Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants
Abstract
:1. Introduction
2. Radio & Optical Polarization
3. Polarization Models
4. Prospects for Future Observations
Conflicts of Interest
References
- Gaensler, B.M.; Slane, P.O. The Evolution and Structure of Pulsar Wind Nebulae. Annu. Rev. Astron. Astrophys. 2006, 44, 17–47. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature 2009, 458, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Blasi, P.; Amato, E. Positrons from pulsar winds. Astrophys. Space Sci. Proc. 2011, 21, 623–641. [Google Scholar]
- Weisskopf, M.C.; Hester, J.J.; Tennant, A.F.; Elsner, R.F.; Schulz, N.S.; Marshall, H.L.; Karovska, M.; Nichols, J.S.; Swartz, D.A.; Kolodziejczak, J.J.; et al. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula. Astrophys. J. Lett. 2000, 536, L81–L84. [Google Scholar] [CrossRef]
- Pavlov, G.G.; Kargaltsev, O.Y.; Sanwal, D.; Garmire, G.P. Variability of the Vela Pulsar Wind Nebula Observed with Chandra. Astrophys. J. Lett. 2001, 554, L189–L192. [Google Scholar] [CrossRef]
- Gaensler, B.M.; Arons, J.; Kaspi, V.M.; Pivovaroff, M.J.; Kawai, N.; Tamura, K. Chandra Imaging of the X-ray Nebula Powered by Pulsar B1509-58. Astrophys. J. 2002, 569, 878–893. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Lyubarsky, Y.E. Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 2004, 349, 779–792. [Google Scholar] [CrossRef]
- Del Zanna, L.; Amato, E.; Bucciantini, N. Axially symmetric relativistic MHD simulations of Pulsar Wind Nebulae in Supernova Remnants. On the origin of torus and jet-like features. Astron. Astrophys. 2004, 421, 1063–1073. [Google Scholar] [CrossRef]
- Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Mignone, A. Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: Recent progress and open questions. J. Plasma Phys. 2016, 82, 635820601. [Google Scholar] [CrossRef]
- Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N. Constraints on particle acceleration sites in the Crab nebula from relativistic magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 2015, 449, 3149–3159. [Google Scholar] [CrossRef]
- Woltjer, L. Supernova Remnants. Annu. Rev. Astron. Astrophys. 1972, 10, 129–158. [Google Scholar] [CrossRef]
- Reynolds, S.P. Supernova Remnants at High Energy. Annu. Rev. Astron. Astrophys. 2008, 46, 89–126. [Google Scholar] [CrossRef]
- Reynolds, S.P. Particle acceleration in supernova-remnant shocks. Astrophys. Space Sci. 2011, 336, 257–262. [Google Scholar] [CrossRef]
- Bell, A.R. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 2004, 353, 550–558. [Google Scholar] [CrossRef]
- Reynolds, S.P.; Gaensler, B.M.; Bocchino, F. Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae. Space Sci. Rev. 2012, 166, 231–261. [Google Scholar] [CrossRef]
- Matthews, J.H.; Bell, A.R.; Blundell, K.M.; Araudo, A.T. Amplification of perpendicular and parallel magnetic fields by cosmic ray currents. Mon. Not. R. Astron. Soc. 2017, 469, 1849–1860. [Google Scholar] [CrossRef]
- Xu, S.; Lazarian, A. Magnetic Field Amplification in Supernova Remnants. Astrophys. J. 2017, 850, 126. [Google Scholar] [CrossRef]
- Conway, R.G. Radio Polarization of the Crab Nebula. In The Crab Nebula, Proceedings of the International Astronomical Union/Union Astronomique Internationale (Symposium No. 46), Jodrell Bank, UK, 5–7 August 1970; Davies, R.D., Graham-Smith, F., Eds.; Springer: Dordrecht, The Netherlands, 1971; p. 292. [Google Scholar]
- Ferguson, D.C. A Comparison of the Optical and Radio Polarization of the Crab Nebula Pulsar. Bull. Am. Astron. Soc. 1973, 5, 425. [Google Scholar]
