way. Not. R. Astron. Soc. 2024, 533, 4324–4333. [Google Scholar] [CrossRef]
- Lin, C.C.; Shu, F.H. On the Spiral Structure of Disk Galaxies. Astrophys. J. 1964, 140, 646. [Google Scholar] [CrossRef]
- Lin, C.C.; Shu, F.H. Density waves in disk galaxies. In Proceedings of the Radio Astronomy and the Galactic System, Noordwijk, The Netherlands, 25 August–1 September 1967; van Woerden, H., Ed.; Academic Press: London, UK, 1967; Volume 31, p. 313. [Google Scholar]
- Roberts, W.W. Large-Scale Shock Formation in Spiral Galaxies and its Implications on Star Formation. Astrophys. J. 1969, 158, 123. [Google Scholar] [CrossRef]
- Bertin, G.; Lin, C.C.; Lowe, S.A.; Thurstans, R.P. Modal Approach to the Morphology of Spiral Galaxies. II. Dynamical Mechanisms. Astrophys. J. 1989, 338, 104. [Google Scholar] [CrossRef]
- Athanassoula, E. Manifold-driven spirals in N-body barred galaxy simulations. Not. R. Astron. Soc. 2012, 426, L46–L50. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Athanassoula, E.; Masdemont, J.J.; García-Gómez, C. The formation of spiral arms and rings in barred galaxies. Astron. Astrophys. 2007, 472, 63–75. [Google Scholar] [CrossRef]
- Toomre, A. Group Velocity of Spiral Waves in Galactic Disks. Astrophys. J. 1969, 158, 899. [Google Scholar] [CrossRef]
- Julian, W.H.; Toomre, A. Non-Axisymmetric Responses of Differentially Rotating Disks of Stars. Astrophys. J. 1966, 146, 810. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Carlberg, R.G. Spiral instabilities provoked by accretion and star formation. Astrophys. J. 1984, 282, 61–74. [Google Scholar] [CrossRef]
- Sellwood, J.A. The lifetimes of spiral patterns in disc galaxies. Not. R. Astron. Soc. 2011, 410, 1637–1646. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Carlberg, R.G. Spiral instabilities: Mechanism for recurrence. Not. R. Astron. Soc. 2019, 489, 116–131. [Google Scholar] [CrossRef]
- Dobbs, C.L.; Pringle, J.E. Age distributions of star clusters in spiral and barred galaxies as a test for theories of spiral structure. Not. R. Astron. Soc. 2010, 409, 396–404. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Masters, K.L. Spirals in galaxies. arXiv 2021, arXiv:2110.05615. [Google Scholar]
- Dobbs, C.; Baba, J. Dawes Review 4: Spiral Structures in Disc Galaxies. Publ. Astron. Soc. Aust. 2014, 31, e035. [Google Scholar] [CrossRef]
- Shu, F.H. Six Decades of Spiral Density Wave Theory. Annu. Rev. Astron. Astrophys. 2016, 54, 667–724. [Google Scholar] [CrossRef]
- Tamburro, D.; Rix, H.W.; Walter, F.; Brinks, E.; de Blok, W.J.G.; Kennicutt, R.C.; Mac Low, M.M. Geometrically Derived Timescales for Star Formation in Spiral Galaxies. Astron. J. 2008, 136, 2872–2885. [Google Scholar] [CrossRef]
- Chang, Y.Y.; van der Wel, A.; da Cunha, E.; Rix, H.W. Stellar Masses and Star Formation Rates for 1M Galaxies from SDSS+WISE. Astrophys. J. Suppl. 2015, 219, 8. [Google Scholar] [CrossRef]
- Devereux, N.A.; Young, J.S. The Origin of the Far-Infrared Luminosity from Spiral Galaxies. Astrophys. J. 1990, 350, L25. [Google Scholar] [CrossRef]
- Galametz, M.; Kennicutt, R.C.; Albrecht, M.; Aniano, G.; Armus, L.; Bertoldi, F.; Calzetti, D.; Crocker, A.F.; Croxall, K.V.; Dale, D.A.; et al. Mapping the cold dust temperatures and masses of nearby KINGFISH galaxies with Herschel. Not. R. Astron. Soc. 2012, 425, 763–787. [Google Scholar] [CrossRef]
- Auld, R.; Bianchi, S.; Smith, M.W.L.; Davies, J.I.; Bendo, G.J.; di Serego, S.A.; Cortese, L.; Baes, M.; Bomans, D.J.; Boquien, M.; et al. The Herschel Virgo Cluster Survey—XII. FIR properties of optically selected Virgo cluster galaxies. Not. R. Astron. Soc. 2013, 428, 1880–1910. [Google Scholar] [CrossRef]
- Cortese, L.; Fritz, J.; Bianchi, S.; Boselli, A.; Ciesla, L.; Bendo, G.J.; Boquien, M.; Roussel, H.; Baes, M.; Buat, V.; et al. PACS photometry of the Herschel Reference Survey—Far-infrared/submillimetre colours as tracers of dust properties in nearby galaxies. Not. R. Astron. Soc. 2014, 440, 942–956. [Google Scholar] [CrossRef]
- Davies, J.I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; et al. DustPedia: A Definitive Study of Cosmic Dust in the Local Universe. Publ. Astron. Soc. Pac. 2017, 129, 044102. [Google Scholar] [CrossRef]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Werner, M.W.; Roellig, T.L.; Low, F.J.; Rieke, G.H.; Rieke, M.; Hoffmann, W.F.; Young, E.; Houck, J.R.; Brandl, B.; Fazio, G.G.; et al. The Spitzer Space Telescope Mission. Astrophys. J. Suppl. 2004, 154, 1. [Google Scholar] [CrossRef]
- Neugebauer, G.; Habing, H.J.; van Duinen, R.; Aumann, H.H.; Baud, B.; Beichman, C.A.; Beintema, D.A.; Boggess, N.; Clegg, P.E.; de Jong, T.; et al. The Infrared Astronomical Satellite (IRAS) mission. Astrophys. J. 1984, 278, L1–L6. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration]. Planck early results. I. The Planck mission. Astron. Astrophys. 2011, 536, A1. [Google Scholar] [CrossRef]
