Spectropolarimetry for Discerning Geometry and Structure in Circumstellar Media of Hot Massive Stars
Abstract
:1. Introduction
2. Spectropolarimetric Techniques
2.1. Circumstellar Electron Scattering
2.2. Continuum Polarization from Rapid Rotation
2.3. Polarization Across Spectral Lines
2.3.1. The “Line Effect”
2.3.2. The Öhman Effect
2.3.3. The Hanle Effect
3. A Case Study Involving the Hanle Effect: Magnetospheric Wind Channeling
4. Interstellar Polarization
5. The Polstar UV Spectropolarimetry Mission Concept
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | www.astro.physik.uni-potsdam.de/PoWR/powrgrid1.php (accessed on 22 February 2025) |
References
- Langer, N. Presupernova Evolution of Massive Single and Binary Stars. Annu. Rev. Astron. Astrophys. 2012, 50, 107–164. [Google Scholar] [CrossRef]
- Nomoto, K.; Kobayashi, C.; Tominaga, N. Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 457–509. [Google Scholar] [CrossRef]
- Belczynski, K.; Bulik, T.; Fryer, C.L.; Ruiter, A.; Valsecchi, F.; Vink, J.S.; Hurley, J.R. On the Maximum Mass of Stellar Black Holes. Astrophys. J. 2010, 714, 1217–1226. [Google Scholar] [CrossRef]
- Vink, J.S. Theory and Diagnostics of Hot Star Mass Loss. Annu. Rev. Astron. Astrophys. 2022, 60, 203–246. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [PubMed]
- Kummer, F.; Toonen, S.; de Koter, A. The main evolutionary pathways of massive hierarchical triple stars. Astron. Astrophys. 2023, 678, A60. [Google Scholar] [CrossRef]
- Ud-Doula, A.; Owocki, S.P.; Townsend, R.H.D. Dynamical simulations of magnetically channelled line-driven stellar winds - III. Angular momentum loss and rotational spin-down. Mon. Not. R. Astron. Soc. 2009, 392, 1022–1033. [Google Scholar] [CrossRef]
- Renzo, M.; Zapartas, E.; de Mink, S.E.; Götberg, Y.; Justham, S.; Farmer, R.J.; Izzard, R.G.; Toonen, S.; Sana, H. Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. arXiv 2019, arXiv:1804.09164. [Google Scholar] [CrossRef]
- Penny, L.R. Projected Rotational Velocities of O-Type Stars. Astrophys. J. 1996, 463, 737. [Google Scholar] [CrossRef]
- Huang, W.; Gies, D.R.; McSwain, M.V. A Stellar Rotation Census of B Stars: From ZAMS to TAMS. Astrophys. J. 2010, 722, 605–619. [Google Scholar] [CrossRef]
- Nathaniel, K.; Vigna-Gómez, A.; Grichener, A.; Farmer, R.; Renzo, M.; Everson, R.W. Population synthesis of Thorne-Żytkow objects: Rejuvenated donors and unexplored progenitors in the common envelope formation channel. arXiv 2024, arXiv:2407.11680. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Joss, P.C.; Hsu, J.J.L. Presupernova Evolution in Massive Interacting Binaries. Astrophys. J. 1992, 391, 246. [Google Scholar] [CrossRef]
- Toonen, S.; Portegies Zwart, S.; Hamers, A.S.; Bandopadhyay, D. The evolution of stellar triples. The most common evolutionary pathways. Astron. Astrophys. 2020, 640, A16. [Google Scholar] [CrossRef]
- Wade, G.A.; Neiner, C.; Alecian, E.; Grunhut, J.H.; Petit, V.; Batz, B.d.; Bohlender, D.A.; Cohen, D.H.; Henrichs, H.F.; Kochukhov, O.; et al. The MiMeS survey of magnetism in massive stars: Introduction and overview. Mon. Not. R. Astron. Soc. 2016, 456, 2–22. [Google Scholar] [CrossRef]
- Schöller, M.; Hubrig, S.; Fossati, L.; Carroll, T.A.; Briquet, M.; Oskinova, L.M.; Järvinen, S.; Ilyin, I.; Castro, N.; Morel, T.; et al. B fields in OB stars (BOB): Concluding the FORS 2 observing campaign. Astron. Astrophys. 2017, 599, A66. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Radiative Transfer; SCIRP: Wuhan, China, 1960. [Google Scholar]
