Previous Issue
Volume 13, August
 
 

Galaxies, Volume 13, Issue 5 (October 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 18915 KB  
Review
The Astronomical Hub: A Unified Ecosystem for Modern Astronomical Research
by Yerlan Aimuratov, Vitaliy Kim, Aleksander Serebryanskiy, Denis Yurin, Maxim Krugov, Chingiz Akniyazov, Saule Shomshekova, Maxim Makukov, Gaukhar Aimanova, Rashit Valiullin, Raushan Kokumbaeva, Alan Kazkenov and Chingis Omarov
Galaxies 2025, 13(5), 99; https://doi.org/10.3390/galaxies13050099 (registering DOI) - 1 Sep 2025
Abstract
We present the conceptual framework of the Astronomical Hub (AstroHub), a unified platform combining various optical instruments at a single observatory. Its major approach lies in arranging conditions for research groups to install telescopes and equipment and participate in joint projects. AstroHub is [...] Read more.
We present the conceptual framework of the Astronomical Hub (AstroHub), a unified platform combining various optical instruments at a single observatory. Its major approach lies in arranging conditions for research groups to install telescopes and equipment and participate in joint projects. AstroHub is planned to integrate Virtual Observatory (VO) tools, FAIR data principles, and a telescope network to create a powerful and attractive ecosystem for both robust near-Earth object (NEO) monitoring and diverse deep space research. We provide an overview of the AstroHub development directions in the case study of the Assy-Turgen Observatory. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

18 pages, 30275 KB  
Article
RAD@home Citizen Science Discovery of Two Spiral Galaxies Where the 30–220 kpc Radio Lobes Are Possibly Shaped by Ram Pressure Stripping
by Prakash Apoorva, Ananda Hota, Pratik Dabhade, P. K. Navaneeth, Dhruv Nayak and Arundhati Purohit
Galaxies 2025, 13(5), 98; https://doi.org/10.3390/galaxies13050098 - 22 Aug 2025
Viewed by 470
Abstract
We report the RAD@home citizen science discovery of two rare spiral-host radio galaxies (NGC 3898 and WISEA J221656.57-132042434.1 or RAD-“Thumbs up” galaxy), both exhibiting asymmetric radio lobes extending over 30 to 220 kiloparsec scales. We present a multi-wavelength image analysis of these two [...] Read more.
We report the RAD@home citizen science discovery of two rare spiral-host radio galaxies (NGC 3898 and WISEA J221656.57-132042434.1 or RAD-“Thumbs up” galaxy), both exhibiting asymmetric radio lobes extending over 30 to 220 kiloparsec scales. We present a multi-wavelength image analysis of these two sources using radio, optical, and ultraviolet data. Both host galaxies are young, star-forming systems with asymmetric or distorted stellar disks. These disks show similarities to those in galaxies undergoing ram pressure stripping, and the radio morphologies resemble those of asymmetric or bent FR-II and wide-angle-tailed radio galaxies. We suggest that non-uniform gas density in the environment surrounding the ram pressure-stripped disks may contribute to the observed asymmetry in the size, shape, and brightness of bipolar radio lobes. Such environmental effects, when properly accounted for, could help explain many of the non-standard radio morphologies observed in Seyfert galaxies and in recently identified populations of galaxies with galaxy-scale radio jets, which are now being revealed through deep and sensitive radio surveys with uGMRT, MeerKAT, LOFAR, and, in the future, SKAO. These findings also underscore the potential of citizen science to complement professional research and data-driven approaches involving machine learning and artificial intelligence in the analysis of complex radio sources. Full article
(This article belongs to the Special Issue Recent Advances in Radio Astronomy)
Show Figures

Figure 1

Previous Issue
Back to TopTop