- Morrissey, P.; Conrow, T.; Barlow, T.A.; Small, T.; Seibert, M.; Wyder, T.K.; Budavári, T.; Arnouts, S.; Friedman, P.G.; Forster, K.; et al. The Calibration and Data Products of GALEX. Astrophys. J. Suppl. 2007, 173, 682–697. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Griffin, M.J.; Abergel, A.; Abreu, A.; Ade, P.A.R.; André, P.; Augueres, J.L.; Babbedge, T.; Bae, Y.; Baillie, T.; Baluteau, J.P.; et al. The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 2010, 518, L3. [Google Scholar] [CrossRef]
- Poglitsch, A.; Waelkens, C.; Geis, N.; Feuchtgruber, H.; Vandenbussche, B.; Rodriguez, L.; Krause, O.; Renotte, E.; van Hoof, C.; Saraceno, P.; et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 2010, 518, L2. [Google Scholar] [CrossRef]
- Fazio, G.G.; Hora, J.L.; Allen, L.E.; Ashby, M.L.N.; Barmby, P.; Deutsch, L.K.; Huang, J.S.; Kleiner, S.; Marengo, M.; Megeath, S.T.; et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 2004, 154, 10–17. [Google Scholar] [CrossRef]
- Aniano, G.; Draine, B.T.; Gordon, K.D.; Sandstrom, K. Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes. Publ. Astron. Soc. Pac. 2011, 123, 1218. [Google Scholar] [CrossRef]
- Bradley, L.; Sipocz, B.; Robitaille, T.; Tollerud, E.; Vinícius, Z.; Deil, C.; Barbary, K.; Wilson, T.J.; Busko, I.; Günther, H.M.; et al. Astropy/Photutils: 1.0.0; Zenodo: Genève, Switzerland, 2020. [Google Scholar] [CrossRef]
- Román, J.; Trujillo, I.; Montes, M. Galactic cirri in deep optical imaging. Astron. Astrophys. 2020, 644, A42. [Google Scholar] [CrossRef]
- Marchuk, A.A.; Smirnov, A.A.; Mosenkov, A.V.; Il’in, V.B.; Gontcharov, G.A.; Savchenko, S.S.; Román, J. Fractal dimension of optical cirrus in Stripe82. Not. R. Astron. Soc. 2021, 508, 5825–5841. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Savchenko, S.S.; Poliakov, D.M.; Marchuk, A.A.; Mosenkov, A.V.; Il’in, V.B.; Gontcharov, G.A.; Román, J.; Seguine, J. Prospects for future studies using deep imaging: Analysis of individual Galactic cirrus filaments. Not. R. Astron. Soc. 2023, 519, 4735–4752. [Google Scholar] [CrossRef]
- Anand, G.S.; Lee, J.C.; Van Dyk, S.D.; Leroy, A.K.; Rosolowsky, E.; Schinnerer, E.; Larson, K.; Kourkchi, E.; Kreckel, K.; Scheuermann, F.; et al. Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Not. R. Astron. Soc. 2021, 501, 3621–3639. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Gibson, B.K.; Ferrarese, L.; Kelson, D.D.; Sakai, S.; Mould, J.R.; Kennicutt, R.C., Jr.; Ford, H.C.; Graham, J.A.; et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. Astrophys. J. 2001, 553, 47–72. [Google Scholar] [CrossRef]
- Quillen, A.C.; Frogel, J.A.; Kuchinski, L.E.; Terndrup, D.M. Multiband Images of the Barred Galaxy NGC 1097. Astron. J. 1995, 110, 156. [Google Scholar] [CrossRef]
- Kolcu, T.; Maciejewski, W.; Gadotti, D.A.; Fragkoudi, F.; Erwin, P.; Sánchez-Blázquez, P.; Neumann, J.; Van de Ven, G.; de Sá-Freitas, C.; Longmore, S.; et al. Composite bulges—IV. Detecting signatures of gas inflows in the IFU data: The MUSE view of ionized gas kinematics in NGC 1097. Not. R. Astron. Soc. 2023, 524, 207–223. [Google Scholar] [CrossRef]
- Prieto, M.A.; Fernandez-Ontiveros, J.A.; Bruzual, G.; Burkert, A.; Schartmann, M.; Charlot, S. From kpcs to the central parsec of NGC 1097: Feeding star formation and a black hole at the same time. Not. R. Astron. Soc. 2019, 485, 3264–3276. [Google Scholar] [CrossRef]
- Kotilainen, J.K.; Reunanen, J.; Laine, S.; Ryder, S.D. Near-infrared line imaging of the circumnuclear starburst rings in the active galaxies NGC 1097 and NGC 6574. Astron. Astrophys. 2000, 353, 834–846. [Google Scholar]
- Barth, A.J.; Ho, L.C.; Filippenko, A.V.; Sargent, W.L. Hubble Space Telescope Observations of Circumnuclear Star-Forming Rings in NGC 1097 and NGC 6951. Astron. J. 1995, 110, 1009. [Google Scholar] [CrossRef]
- Storchi-Bergmann, T.; Eracleous, M.; Livio, M.; Wilson, A.S.; Filippenko, A.V.; Halpern, J.P. The Variability of the Double-peaked Balmer Lines in the Active Nucleus of NGC 1097. Astrophys. J. 1995, 443, 617. [Google Scholar] [CrossRef]
- Ho, L.C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys. 2008, 46, 475–539. [Google Scholar] [CrossRef]
- Lewis, K.T.; Eracleous, M. Black Hole Masses of Active Galaxies with Double-peaked Balmer Emission Lines. Astrophys. J. 2006, 642, 711–719. [Google Scholar] [CrossRef]
- Tomás, L.; Matzeu, G.A.; Jiménez Bailón, E.; Kalfountzou, E.; Santos-Lleó, M.; Parker, M.L.; Ballo, L.; Loiseau, N.; Ehle, M.; Rodríguez-Pascual, P.; et al. The changing-look AGN NGC 1566 in quiescence with XMM-Newton: A nuclear starburst and an AGN competing in power? Not. R. Astron. Soc. 2022, 514, 403–415. [Google Scholar] [CrossRef]