- Brown, J.C.; McLean, I.S. Polarisation by Thomson Scattering in Optically Thin Stellar Envelopes. I. Source Star at Centre of Axisymmetric Envelope. Astron. Astrophys. 1977, 57, 141. [Google Scholar]
- Cassinelli, J.P.; Nordsieck, K.H.; Murison, M.A. Polarization of Light Scattered from the Winds of Early-Type Stars. Astrophys. J. 1987, 317, 290. [Google Scholar] [CrossRef]
- Al-Malki, M.B.; Simmons, J.F.L.; Ignace, R.; Brown, J.C.; Clarke, D. Scattering polarization due to light source anisotropy. I. Large spherical envelope. Astron. Astrophys. 1999, 347, 919–926. [Google Scholar]
- Hillier, D.J. The calculation of continuum polarization due to the Rayleigh scattering phase matrix in multi-scattering axisymmetric envelopes. Astron. Astrophys. 1994, 289, 492–504. [Google Scholar]
- Hillier, D.J. The calculation of line polarization due to scattering by electrons in multi-scattering axisymmetric envelopes. Astron. Astrophys. 1996, 308, 521–534. [Google Scholar]
- Wood, K.; Bjorkman, J.E.; Whitney, B.A.; Code, A.D. The Effect of Multiple Scattering on the Polarization from Axisymmetric Circumstellar Envelopes. I. Pure Thomson Scattering Envelopes. Astrophys. J. 1996, 461, 828. [Google Scholar] [CrossRef]
- Bjorkman, K.S.; Nordsieck, K.H.; Code, A.D.; Anderson, C.M.; Babler, B.L.; Clayton, G.C.; Magalhaes, A.M.; Meade, M.R.; Nook, M.A.; Schulte-Ladbeck, R.E.; et al. First Ultraviolet Spectropolarimetry of Be Stars from the Wisconsin Ultraviolet Photo-Polarimeter Experiment. Astrophys. J. 1991, 383, L67. [Google Scholar] [CrossRef]
- Brown, J.C.; McLean, I.S.; Emslie, A.G. Polarisation by Thomson scattering in optically thin stellar envelopes. II. Binary and multiple star envelopes and the determination of binary inclinations. Res. Support. Sci. Res. Counc. 1978, 68, 415–427. [Google Scholar]
- Ignace, R.; Fullard, A.; Shrestha, M.; Nazé, Y.; Gayley, K.; Hoffman, J.L.; Lomax, J.R.; St-Louis, N. Modeling the Optical to Ultraviolet Polarimetric Variability from Thomson Scattering in Colliding-wind Binaries. Astrophys. J. 2022, 933, 5. [Google Scholar] [CrossRef]
- Cantó, J.; Raga, A.C.; Wilkin, F.P. Exact, Algebraic Solutions of the Thin-Shell Two-Wind Interaction Problem. Astrophys. J. 1996, 469, 729. [Google Scholar] [CrossRef]
- St-Louis, N.; Gayley, K.; Hillier, D.J.; Ignace, R.; Jones, C.E.; David-Uraz, A.; Richardson, N.D.; Vink, J.S.; Peters, G.J.; Hoffman, J.L.; et al. UV spectropolarimetry with Polstar: Massive star binary colliding winds. Astrophys. Space Sci. 2022, 367, 118. [Google Scholar] [CrossRef]
- Sander, A.; Hamann, W.R.; Todt, H. The Galactic WC stars. Stellar parameters from spectral analyses indicate a new evolutionary sequence. Astron. Astrophys. 2012, 540, A144. [Google Scholar] [CrossRef]
- Todt, H.; Sander, A.; Hainich, R.; Hamann, W.R.; Quade, M.; Shenar, T. Potsdam Wolf-Rayet model atmosphere grids for WN stars. Astron. Astrophys. 2015, 579, A75. [Google Scholar] [CrossRef]
- Hainich, R.; Ramachandran, V.; Shenar, T.; Sander, A.A.C.; Todt, H.; Gruner, D.; Oskinova, L.M.; Hamann, W.R. PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities. Astron. Astrophys. 2019, 621, A85. [Google Scholar] [CrossRef]
- von Zeipel, H. The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 1924, 84, 665–683. [Google Scholar] [CrossRef]