- Velusamy, T. Structure of the Crab Nebula—Intensity and polarization at 20 CM. Mon. Not. R. Astron. Soc. 1985, 212, 359–365. [Google Scholar] [CrossRef]
- Aumont, J.; Conversi, L.; Thum, C.; Wiesemeyer, H.; Falgarone, E.; Macías-Pérez, J.F.; Piacentini, F.; Pointecouteau, E.; Ponthieu, N.; Puget, J.L.; et al. Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments. Astron. Astrophys. 2010, 514, A70. [Google Scholar] [CrossRef]
- Dodson, R.; Lewis, D.; McConnell, D.; Deshpande, A.A. The radio nebula surrounding the Vela pulsar. Mon. Not. R. Astron. Soc. 2003, 343, 116–124. [Google Scholar] [CrossRef]
- Kothes, R.; Reich, W.; Uyanıker, B. The Boomerang PWN G106.6+2.9 and the Magnetic Field Structure in Pulsar Wind Nebulae. Astrophys. J. 2006, 638, 225–233. [Google Scholar] [CrossRef]
- Ma, Y.K.; Ng, C.Y.; Bucciantini, N.; Slane, P.O.; Gaensler, B.M.; Temim, T. Radio Polarization Observations of the Snail: A Crushed Pulsar Wind Nebula in G327.1-1.1 with a Highly Ordered Magnetic Field. Astrophys. J. 2016, 820, 100. [Google Scholar] [CrossRef]
- Blondin, J.M.; Chevalier, R.A.; Frierson, D.M. Pulsar Wind Nebulae in Evolved Supernova Remnants. Astrophys. J. 2001, 563, 806–815. [Google Scholar] [CrossRef]
- Bucciantini, N.; Blondin, J.M.; Del Zanna, L.; Amato, E. Spherically symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants. Astron. Astrophys. 2003, 405, 617–626. [Google Scholar] [CrossRef]
- Kothes, R.; Landecker, T.L.; Reich, W.; Safi-Harb, S.; Arzoumanian, Z. DA 495: An Aging Pulsar Wind Nebula. Astrophys. J. 2008, 687, 516–531. [Google Scholar] [CrossRef]
- Moran, P.; Shearer, A.; Mignani, R.P.; Słowikowska, A.; De Luca, A.; Gouiffès, C.; Laurent, P. Optical polarimetry of the inner Crab nebula and pulsar. Mon. Not. R. Astron. Soc. 2013, 433, 2564–2575. [Google Scholar] [CrossRef]
- Hester, J.J. The Crab Nebula: An Astrophysical Chimera. Annu. Rev. Astron. Astrophys. 2008, 46, 127–155. [Google Scholar] [CrossRef]
- Marubini, T.E.; Sefako, R.R.; Venter, C.; de Jager, O.C. A search for optical counterparts of the complex Vela X system. arXiv, 2015; arXiv:1501.00278. [Google Scholar]
- Moran, P.; Mignani, R.P.; Shearer, A. HST optical polarimetry of the Vela pulsar and nebula. Mon. Not. R. Astron. Soc. 2014, 445, 835–844. [Google Scholar] [CrossRef]
- Dubner, G.; Giacani, E. Radio emission from supernova remnants. Astron. Astrophys. Rev. 2015, 23, 3. [Google Scholar] [CrossRef]
- Jun, B.I. Interaction of a Pulsar Wind with the Expanding Supernova Remnant. Astrophys. J. 1998, 499, 282–293. [Google Scholar] [CrossRef]
- Bucciantini, N.; Amato, E.; Bandiera, R.; Blondin, J.M.; Del Zanna, L. Magnetic Rayleigh-Taylor instability for Pulsar Wind Nebulae in expanding Supernova Remnants. Astron. Astrophys. 2004, 423, 253–265. [Google Scholar] [CrossRef]
- Inoue, T.; Shimoda, J.; Ohira, Y.; Yamazaki, R. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants. Astrophys. J. Lett. 2013, 772, L20. [Google Scholar] [CrossRef]
- West, J.L.; Jaffe, T.; Ferrand, G.; Safi-Harb, S.; Gaensler, B.M. When Disorder Looks Like Order: A New Model to Explain Radial Magnetic Fields in Young Supernova Remnants. Astrophys. J. Lett. 2017, 849, L22. [Google Scholar] [CrossRef]
- Gaensler, B.M. The Nature of Bilateral Supernova Remnants. Astrophys. J. 1998, 493, 781–792. [Google Scholar] [CrossRef]
- Reynoso, E.M.; Hughes, J.P.; Moffett, D.A. On the Radio Polarization Signature of Efficient and Inefficient Particle Acceleration in Supernova Remnant SN 1006. Astron. J. 2013, 145, 104. [Google Scholar] [CrossRef]
