IMAGINE: Modeling the Galactic Magnetic Field
Abstract
:1. Introduction
2. Introducing IMAGINE
2.1. What is IMAGINE?
2.2. Scientific Aims of IMAGINE
3. The IMAGINE Software Package
- Priors: any knowledge that we already have about galactic magnetic fields can be included in the modeling;
- Addition of observational tracers: the modular set-up of IMAGINE enables inclusion of different and heterogeneous data sets in a consistent way;
- Evidence: the Bayesian evidence component in IMAGINE allows quantitative comparison of various galactic magnetic field models in the literature. Apart from comparison of various models using the same data by the same authors, comparison of models in different publications using different data sets is only attempted by the Planck collaboration [17]; quantitative comparison is currently completely lacking.
4. Observational Tracers
- (Polarized) synchrotron emission. Synchrotron emission traces the magnetic field component perpendicular to the line of sight, integrated over the line of sight. Its polarization can be used as a measure of the ratio of the turbulent to the uniform magnetic field components.
- Faraday Rotation of polarized radio emission from pulsars. Pulsar rotation measures (RMs) give information on the magnetic field component parallel to the line of sight , weighted by the electron density , and integrated along the line of sight s: RM . Although these data have the great advantage that they probe the magnetic field in the 3D volume of the galaxy (instead of most other tracers that integrate over pathlengths through the entire galaxy), pulsar RMs are fairly scarce and are mostly concentrated near the Galactic plane.
- Thermal emission from dust is partially polarized, due to the influence of magnetic fields. All-sky dust polarization maps (from e.g., the Planck satellite) combined with a dust model, give an independent measure of the averaged magnetic field component perpendicular to the line of sight.
- Starlight polarization: Optical and near-infrared starlight gets partially polarized by elongated dust grains, rotating aligned with an interstellar magnetic field. Small fields of view have been used to constrain galactic magnetic field models [22]. Future all-sky optical polarimetric surveys [23] combined with GAIA distances and reliable dust models will be included into IMAGINE. The short lines of sight to the stars will make this data set very complementary to the traditional tracers that integrate along the line of sight through the entire galaxy.
- Galactic cosmic ray distribution and spectral dependence. Small-scale anisotropies in galactic TeV cosmic ray arrival directions, recently discovered by several experiments [24,25], can (in principle) be predicted in the galaxy model generated in IMAGINE, which can provide additional constraints to the model parameters. In addition, spectral information in the synchrotron radiation, depending on CR electron spectra (see e.g., [26,27]), can be used as well.
- UHECR arrival directions: UHECRs are deflected by the galactic magnetic field, for the highest measured energies typically by a few degrees to a few tens of degrees (depending on their rigidity and propagation path). A Bayesian optimization of the source distribution(s) of UHECRs as well as their deflections in intergalactic space and in the galaxy against their arrival directions at Earth can be used to constrain possible galactic magnetic field configurations.
- Faraday tomography: in principle, Faraday tomography maps of the IMAGINE galaxy model could be compared to observed Faraday tomography maps. Faraday tomography at low (LOFAR, MWA) frequencies reveals more about discrete structures in the local neighborhood and therefore may not be ideal. However, at higher (GHz) frequencies, Faraday depth spectra likely better represent the global galactic magnetic field, and, as such, can be used to constrain model parameters.