- Maeder, A.; Meynet, G. Stellar evolution with rotation. VI. The Eddington and Omega -limits, the rotational mass loss for OB and LBV stars. arXiv 2000, arXiv:astro-ph:0006405. [Google Scholar] [CrossRef]
- Cranmer, S.R. A Statistical Study of Threshold Rotation Rates for the Formation of Disks around Be Stars. Astrophys. J. 2005, 634, 585–601. [Google Scholar] [CrossRef]
- Townsend, R.H.D.; Owocki, S.P.; Howarth, I.D. Be-star rotation: How close to critical? Mon. Not. R. Astron. Soc. 2004, 350, 189–195. [Google Scholar] [CrossRef]
- Domiciano de Souza, A.; Kervella, P.; Jankov, S.; Abe, L.; Vakili, F.; di Folco, E.; Paresce, F. The spinning-top Be star Achernar from VLTI-VINCI. Astron. Astrophys. 2003, 407, L47–L50. [Google Scholar] [CrossRef]
- Cotton, D.V.; Bailey, J.; Howarth, I.D.; Bott, K.; Kedziora-Chudczer, L.; Lucas, P.W.; Hough, J.H. Polarization due to rotational distortion in the bright star Regulus. Nat. Astron. 2017, 1, 690–696. [Google Scholar] [CrossRef]
- Shepard, K.; Gies, D.R.; Kaper, L.; De Koter, A. Spectroscopic Line Modeling of the Fastest Rotating O-type Stars. Astrophys. J. 2022, 931, 35. [Google Scholar] [CrossRef]
- Bailey, J.; Lewis, F.; Howarth, I.D.; Cotton, D.V.; Marshall, J.P.; Kedziora-Chudczer, L. ϵ Sagittarii: An Extreme Rapid Rotator with a Decretion Disk. Astrophys. J. 2024, 972, 103. [Google Scholar] [CrossRef]
- Bailey, J.; Howarth, I.D.; Cotton, D.V.; Kedziora-Chudczer, L.; De Horta, A.; Martell, S.L.; Eldridge, C.; Luckas, P. Rapid polarization variations in the O4 supergiant ζ Puppis. Mon. Not. R. Astron. Soc. 2024, 529, 374–392. [Google Scholar] [CrossRef]
- Harrington, J.P.; Collins, G.W., II. Intrinsic Polarization of Rapidly Rotating Early-Type Stars. Astrophys. J. 1968, 151, 1051. [Google Scholar] [CrossRef]
- Collins, G.W., II; Truax, R.J.; Cranmer, S.R. Model Atmospheres for Rotating B Stars. Astrophys. J. Suppl. Ser. 1991, 77, 541. [Google Scholar] [CrossRef]
- Ignace, R.; Scowen, P. The Polstar UV spectropolarimetry mission. Bull. Soc. R. Des Sci. Liege 2024, 93, 156–172. [Google Scholar] [CrossRef]
- Lewis, F.; Bailey, J.; Cotton, D.V.; Howarth, I.D.; Kedziora-Chudczer, L.; van Leeuwen, F. A study of the F-giant star θ Scorpii A: A post-merger rapid rotator? Mon. Not. R. Astron. Soc. 2022, 513, 1129–1140. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.E.; Nordsieck, K.H.; Nook, M.A.; Magalhaes, A.M.; Taylor, M.; Bjorkman, K.S.; Anderson, C.M. A Rotating, Expanding Disk in the Wolf-Rayet Star EZ Canis Majoris? Astrophys. J. 1990, 365, L19. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.F.; Nordsieck, K.H.; Taylor, M.; Bjorkman, K.S.; Magalhaes, A.M.; Wolff, M.J. The Wind Geometry of the Wolf-Rayet Star HD 191765. Astrophys. J. 1992, 387, 347. [Google Scholar] [CrossRef]
- Meade, M.R.; Whitney, B.A.; Babler, B.L.; Nordsieck, K.H.; Bjorkman, K.S.; Wisniewski, J.P. HPOL: World’s largest database of optical spectropolarimetry. Am. Inst. Phys. Conf. Ser. 2012, 226–229. [Google Scholar] [CrossRef]
- Öhman, Y. On the Possibility of Tracing Polarization Effects in the Rotational Profiles of Early-Type Stars. Astrophys. J. 1946, 104, 460. [Google Scholar] [CrossRef]
- Collins, G.W., II; Cranmer, S.R. Rotationally induced polarization in pure absorption spectral lines. Mon. Not. R. Astron. Soc. 1991, 253, 167–174. [Google Scholar] [CrossRef]
- Trujillo Bueno, J. Atomic Polarization and the Hanle Effect. arXiv 2002, arXiv:astro-ph:0202328. [Google Scholar] [CrossRef]