- Oknyansky, V.L.; Winkler, H.; Tsygankov, S.S.; Lipunov, V.M.; Gorbovskoy, E.S.; van Wyk, F.; Buckley, D.A.H.; Tyurina, N.V. New changing look case in NGC 1566. Not. R. Astron. Soc. 2019, 483, 558–564. [Google Scholar] [CrossRef]
- Liang, W.C.; Shu, X.W.; Wang, J.X.; Tan, Y.; Zhang, W.J.; Sun, L.M.; Jiang, N.; Dou, L.M. Response of the Fe Kα line emission to the X-ray continuum variability in the changing-look active galactic nucleus NGC 1566. J. High Energy Astrophys. 2022, 33, 20–31. [Google Scholar] [CrossRef]
- Parker, M.L.; Schartel, N.; Grupe, D.; Komossa, S.; Harrison, F.; Kollatschny, W.; Mikula, R.; Santos-Lleó, M.; Tomás, L. X-ray spectra reveal the reawakening of the repeat changing-look AGN NGC 1566. Not. R. Astron. Soc. 2019, 483, L88–L92. [Google Scholar] [CrossRef]
- Woo, J.H.; Urry, C.M. Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities. Astrophys. J. 2002, 579, 530–544. [Google Scholar] [CrossRef]
- Jana, A.; Kumari, N.; Nandi, P.; Naik, S.; Chatterjee, A.; Jaisawal, G.K.; Hayasaki, K.; Ricci, C. Broad-band X-ray observations of the 2018 outburst of the changing-look active galactic nucleus NGC 1566. Not. R. Astron. Soc. 2021, 507, 687–703. [Google Scholar] [CrossRef]
- Querejeta, M.; Schinnerer, E.; Meidt, S.; Sun, J.; Leroy, A.K.; Emsellem, E.; Klessen, R.S.; Muñoz-Mateos, J.C.; Salo, H.; Laurikainen, E.; et al. Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies. Astron. Astrophys. 2021, 656, A133. [Google Scholar] [CrossRef]
- Eibensteiner, C.; Sun, J.; Bigiel, F.; Leroy, A.K.; Schinnerer, E.; Rosolowsky, E.; Kurapati, S.; Pisano, D.J.; de Blok, W.J.G.; Barnes, A.T.; et al. PHANGS-MeerKAT and MHONGOOSE HI observations of nearby spiral galaxies: Physical drivers of the molecular gas fraction, Rmol. Astron. Astrophys. 2024, 691, A163. [Google Scholar] [CrossRef]
- Maccagni, F.M.; de Blok, W.J.G.; Mancera Piña, P.E.; Ragusa, R.; Iodice, E.; Spavone, M.; McGaugh, S.; Oman, K.A.; Oosterloo, T.A.; Koribalski, B.S.; et al. MHONGOOSE discovery of a gas-rich low surface brightness galaxy in the Dorado group. Astron. Astrophys. 2024, 690, A69. [Google Scholar] [CrossRef]
- de Vaucouleurs, G.; de Vaucouleurs, A.; Corwin, H.G., Jr.; Buta, R.J.; Paturel, G.; Fouque, P. Third Reference Catalogue of Bright Galaxies; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Haynes, M.P.; Giovanelli, R.; Roberts, M.S. A detailed examination of the neutral hydrogen distribution in the Leo triplet NGC 3632, 3627, and 3628. Astrophys. J. 1979, 229, 83–90. [Google Scholar] [CrossRef]
- Soida, M.; Urbanik, M.; Beck, R.; Wielebinski, R.; Balkowski, C. Unusual magnetic fields in the interacting spiral NGC 3627. Astron. Astrophys. 2001, 378, 40–50. [Google Scholar] [CrossRef]
- Moustakas, J.; Kennicutt, R.C.; Tremonti, C.A.; Dale, D.A.; Smith, J.D.; Calzetti, D. Optical Spectroscopy and Nebular Oxygen Abundances of the Spitzer/SINGS Galaxies. Astrophys. J. Suppl. 2010, 190, 233–266. [Google Scholar] [CrossRef]
- Casasola, V.; Hunt, L.K.; Combes, F.; García-Burillo, S.; Neri, R. Molecular Gas in NUclei of GAlaxies (NUGA). XIV. The barred LINER/Seyfert 2 galaxy NGC 3627. Astron. Astrophys. 2011, 527, A92. [Google Scholar] [CrossRef]
- Kim, T.; Gadotti, D.A.; Querejeta, M.; Pérez, I.; Zurita, A.; Neumann, J.; van de Ven, G.; Méndez-Abreu, J.; de Lorenzo-Cáceres, A.; Sánchez-Blázquez, P.; et al. Impacts of Bar-driven Shear and Shocks on Star Formation. Astrophys. J. 2024, 968, 87. [Google Scholar] [CrossRef]
- Lomaeva, M.; Saintonge, A.; De Looze, I. The recent star formation histories of nearby galaxies on resolved scales. Not. R. Astron. Soc. 2024, 531, 815–829. [Google Scholar] [CrossRef]
- Leroy, A.K.; Hughes, A.; Liu, D.; Pety, J.; Rosolowsky, E.; Saito, T.; Schinnerer, E.; Schruba, A.; Usero, A.; Faesi, C.M.; et al. PHANGS-ALMA Data Processing and Pipeline. Astrophys. J. Suppl. 2021, 255, 19. [Google Scholar] [CrossRef]
- Makarov, D.; Prugniel, P.; Terekhova, N.; Courtois, H.; Vauglin, I. HyperLEDA. III. The catalogue of extragalactic distances. Astron. Astrophys. 2014, 570, A13. [Google Scholar] [CrossRef]
- Kalita, B.S.; Silverman, J.D.; Daddi, E.; Bottrell, C.; Ho, L.C.; Ding, X.; Yang, L. A Rest-frame Near-IR Study of Clumps in Galaxies at 1 < z < 2 Using JWST/NIRCam: Connection to Galaxy Bulges. Astrophys. J. 2024, 960, 25. [Google Scholar] [CrossRef]
- Kalita, B.S.; Silverman, J.D.; Daddi, E.; Mercier, W.; Ho, L.C.; Ding, X. Near-IR clumps and their properties in high-z galaxies with JWST/NIRCam. Not. R. Astron. Soc. 2025, 537, 402–418. [Google Scholar] [CrossRef]
- Freeman, K.C. On the Disks of Spiral and S0 Galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- Sersic, J.L. Atlas de Galaxias Australes; NASA: Washington, DC, USA, 1968.