- Harvey-Smith, L.; Gaensler, B.M.; Kothes, R.; Townsend, R.; Heald, G.H.; Ng, C.Y.; Green, A.J. Faraday Rotation of the Supernova Remnant G296.5+10.0: Evidence for a Magnetized Progenitor Wind. Astrophys. J. 2010, 712, 1157–1165. [Google Scholar] [CrossRef]
- Gotthelf, E.V.; Koralesky, B.; Rudnick, L.; Jones, T.W.; Hwang, U.; Petre, R. Chandra Detection of the Forward and Reverse Shocks in Cassiopeia A. Astrophys. J. Lett. 2001, 552, L39–L43. [Google Scholar] [CrossRef]
- Tang, X.; Chevalier, R.A. Particle Transport in Young Pulsar Wind Nebulae. Astrophys. J. 2012, 752, 83. [Google Scholar] [CrossRef]
- Bühler, R.; Blandford, R. The surprising Crab pulsar and its nebula: A review. Rep. Prog. Phys. 2014, 77, 066901. [Google Scholar] [CrossRef] [PubMed]
- Zrake, J.; Arons, J. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae. Astrophys. J. 2017, 847, 57. [Google Scholar] [CrossRef]
- Tanaka, S.J.; Asano, K. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model. Astrophys. J. 2017, 841, 78. [Google Scholar] [CrossRef]
- Uzdensky, D.A.; Cerutti, B.; Begelman, M.C. Reconnection-powered Linear Accelerator and Gamma-Ray Flares in the Crab Nebula. Astrophys. J. Lett. 2011, 737, L40. [Google Scholar] [CrossRef]
- Camus, N.F.; Komissarov, S.S.; Bucciantini, N.; Hughes, P.A. Observations of ‘wisps’ in magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 2009, 400, 1241–1246. [Google Scholar] [CrossRef]
- Sironi, L.; Spitkovsky, A. Acceleration of Particles at the Termination Shock of a Relativistic Striped Wind. Astrophys. J. 2011, 741, 39. [Google Scholar] [CrossRef]
- Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.I.; Hardee, P.E. Three-dimensional Relativistic Magnetohydrodynamic Simulations of Current-driven Instability. II. Relaxation of Pulsar Wind Nebula. Astrophys. J. 2011, 728, 90. [Google Scholar] [CrossRef]
- O’Neill, S.M.; Beckwith, K.; Begelman, M.C. Local simulations of instabilities in relativistic jets—I. Morphology and energetics of the current-driven instability. Mon. Not. R. Astron. Soc. 2012, 422, 1436–1452. [Google Scholar] [CrossRef]
- Bandiera, R.; Petruk, O. Radio polarization maps of shell-type supernova remnants—I. Effects of a random magnetic field component and thin-shell models. Mon. Not. R. Astron. Soc. 2016, 459, 178–198. [Google Scholar] [CrossRef]
- Petruk, O.; Bandiera, R.; Beshley, V.; Orlando, S.; Miceli, M. Radio polarization maps of shell-type SNRs—II. Sedov models with evolution of turbulent magnetic field. Mon. Not. R. Astron. Soc. 2017, 470, 1156–1176. [Google Scholar] [CrossRef]
- Bucciantini, N.; Bandiera, R.; Olmi, B.; Del Zanna, L. Modeling the effect of small-scale magnetic turbulence on the X-ray properties of Pulsar Wind Nebulae. Mon. Not. R. Astron. Soc. 2017, 470, 4066–4074. [Google Scholar] [CrossRef]
- Ng, C.Y.; Romani, R.W. Fitting Pulsar Wind Tori. Astrophys. J. 2004, 601, 479–484. [Google Scholar] [CrossRef]
- Bykov, A.M.; Uvarov, Y.A.; Bloemen, J.B.G.M.; den Herder, J.W.; Kaastra, J.S. A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 2009, 399, 1119–1125. [Google Scholar] [CrossRef]
- Bykov, A.M.; Ellison, D.C.; Osipov, S.M.; Pavlov, G.G.; Uvarov, Y.A. X-ray Stripes in Tycho’s Supernova Remnant: Synchrotron Footprints of a Nonlinear Cosmic-ray-driven Instability. Astrophys. J. Lett. 2011, 735, L40. [Google Scholar] [CrossRef]
- Bykov, A.M.; Osipov, S.M.; Ellison, D.C. Cosmic ray current driven turbulence in shocks with efficient particle acceleration: The oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 2011, 410, 39–52. [Google Scholar] [CrossRef]