- Stenflo, J.O. Solar magnetic fields as revealed by Stokes polarimetry. Astron. Astrophys. Rev. 2013, 21, 66. [Google Scholar] [CrossRef]
- Ignace, R.; Nordsieck, K.H.; Cassinelli, J.P. The Hanle Effect as a Diagnostic of Magnetic Fields in Stellar Envelopes. I. Theoretical Results for Integrated Line Profiles. Astrophys. J. 1997, 486, 550–570. [Google Scholar] [CrossRef]
- Manso Sainz, R.; Martínez González, M.J. Hanle Effect for Stellar Dipoles and Quadrupoles. Astrophys. J. 2012, 760, 7. [Google Scholar] [CrossRef]
- Folsom, C.P.; Ignace, R.; Erba, C.; Casini, R.; del Pino Alemán, T.; Gayley, K.; Hobbs, K.; Manso Sainz, R.; Neiner, C.; Petit, V.; et al. Ultraviolet spectropolarimetry: Investigating stellar magnetic field diagnostics. Astrophys. Space Sci. 2022, 367, 125. [Google Scholar] [CrossRef]
- Neiner, C.; Mathis, S.; Alecian, E.; Emeriau, C.; Grunhut, J.; the BinaMIcS and MiMeS collaborations. The origin of magnetic fields in hot stars. Proc. Int. Astron. Union 2014, 10, 61–66. [Google Scholar] [CrossRef]
- ud-Doula, A.; Owocki, S.P. Dynamical Simulations of Magnetically Channeled Line-driven Stellar Winds. I. Isothermal, Nonrotating, Radially Driven Flow. Astrophys. J. 2002, 576, 413–428. [Google Scholar] [CrossRef]
- Petit, V.; Owocki, S.P.; Wade, G.A.; Cohen, D.H.; Sundqvist, J.O.; Gagné, M.; Maíz Apellániz, J.; Oksala, M.E.; Bohlender, D.A.; Rivinius, T.; et al. A magnetic confinement versus rotation classification of massive-star magnetospheres. Mon. Not. R. Astron. Soc. 2013, 429, 398–422. [Google Scholar] [CrossRef]
- Owocki, S.P.; Shultz, M.E.; ud-Doula, A.; Sundqvist, J.O.; Townsend, R.H.D.; Cranmer, S.R. How the breakout-limited mass in B-star centrifugal magnetospheres controls their circumstellar H α emission. Mon. Not. R. Astron. Soc. 2020, 499, 5366–5378. [Google Scholar] [CrossRef]
- Owocki, S.P.; Shultz, M.E.; ud-Doula, A.; Chandra, P.; Das, B.; Leto, P. Centrifugal breakout reconnection as the electron acceleration mechanism powering the radio magnetospheres of early-type stars. Mon. Not. R. Astron. Soc. 2022, 513, 1449–1458. [Google Scholar] [CrossRef]
- Erba, C.; David-Uraz, A.; Petit, V.; Hennicker, L.; Fletcher, C.; Fullerton, A.W.; Nazé, Y.; Sundqvist, J.; ud-Doula, A. Ultraviolet line profiles of slowly rotating massive star winds using the ’analytic dynamical magnetosphere’ formalism. Mon. Not. R. Astron. Soc. 2021, 506, 5373–5388. [Google Scholar] [CrossRef]
- Townsend, R.H.D.; Owocki, S.P. A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars. Mon. Not. R. Astron. Soc. 2005, 357, 251–264. [Google Scholar] [CrossRef]
- Sundqvist, J.O.; ud-Doula, A.; Owocki, S.P.; Townsend, R.H.D.; Howarth, I.D.; Wade, G.A. A dynamical magnetosphere model for periodic Hα emission from the slowly rotating magnetic O star HD 191612. Mon. Not. R. Astron. Soc. 2012, 423, L21–L25. [Google Scholar] [CrossRef]
- Owocki, S.P.; ud-Doula, A.; Sundqvist, J.O.; Petit, V.; Cohen, D.H.; Townsend, R.H.D. An `analytic dynamical magnetosphere’ formalism for X-ray and optical emission from slowly rotating magnetic massive stars. Mon. Not. R. Astron. Soc. 2016, 462, 3830–3844. [Google Scholar] [CrossRef]
- Andersson, B.G.; Lazarian, A.; Vaillancourt, J.E. Interstellar Dust Grain Alignment. Annu. Rev. Astron. Astrophys. 2015, 53, 501–539. [Google Scholar] [CrossRef]