- Papaderos, P.; Breda, I.; Humphrey, A.; Michel Gomes, J.; Ziegler, B.L.; Pappalardo, C. Inside-out star formation quenching and the need for a revision of bulge-disk decomposition concepts for spiral galaxies. Astron. Astrophys. 2022, 658, A74. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A.L. Practical Bayesian Inference; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Simard, L.; Mendel, J.T.; Patton, D.R.; Ellison, S.L.; McConnachie, A.W. A Catalog of Bulge+disk Decompositions and Updated Photometry for 1.12 Million Galaxies in the Sloan Digital Sky Survey. Astrophys. J. Suppl. 2011, 196, 11. [Google Scholar] [CrossRef]
- Head, J.T.C.G.; Lucey, J.R.; Hudson, M.J.; Smith, R.J. Dissecting the red sequence: The bulge and disc colours of early-type galaxies in the Coma cluster. Not. R. Astron. Soc. 2014, 440, 1690–1711. [Google Scholar] [CrossRef]
- Ramambason, L.; Lebouteiller, V.; Bik, A.; Richardson, C.T.; Galliano, F.; Schaerer, D.; Morisset, C.; Polles, F.L.; Madden, S.C.; Chevance, M.; et al. Inferring the HII region escape fraction of ionizing photons from infrared emission lines in metal-poor star-forming dwarf galaxies. Astron. Astrophys. 2022, 667, A35. [Google Scholar] [CrossRef]
- Katsioli, S.; Adam, R.; Ade, P.; Ajeddig, H.; André, P.; Artis, E.; Aussel, H.; Beelen, A.; Benoît, A.; Berta, S.; et al. Exploring the millimetre emission in nearby galaxies: Analysis of the edge-on galaxy NGC 891. Eur. Phys. J. Web Conf. 2022, 257, 00023. [Google Scholar] [CrossRef]
- Katsioli, S.; Xilouris, E.M.; Kramer, C.; Adam, R.; Ade, P.; Ajeddig, H.; André, P.; Artis, E.; Aussel, H.; Baes, M.; et al. The stratification of ISM properties in the edge-on galaxy NGC 891 revealed by NIKA2. Astron. Astrophys. 2023, 679, A7. [Google Scholar] [CrossRef]
- Pantoni, L.; Adam, R.; Ade, P.; Ajeddig, H.; André, P.; Artis, E.; Aussel, H.; Baes, M.; Beelen, A.; Benoît, A.; et al. IAS/CEA Evolution of Dust in Nearby Galaxies (ICED): The spatially-resolved dust properties of NGC4254. Eur. Phys. J. Web Conf. 2024, 293, 00038. [Google Scholar] [CrossRef]
- Bell, A.C.; Onaka, T.; Galliano, F.; Wu, R.; Doi, Y.; Kaneda, H.; Ishihara, D.; Giard, M. Investigation of the origin of the anomalous microwave emission in Lambda Orionis. Publ. Astron. Soc. Jpn. 2019, 71, 123. [Google Scholar] [CrossRef]
- Viaene, S.; Nersesian, A.; Fritz, J.; Verstocken, S.; Baes, M.; Bianchi, S.; Casasola, V.; Cassarà, L.; Clark, C.; Davies, J.; et al. High-resolution, 3D radiative transfer modelling. IV. AGN-powered dust heating in NGC 1068. Astron. Astrophys. 2020, 638, A150. [Google Scholar] [CrossRef]
- Stalevski, M.; Fritz, J.; Baes, M.; Nakos, T.; Popović, L.Č. 3D radiative transfer modelling of the dusty tori around active galactic nuclei as a clumpy two-phase medium. Not. R. Astron. Soc. 2012, 420, 2756–2772. [Google Scholar] [CrossRef]
- Hönig, S.F.; Beckert, T.; Ohnaka, K.; Weigelt, G. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron. Astrophys. 2006, 452, 459–471. [Google Scholar] [CrossRef]
- de Vaucouleurs, G. Recherches sur les Nebuleuses Extragalactiques. Ann. D’Astrophys. 1948, 11, 247. [Google Scholar]
- Sauvage, M.; Sacchi, N.; Bendo, G.J.; Boselli, A.; Pohlen, M.; Wilson, C.D.; Auld, R.; Baes, M.; Barlow, M.J.; Bock, J.J.; et al. The central region of spiral galaxies as seen by Herschel. M 81, M 99, and M 100. Astron. Astrophys. 2010, 518, L64. [Google Scholar] [CrossRef]
- Pessa, I.; Schinnerer, E.; Sanchez-Blazquez, P.; Belfiore, F.; Groves, B.; Emsellem, E.; Neumann, J.; Leroy, A.K.; Bigiel, F.; Chevance, M.; et al. Resolved stellar population properties of PHANGS-MUSE galaxies. Astron. Astrophys. 2023, 673, A147. [Google Scholar] [CrossRef]