- Bucciantini, N. Polarization of pulsar wind nebulae. In X-ray Polarimetry: A New Window in Astrophysics by Ronaldo Bellazzini, Enrico Costa, Giorgio Matt and Gianpiero Tagliaferri; Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G., Eds.; Cambridge University Press: Cambridge, UK, 2010; p. 195. [Google Scholar]
- Soffitta, P.; Barcons, X.; Bellazzini, R.; Braga, J.; Costa, E.; Fraser, G.W.; Gburek, S.; Huovelin, J.; Matt, G.; Pearce, M.; et al. XIPE: The X-ray imaging polarimetry explorer. Exp. Astron. 2013, 36, 523–567. [Google Scholar] [CrossRef] [Green Version]
- Weisskopf, M.C.; Ramsey, B.; O’Dell, S.; Tennant, A.; Elsner, R.; Soffitta, P.; Bellazzini, R.; Costa, E.; Kolodziejczak, J.; Kaspi, V.; et al. The Imaging X-ray Polarimetry Explorer (IXPE). In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 26 June–1 July 2016. [Google Scholar]
- Weisskopf, M.C.; Silver, E.H.; Kestenbaum, H.L.; Long, K.S.; Novick, R. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. Lett. 1978, 220, L117–L121. [Google Scholar] [CrossRef]
- Madsen, K.K.; Reynolds, S.; Harrison, F.; An, H.; Boggs, S.; Christensen, F.E.; Craig, W.W.; Fryer, C.L.; Grefenstette, B.W.; Hailey, C.J.; et al. Broadband X-ray Imaging and Spectroscopy of the Crab Nebula and Pulsar with NuSTAR. Astrophys. J. 2015, 801, 66. [Google Scholar] [CrossRef]
- Chauvin, M.; Florén, H.G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; et al. Observation of polarized hard X-ray emission from the Crab by the PoGOLite Pathfinder. Mon. Not. R. Astron. Soc. 2016, 456, L84–L88. [Google Scholar] [CrossRef]
- Chauvin, M.; Florén, H.G.; Friis, M.; Jackson, M.; Kamae, T.; Kataoka, J.; Kawano, T.; Kiss, M.; Mikhalev, V.; Mizuno, T.; et al. Shedding new light on the Crab with polarized X-rays. Sci. Rep. 2017, 7, 7816. [Google Scholar] [CrossRef] [PubMed]
- Forot, M.; Laurent, P.; Grenier, I.A.; Gouiffès, C.; Lebrun, F. Polarization of the Crab Pulsar and Nebula as Observed by the INTEGRAL/IBIS Telescope. Astrophys. J. Lett. 2008, 688, L29. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.; Kyne, G.; Gouiffès, C.; Laurent, P.; Hallinan, G.; Redfern, R.M.; Shearer, A. A recent change in the optical and γ-ray polarization of the Crab nebula and pulsar. Mon. Not. R. Astron. Soc. 2016, 456, 2974–2981. [Google Scholar] [CrossRef]
- Vadawale, S.V.; Chattopadhyay, T.; Mithun, N.P.S.; Rao, A.R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V.B.; Dewangan, G.C.; Misra, R.; Paul, B.; et al. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nat. Astron. 2018, 2, 50–55. [Google Scholar] [CrossRef]
- De Ona Wilhelmi, E.; Vink, J.; Bykov, A.; Zanin, R.; Bucciantini, N.; Amato, E.; Bandiera, R.; Olmi, B.; Uvarov, Y.; XIPE Science Working Group. Unveiling the magnetic structure of VHE SNRs/PWNe with XIPE, the X-ray imaging-polarimetry explorer. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucciantini, N. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants. Galaxies 2018, 6, 42. https://doi.org/10.3390/galaxies6020042
Bucciantini N. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants. Galaxies. 2018; 6(2):42. https://doi.org/10.3390/galaxies6020042
Chicago/Turabian StyleBucciantini, Niccolò. 2018. "Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants" Galaxies 6, no. 2: 42. https://doi.org/10.3390/galaxies6020042
APA StyleBucciantini, N. (2018). Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants. Galaxies, 6(2), 42. https://doi.org/10.3390/galaxies6020042