- Serkowski, K.; Mathewson, D.S.; Ford, V.L. Wavelength dependence of interstellar polarization and ratio of total to selective extinction. Astrophys. J. 1975, 196, 261–290. [Google Scholar] [CrossRef]
- Whittet, D.C.B.; Martin, P.G.; Hough, J.H.; Rouse, M.F.; Bailey, J.A.; Axon, D.J. Systematic Variations in the Wavelength Dependence of Interstellar Linear Polarization. Astrophys. J. 1992, 386, 562. [Google Scholar] [CrossRef]
- St-Louis, N.; Polstar consortium. Polstar: A FUV Spectropolarimetry Mission. Proc. Int. Astron. Union 2022, 18, 633–635. [Google Scholar] [CrossRef]
- Girardot, A.; Neiner, C.; Reess, J.M. UV spectropolarimetry with CASSTOR, Polstar, and Pollux. In Proceedings of the SF2A-2024: Annual Meeting of the French Society of Astronomy and Astrophysics; Béthermin, M., Béthermin, M., Baillié, K., Lagarde, N., Malzac, J., Ouazzani, R.M., Richard, J., Venot, O., Siebert, A., Eds.; Société Française d’Astronomie et d’Astrophysique (SF2A): Paris, France, 2024; pp. 457–460. [Google Scholar]
- Nordsieck, K.H.; Code, A.D.; Anderson, C.M.; Meade, M.R.; Babler, B.; Michalski, D.E.; Pfeifer, R.H.; Jones, T.E. Exploring ultraviolet astronomical polarimetry: Results from the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE). In The X-Ray and Ultraviolet Polarimetry; Fineschi, S., Ed.; SPIE: Bellingham, WA, USA, 1994; Volume 2010, pp. 2–11. [Google Scholar] [CrossRef]
- Boggess, A.; Carr, F.A.; Evans, D.C.; Fischel, D.; Freeman, H.R.; Fuechsel, C.F.; Klinglesmith, D.A.; Krueger, V.L.; Longanecker, G.W.; Moore, J.V. The IUE spacecraft and instrumentation. Nature 1978, 275, 372–377. [Google Scholar] [CrossRef]
- Massa, D.; Fullerton, A.W.; Nichols, J.S.; Owocki, S.P.; Prinja, R.K.; St-Louis, N.; Willis, A.J.; Altner, B.; Bolton, C.T.; Cassinelli, J.P.; et al. The IUE MEGA Campaign: Wind Variability and Rotation in Early-Type Stars. Astrophys. J. 1995, 452, L53. [Google Scholar] [CrossRef]
Property a | OSG | WN #1 | WN #2 | WC #1 | WC #2 | WNh |
---|---|---|---|---|---|---|
Model | 40–42 | 04–12 | 17–12 | 06–14 | 17–14 | 13–21 |
5.06 | 5.30 | 5.30 | 5.30 | 5.30 | 5.30 | |
(yr) | ||||||
(km/s) | 3158 | 1600 | 1600 | 2000 | 2000 | 1000 |
() | 7.1 | 11.9 | 0.6 | 7.5 | 0.6 | 1.5 |
D () | — | 250 | 30 | 250 | 30 | 250 |
(%) | — | +0.05 | +0.03 | +0.09 | ||
(%) | — |
Name | V-magn | (G) | ||
---|---|---|---|---|
Sco | 2.8 | 200 | 2.2 | 2.1 |
Cep | 3.2 | 360 | 6.3 | 2.5 |
Cen | 0.6 | 300 | 4.3 | 2.4 |
16 Peg | 5.1 | >500 | 9.0 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignace, R.; Gayley, K.G.; Casini, R.; Scowen, P.; Erba, C.; Drake, J. Spectropolarimetry for Discerning Geometry and Structure in Circumstellar Media of Hot Massive Stars. Galaxies 2025, 13, 40. https://doi.org/10.3390/galaxies13020040
Ignace R, Gayley KG, Casini R, Scowen P, Erba C, Drake J. Spectropolarimetry for Discerning Geometry and Structure in Circumstellar Media of Hot Massive Stars. Galaxies. 2025; 13(2):40. https://doi.org/10.3390/galaxies13020040
Chicago/Turabian StyleIgnace, Richard, Kenneth G. Gayley, Roberto Casini, Paul Scowen, Christiana Erba, and Jeremy Drake. 2025. "Spectropolarimetry for Discerning Geometry and Structure in Circumstellar Media of Hot Massive Stars" Galaxies 13, no. 2: 40. https://doi.org/10.3390/galaxies13020040
APA StyleIgnace, R., Gayley, K. G., Casini, R., Scowen, P., Erba, C., & Drake, J. (2025). Spectropolarimetry for Discerning Geometry and Structure in Circumstellar Media of Hot Massive Stars. Galaxies, 13(2), 40. https://doi.org/10.3390/galaxies13020040