- Savchenko, S.S.; Reshetnikov, V.P. Pitch angle variations in spiral galaxies. Not. R. Astron. Soc. 2013, 436, 1074–1083. [Google Scholar] [CrossRef]
- Marchuk, A.A.; Mosenkov, A.V.; Chugunov, I.V.; Kostiuk, V.S.; Skryabina, M.N.; Reshetnikov, V.P. A new, purely photometric method for determination of resonance locations in spiral galaxies. Not. R. Astron. Soc. 2024, 527, L66–L70. [Google Scholar] [CrossRef]
- Martínez-García, E.E.; González-Lópezlira, R.A.; Gómez, G.C. Effects of Non-Circular Motions on Azimuthal Color Gradients. Astrophys. J. 2009, 707, 1650–1658. [Google Scholar] [CrossRef]
- Sakhibov, F.; Gusev, A.S.; Hemmerich, C. Azimuthal propagation of star formation in nearby spiral galaxies: NGC 628, NGC 3726, and NGC 6946. Not. R. Astron. Soc. 2021, 508, 912–925. [Google Scholar] [CrossRef]
- Yu, S.Y.; Ho, L.C. Dependence of the Spiral Arms Pitch Angle on Wavelength as a Test of the Density Wave Theory. Astrophys. J. 2018, 869, 29. [Google Scholar] [CrossRef]
- Martínez-García, E.E.; González-Lópezlira, R.A.; Puerari, I. Colour jumps across the spiral arms of Hubble Ultra Deep Field galaxies. Not. R. Astron. Soc. 2023, 524, 18–31. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. The shapes of spiral arms along the Hubble sequence. Astron. J. 1981, 86, 1847–1858. [Google Scholar] [CrossRef]
- Higdon, J.L.; Wallin, J.F. A Minor-Merger Interpretation for NGC 1097’s “Jets”. Astrophys. J. 2003, 585, 281–297. [Google Scholar] [CrossRef]
- Elagali, A.; Staveley-Smith, L.; Rhee, J.; Wong, O.I.; Bosma, A.; Westmeier, T.; Koribalski, B.S.; Heald, G.; For, B.Q.; Kleiner, D.; et al. WALLABY early science—III. An H I study of the spiral galaxy NGC 1566. Not. R. Astron. Soc. 2019, 487, 2797–2817. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; Walter, F.; Brinks, E.; Trachternach, C.; Oh, S.H.; Kennicutt, R.C., Jr. High-Resolution Rotation Curves and Galaxy Mass Models from THINGS. Astron. J. 2008, 136, 2648–2719. [Google Scholar] [CrossRef]
- Foyle, K.; Rix, H.W.; Dobbs, C.L.; Leroy, A.K.; Walter, F. Observational Evidence Against Long-lived Spiral Arms in Galaxies. Astrophys. J. 2011, 735, 101. [Google Scholar] [CrossRef]
- Kostiuk, V.; Marchuk, A.; Gusev, A.; Chugunov, I. A Comprehensive Analysis on the Nature of the Spiral Arms in NGC 3686, NGC 4321, and NGC 2403. Galaxies 2025, 13, 27. [Google Scholar] [CrossRef]
- Oh, S.H.; Kim, W.T.; Lee, H.M.; Kim, J. Physical Properties of Tidal Features in Interacting Disk Galaxies. Astrophys. J. 2008, 683, 94–113. [Google Scholar] [CrossRef]
- Kostiuk, V.S.; Marchuk, A.A.; Gusev, A.S. Cross-method Analysis of Corotation Radii Data Set for Spiral Galaxies. Res. Astron. Astrophys. 2024, 24, 075007. [Google Scholar] [CrossRef]
- Tremaine, S.; Weinberg, M.D. A kinematic method for measuring the pattern speed of barred galaxies. Astrophys. J. 1984, 282, L5–L7. [Google Scholar] [CrossRef]
- Font, J.; Beckman, J.E.; Querejeta, M.; Epinat, B.; James, P.A.; Blasco-herrera, J.; Erroz-Ferrer, S.; Pérez, I. Interlocking Resonance Patterns in Galaxy Disks. Astrophys. J. Suppl. 2014, 210, 2. [Google Scholar] [CrossRef]
- Garcia-Burillo, S.; Combes, F.; Schinnerer, E.; Boone, F.; Hunt, L.K. Molecular gas in NUclei of GAlaxies (NUGA). IV. Gravitational torques and AGN feeding. Astron. Astrophys. 2005, 441, 1011–1030. [Google Scholar] [CrossRef]
- Williams, T.G.; Schinnerer, E.; Emsellem, E.; Meidt, S.; Querejeta, M.; Belfiore, F.; Bešlić, I.; Bigiel, F.; Chevance, M.; Dale, D.A.; et al. Applying the Tremaine-Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics. Astron. J. 2021, 161, 185. [Google Scholar] [CrossRef]
- Elmegreen, D.M.; Elmegreen, B.G. Inner Two-Arm Symmetry in Spiral Galaxies. Astrophys. J. 1995, 445, 591. [Google Scholar] [CrossRef]
- Lin, L.H.; Wang, H.H.; Hsieh, P.Y.; Taam, R.E.; Yang, C.C.; Yen, D.C.C. Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 1097. Astrophys. J. 2013, 771, 8. [Google Scholar] [CrossRef]
- Font, J.; Beckman, J.E.; Zaragoza-Cardiel, J.; Fathi, K.; Epinat, B.; Amram, P. The ratio of pattern speeds in double-barred galaxies. Not. R. Astron. Soc. 2014, 444, L85–L89. [Google Scholar] [CrossRef]
- Piñol-Ferrer, N.; Fathi, K.; Carignan, C.; Font, J.; Hernandez, O.; Karlsson, R.; van de Ven, G. Bar pattern speed and position of the circumnuclear ring in NGC 1097. Not. R. Astron. Soc. 2014, 438, 971–982. [Google Scholar] [CrossRef]
- Ruiz-García, M.; Querejeta, M.; García-Burillo, S.; Emsellem, E.; Meidt, S.E.; Sormani, M.C.; Schinnerer, E.; Williams, T.G.; Bazzi, Z.; Colombo, D.; et al. Dynamical resonances in PHANGS galaxies. Astron. Astrophys. 2024, 691, A351. [Google Scholar] [CrossRef]
- Vera-Villamizar, N.; Dottori, H.; Puerari, I.; de Carvalho, R. Analysis of Resonances in Grand Design Spiral Galaxies. Astrophys. J. 2001, 547, 187–199. [Google Scholar] [CrossRef]
- Abdeen, S.; Kennefick, D.; Kennefick, J.; Miller, R.; Shields, D.W.; Monson, E.B.; Davis, B.L. Determining the co-rotation radii of spiral galaxies using spiral arm pitch angle measurements at multiple wavelengths. Not. R. Astron. Soc. 2020, 496, 1610–1619. [Google Scholar] [CrossRef]
- Rand, R.J.; Wallin, J.F. Pattern Speeds of BIMA SONG Galaxies with Molecule-dominated Interstellar Mediums Using the Tremaine-Weinberg Method. Astrophys. J. 2004, 614, 142–157. [Google Scholar] [CrossRef]
- Marchuk, A.A. Resonance coupling in spiral arms. Patterns for flat rotation curve. Astron. Astrophys. 2024, 686, L14. [Google Scholar] [CrossRef]
- Korchagin, V.; Kikuchi, N.; Miyama, S.M.; Orlova, N.; Peterson, B.A. Global Spiral Modes in NGC 1566: Observations and Theory. Astrophys. J. 2000, 541, 565–578. [Google Scholar] [CrossRef]
- van der Giessen, S.A.; Matsumoto, K.; Relano, M.; De Looze, I.; Romano, L.; Hirashita, H.; Nagamine, K.; Baes, M.; Palla, M.; Hou, K.C.; et al. Radial properties of dust in galaxies: Comparison between observations and isolated galaxy simulations. Astron. Astrophys. 2024, 692, A39. [Google Scholar] [CrossRef]
- De Looze, I.; Lamperti, I.; Saintonge, A.; Relaño, M.; Smith, M.W.L.; Clark, C.J.R.; Wilson, C.D.; Decleir, M.; Jones, A.P.; Kennicutt, R.C.; et al. JINGLE—IV. Dust, H I gas, and metal scaling laws in the local Universe. Not. R. Astron. Soc. 2020, 496, 3668–3687. [Google Scholar] [CrossRef]
- Matsumoto, K.; Hirashita, H.; Nagamine, K.; van der Giessen, S.; Romano, L.E.C.; Relaño, M.; De Looze, I.; Baes, M.; Nersesian, A.; Camps, P.; et al. Observational signatures of the dust size evolution in isolated galaxy simulations. Astron. Astrophys. 2024, 689, A79. [Google Scholar] [CrossRef]
- Egorov, O.V.; Kreckel, K.; Sandstrom, K.M.; Leroy, A.K.; Glover, S.C.O.; Groves, B.; Kruijssen, J.M.D.; Barnes, A.T.; Belfiore, F.; Bigiel, F.; et al. PHANGS-JWST First Results: Destruction of the PAH Molecules in H II Regions Probed by JWST and MUSE. Astrophys. J. 2023, 944, L16. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Shchekinov, Y.A. Radial transport of dust in spiral galaxies. New Astron. 2006, 11, 240–255. [Google Scholar] [CrossRef]
- Scarano, S.; Lépine, J.R.D. Radial metallicity distribution breaks at corotation radius in spiral galaxies. Not. R. Astron. Soc. 2013, 428, 625–640. [Google Scholar] [CrossRef]
- Gontcharov, G.A. Spatial variations of the extinction law in the galactic disk from infrared observations. Astron. Lett. 2013, 39, 83–94. [Google Scholar] [CrossRef]
- Aramyan, L.S.; Hakobyan, A.A.; Petrosian, A.R.; de Lapparent, V.; Bertin, E.; Mamon, G.A.; Kunth, D.; Nazaryan, T.A.; Adibekyan, V.; Turatto, M. Supernovae and their host galaxies—IV. The distribution of supernovae relative to spiral arms. Not. R. Astron. Soc. 2016, 459, 3130–3143. [Google Scholar] [CrossRef]
- Foyle, K.; Rix, H.W.; Walter, F.; Leroy, A.K. Arm and Interarm Star Formation in Spiral Galaxies. Astrophys. J. 2010, 725, 534–541. [Google Scholar] [CrossRef]
Name/Facility | λ, μm | Pixel Size | PSF FWHM | log10(λ[μm]) |
---|---|---|---|---|
Spitzer 3.6 μm | 3.6 | 0.75 | 1.66 | 0.56 |
Spitzer 8.0 μm | 8.0 | 0.6 | 1.98 | 0.90 |
Spitzer 24 μm | 24 | 1.5 | 6 | 1.38 |
PACS 70 μm | 70 | 4 | 18 | 1.85 |
PACS 100 μm | 100 | 3 | 10 | 2.00 |
PACS 160 μm | 160 | 4 | 13 | 2.20 |
SPIRE 250 μm | 250 | 6 | 18 | 2.40 |
Galaxy/Spiral | Band | Spiral/Total | Pitch ψ, Deg | Width, Arcsec |
---|---|---|---|---|
NGC 1097 A | Spitzer 3.6 | 0.14 | 17.88 ± 1.82 | 69.92 ± 0.69 |
NGC 1097 A | Spitzer 8.0 | 0.07 | 13.89 ± 1.06 | 24.07 ± 1.43 |
NGC 1097 A | Spitzer 24 | 0.05 | 14.11 ± 1.07 | 30.27 ± 3.15 |
NGC 1097 A | PACS 70 | 0.03 | 13.58 ± 1.24 | 20.18 ± 0.32 |
NGC 1097 A | PACS 100 | 0.06 | 12.70 ± 1.42 | 27.91 ± 0.33 |
NGC 1097 A | PACS 160 | 0.12 | 14.37 ± 1.21 | 33.83 ± 0.44 |
NGC 1097 A | SPIRE 250 | 0.10 | 13.59 ± 1.10 | 22.26 ± 0.85 |
NGC 1097 B | Spitzer 3.6 | 0.07 | 18.25 ± 1.67 | 50.86 ± 0.68 |
NGC 1097 B | Spitzer 8.0 | 0.08 | 20.51 ± 0.45 | 33.33 ± 1.08 |
NGC 1097 B | Spitzer 24 | 0.04 | 21.34 ± 0.32 | 51.25 ± 4.72 |
NGC 1097 B | PACS 70 | 0.04 | 17.70 ± 0.58 | 51.78 ± 0.00 |
NGC 1097 B | PACS 100 | 0.09 | 22.05 ± 1.75 | 58.90 ± 0.00 |
NGC 1097 B | PACS 160 | 0.11 | 20.94 ± 0.43 | 45.92 ± 0.49 |
NGC 1097 B | SPIRE 250 | 0.13 | 18.13 ± 0.78 | 31.47 ± 0.78 |
NGC 1566 Ain | Spitzer 3.6 | 0.16 | 27.79 ± 2.70 | 47.03 ± 1.30 |
NGC 1566 Ain | Spitzer 8.0 | 0.29 | 19.93 ± 5.96 | 34.21 ± 0.65 |
NGC 1566 Ain | Spitzer 24 | 0.25 | 30.17 ± 3.92 | 39.12 ± 2.36 |
NGC 1566 Ain | PACS 70 | 0.30 | 24.75 ± 4.84 | 29.82 ± 0.00 |
NGC 1566 Ain | PACS 100 | 0.28 | 24.75 ± 4.84 | 33.22 ± 0.00 |
NGC 1566 Ain | PACS 160 | 0.27 | 24.75 ± 4.84 | 39.80 ± 0.63 |
NGC 1566 Ain | SPIRE 250 | 0.14 | 21.99 ± 3.92 | 14.87 ± 2.37 |
NGC 1566 Bin | Spitzer 3.6 | 0.22 | 13.97 ± 7.34 | 58.32 ± 0.00 |
NGC 1566 Bin | Spitzer 8.0 | 0.24 | 11.16 ± 15.63 | 42.22 ± 0.97 |
NGC 1566 Bin | Spitzer 24 | 0.16 | 29.56 ± 2.89 | 34.62 ± 2.96 |
NGC 1566 Bin | PACS 70 | 0.18 | 26.80 ± 5.13 | 30.34 ± 0.00 |
NGC 1566 Bin | PACS 100 | 0.19 | 26.80 ± 5.13 | 33.79 ± 0.00 |
NGC 1566 Bin | PACS 160 | 0.21 | 26.80 ± 5.13 | 42.95 ± 0.00 |
NGC 1566 Bin | SPIRE 250 | 0.10 | 25.13 ± 2.64 | 12.16 ± 2.26 |
NGC 1566 Aout | Spitzer 3.6 | 0.12 | 14.34 ± 0.50 | 58.41 ± 0.00 |
NGC 1566 Aout | Spitzer 8.0 | 0.04 | 18.54 ± 0.60 | 36.21 ± 2.98 |
NGC 1566 Aout | Spitzer 24 | 0.04 | 17.68 ± 0.38 | 38.39 ± 0.00 |
NGC 1566 Aout | PACS 70 | 0.04 | 17.23 ± 0.32 | 28.35 ± 0.00 |
NGC 1566 Aout | PACS 100 | 0.05 | 17.23 ± 0.32 | 31.58 ± 0.00 |
NGC 1566 Aout | PACS 160 | 0.06 | 17.23 ± 0.32 | 40.14 ± 0.00 |
NGC 1566 Aout | SPIRE 250 | 0.07 | 18.54 ± 0.86 | 44.39 ± 6.31 |
NGC 1566 Bout | Spitzer 3.6 | 0.10 | 10.88 ± 0.00 | 57.63 ± 0.00 |
NGC 1566 Bout | Spitzer 8.0 | 0.07 | 12.15 ± 0.00 | 42.61 ± 0.00 |
NGC 1566 Bout | Spitzer 24 | 0.06 | 23.69 ± 0.00 | 39.94 ± 0.00 |
NGC 1566 Bout | PACS 70 | 0.06 | 11.89 ± 0.00 | 27.67 ± 0.00 |
NGC 1566 Bout | PACS 100 | 0.07 | 11.89 ± 0.00 | 30.83 ± 0.00 |
NGC 1566 Bout | PACS 160 | 0.08 | 11.89 ± 0.00 | 39.18 ± 0.00 |
NGC 1566 Bout | SPIRE 250 | 0.07 | 14.80 ± 0.00 | 37.56 ± 4.68 |
NGC 3627 A | Spitzer 3.6 | 0.07 | 18.23 ± 1.54 | 54.96 ± 0.00 |
NGC 3627 A | Spitzer 8.0 | 0.22 | 17.17 ± 0.94 | 16.46 ± 0.02 |
NGC 3627 A | Spitzer 24 | 0.30 | 26.26 ± 0.50 | 23.39 ± 11.56 |
NGC 3627 A | PACS 70 | 0.20 | 27.09 ± 0.17 | 13.08 ± 0.45 |
NGC 3627 A | PACS 100 | 0.19 | 19.57 ± 0.30 | 16.15 ± 1.21 |
NGC 3627 A | PACS 160 | 0.29 | 14.14 ± 1.73 | 29.91 ± 0.71 |
NGC 3627 A | SPIRE 250 | 0.30 | 11.76 ± 2.20 | 25.06 ± 1.36 |
NGC 3627 B | Spitzer 3.6 | 0.12 | 22.35 ± 0.25 | 56.44 ± 0.00 |
NGC 3627 B | Spitzer 8.0 | 0.31 | 13.75 ± 0.30 | 29.02 ± 0.01 |
NGC 3627 B | Spitzer 24 | 0.31 | 17.45 ± 0.06 | 23.87 ± 3.79 |
NGC 3627 B | PACS 70 | 0.25 | 16.83 ± 0.05 | 23.15 ± 0.23 |
NGC 3627 B | PACS 100 | 0.26 | 15.01 ± 0.22 | 26.28 ± 0.39 |
NGC 3627 B | PACS 160 | 0.27 | 20.30 ± 0.18 | 29.00 ± 0.41 |
NGC 3627 B | SPIRE 250 | 0.30 | 18.55 ± 0.26 | 24.60 ± 0.78 |
Galaxy | # | CR, Arcsec | Method | Ref. |
---|---|---|---|---|
NGC 1097 | 1 | 96.60 ± 30.5 | T-W | [188] |
… | 2 | 234.3 ± 8.1 | morph | [189] |
… | 3 | 142.8 ± 0.0 | model | [190] |
… | 4 | 114.5 ± 7.1 | F-B | [191] |
… | 5 | 122.7 ± 7.1 | model | [192] |
… | 6 | 97.5 ± 12.2 | torque | [193] |
NGC 1566 | 1 | 44.40 ± 26.64 | T-W | [188] |
… | 2 | 78.78 ± 31.8 | T-W | [188] |
… | 3 | 46.98 ± 29.22 | T-W | [188] |
… | 4 | 98.70 ± 5.1 | morph | [189] |
… | 5 | 97.20 ± 4.1 | P-D | [194] |
… | 6 | 122.17 ± 45.45 | offset | [195] |
… | 7 | 127.39 ± 36.38 | offset | [195] |
… | 8 | 72.57 ± 7.0 | torque | [193] |
NGC 3627 | 1 | 34.64 ± 1.46 | T-W | [188] |
… | 2 | 77.08 ± 26.34 | T-W | [188] |
… | 3 | 85.86 ± 8.78 | T-W | [188] |
… | 4 | 94.64 ± 55.62 | T-W | [188] |
… | 5 | 171.00 ± 28.5 | offset | [100] |
… | 6 | 163.00 ± 0.0 | T-W | [196] |
… | 7 | 95.0 ± 3.7 | torque | [193] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchuk, A.A.; Chugunov, I.V.; Galliano, F.; Mosenkov, A.V.; Strekalova, P.V.; Savchenko, S.S.; Kostiuk, V.S.; Gontcharov, G.A.; Il’in, V.B.; Smirnov, A.A.; et al. Accurate Decomposition of Galaxies with Spiral Arms: Dust Properties and Distribution. Galaxies 2025, 13, 39. https://doi.org/10.3390/galaxies13020039
Marchuk AA, Chugunov IV, Galliano F, Mosenkov AV, Strekalova PV, Savchenko SS, Kostiuk VS, Gontcharov GA, Il’in VB, Smirnov AA, et al. Accurate Decomposition of Galaxies with Spiral Arms: Dust Properties and Distribution. Galaxies. 2025; 13(2):39. https://doi.org/10.3390/galaxies13020039
Chicago/Turabian StyleMarchuk, Alexander A., Ilia V. Chugunov, Frédéric Galliano, Aleksandr V. Mosenkov, Polina V. Strekalova, Sergey S. Savchenko, Valeria S. Kostiuk, George A. Gontcharov, Vladimir B. Il’in, Anton A. Smirnov, and et al. 2025. "Accurate Decomposition of Galaxies with Spiral Arms: Dust Properties and Distribution" Galaxies 13, no. 2: 39. https://doi.org/10.3390/galaxies13020039
APA StyleMarchuk, A. A., Chugunov, I. V., Galliano, F., Mosenkov, A. V., Strekalova, P. V., Savchenko, S. S., Kostiuk, V. S., Gontcharov, G. A., Il’in, V. B., Smirnov, A. A., & Poliakov, D. M. (2025). Accurate Decomposition of Galaxies with Spiral Arms: Dust Properties and Distribution. Galaxies, 13(2), 39. https://doi.org/10.3390/galaxies13020039