5. Galactic Magnetic Field Models
6. Bayesian Priors
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrière, K.M. The interstellar environment of our galaxy. Rev. Mod. Phys. 2001, 73, 1031–1066. [Google Scholar] [CrossRef] [Green Version]
- Haverkorn, M. Magnetic Fields in the Milky Way. In Magnetic Fields in Diffuse Media; Lazarian, A., de Gouveia Dal Pino, E.M., Melioli, C., Eds.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2015; Volume 407, p. 483. [Google Scholar]
- Han, J.L. Observing Interstellar and Intergalactic Magnetic Fields. Annu. Rev. Astron. Astrophys. 2017, 55, 111–157. [Google Scholar] [CrossRef]
- Shukurov, A. On the origin of galactic magnetic fields. Astrophys. Space Sci. 2002, 281, 285–288. [Google Scholar] [CrossRef]
- Boulanger, F.; Enßlin, T.; Fletcher, A.; Girichides, P.; Hackstein, S.; Haverkorn, M.; Hörandel, J.R.; Jaffe, T.; Jasche, J.; Kachelrieß, M.; et al. IMAGINE: A comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays. J. Cosmol. Astropart. Phys. 2018, 8, 049. [Google Scholar] [CrossRef]
- Steininger, T.; Enßlin, T.A.; Greiner, M.; Jaffe, T.; van der Velden, E.; Wang, J.; Haverkorn, M.; Hörandel, J.R.; Jasche, J.; Rachen, J.P. Inferring Galactic magnetic field model parameters using IMAGINE—An Interstellar MAGnetic field INference Engine. arXiv, 2018; arXiv:1801.0434. [Google Scholar]
- Heiles, C.; Haverkorn, M. Magnetic Fields in the Multiphase Interstellar Medium. Space Sci. Rev. 2012, 166, 293–305. [Google Scholar] [CrossRef]
- McClure-Griffiths, N.M.; Dickey, J.M.; Gaensler, B.M.; Green, A.J.; Haverkorn, M.; Strasser, S. The Southern Galactic Plane Survey: H I Observations and Analysis. Astrophys. J. Suppl. 2005, 158, 178–187. [Google Scholar] [CrossRef]
- Clark, S.E.; Peek, J.E.G.; Putman, M.E. Magnetically Aligned H I Fibers and the Rolling Hough Transform. Astrophys. J. 2014, 789, 82. [Google Scholar] [CrossRef]
- Kalberla, P.M.W.; Kerp, J. Anisotropies in the HI gas distribution toward 3C 196. Astron. Astrophys. 2016, 595, A37. [Google Scholar] [CrossRef]
- Kalberla, P.M.W.; Kerp, J.; Haud, U.; Haverkorn, M. H I anisotropies associated with radio-polarimetric filaments. Steep power spectra associated with cold gas. Astron. Astrophys. 2017, 607, A15. [Google Scholar] [CrossRef]
- Planck Collaboration; Adam, R.; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps. Astron. Astrophys. 2016, 594, A8. [Google Scholar] [CrossRef]
- Oppermann, N.; Junklewitz, H.; Robbers, G.; Bell, M.R.; Enßlin, T.A.; Bonafede, A.; Braun, R.; Brown, J.C.; Clarke, T.E.; Feain, I.J.; et al. An improved map of the Galactic Faraday sky. Astron. Astrophys. 2012, 542, A93. [Google Scholar] [CrossRef] [Green Version]
- Steininger, T.; Dixit, J.; Frank, P.; Greiner, M.; Hutschenreuter, S.; Knollmüller, J.; Leike, R.; Porqueres, N.; Pumpe, D.; Reinecke, M.; et al. NIFTy 3—Numerical Information Field Theory—A Python framework for multicomponent signal inference on HPC clusters. arXiv, 2017; arXiv:1708.01073. [Google Scholar]
- Waelkens, A.; Jaffe, T.; Reinecke, M.; Kitaura, F.S.; Enßlin, T.A. Simulating polarized Galactic synchrotron emission at all frequencies. The Hammurabi code. Astron. Astrophys. 2009, 495, 697–706. [Google Scholar] [CrossRef]
- Buchner, J.; Georgakakis, A.; Nandra, K.; Hsu, L.; Rangel, C.; Brightman, M.; Merloni, A.; Salvato, M.; Donley, J.; Kocevski, D. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 2014, 564, A125. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Adam, R.; Ade, P.A.R.; Alves, M.I.R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck intermediate results. XLII. Large-scale Galactic magnetic fields. Astron. Astrophys. 2016, 596, A103. [Google Scholar] [CrossRef]
- Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2015, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.R.; Stil, J.M.; Sunstrum, C. A Rotation Measure Image of the Sky. Astrophys. J. 2009, 702, 1230–1236. [Google Scholar] [CrossRef]
- Crutcher, R.M. Magnetic Fields in Molecular Clouds. Annu. Rev. Astron. Astrophys. 2012, 50, 29–63. [Google Scholar] [CrossRef]
- Han, J.L.; Zhang, J.S. The Galactic distribution of magnetic fields in molecular clouds and HII regions. Astron. Astrophys. 2007, 464, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Pavel, M.D.; Clemens, D.P. H II Region Driven Galactic Bubbles and Their Relationship to the Galactic Magnetic Field. Astrophys. J. 2012, 760, 150. [Google Scholar] [CrossRef]
- Magalhães, A.M. SOUTH POL: Revealing the Polarized Southern Sky; Revista Mexicana de Astronomia y Astrofisica Conference Series; American Astronomical Society: Washington, DC, USA, 2014; Volume 44, p. 209. [Google Scholar]
- Amenomori, M.; Bi, X.J.; Chen, D.; Cui, S.W.; Danzengluobu; Ding, L.K.; Ding, X.H.; Fan, C.; Feng, C.F.; Feng, Z.; et al. On Temporal Variations of the Multi-TeV Cosmic Ray Anisotropy Using the Tibet III Air Shower Array. Astrophys. J. 2010, 711, 119–124. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; et al. Anisotropy in Cosmic-Ray Arrival Directions in the Southern Hemisphere Based on Six Years of Data from the IceCube Detector. Astrophys. J. 2016, 826, 220. [Google Scholar] [CrossRef]
- Orlando, E.; Strong, A. Galactic synchrotron emission with cosmic ray propagation models. Mon. Not. R. Astron. Soc. 2013, 436, 2127–2142. [Google Scholar] [CrossRef] [Green Version]
- Orlando, E. Imprints of cosmic rays in multifrequency observations of the interstellar emission. Mon. Not. R. Astron. Soc. 2018, 475, 2724–2742. [Google Scholar] [CrossRef]
- Van Eck, C.L.; Brown, J.C.; Stil, J.M.; Rae, K.; Mao, S.A.; Gaensler, B.M.; Shukurov, A.; Taylor, A.R.; Haverkorn, M.; Kronberg, P.P.; McClure-Griffiths, N.M. Modeling the Magnetic Field in the Galactic Disk Using New Rotation Measure Observations from the Very Large Array. Astrophys. J. 2011, 728, 97. [Google Scholar] [CrossRef]
- Jaffe, T.R.; Leahy, J.P.; Banday, A.J.; Leach, S.M.; Lowe, S.R.; Wilkinson, A. Modelling the Galactic magnetic field on the plane in two dimensions. Mon. Not. R. Astron. Soc. 2010, 401, 1013. [Google Scholar] [CrossRef]
- Jansson, R.; Farrar, G.R. A New Model of the Galactic Magnetic Field. Astrophys. J. 2012, 757, 14. [Google Scholar] [CrossRef]
- Jansson, R.; Farrar, G.R. The Galactic Magnetic Field. Astrophys. J. Lett. 2012, 761, L11. [Google Scholar] [CrossRef]
- Strong, A.W.; Moskalenko, I.V. Propagation of Cosmic-Ray Nucleons in the Galaxy. Astrophys. J. 1998, 509, 212–228. [Google Scholar] [CrossRef]
- Jaffe, T.R.; Banday, A.J.; Leahy, J.P.; Leach, S.; Strong, A.W. Connecting synchrotron, cosmic rays and magnetic fields in the plane of the Galaxy. Mon. Not. R. Astron. Soc. 2011, 416, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Men, H.; Ferrière, K.; Han, J.L. Observational constraints on models for the interstellar magnetic field in the Galactic disk. Astron. Astrophys. 2008, 486, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.H.; Reich, W.; Waelkens, A.; Enßlin, T.A. Radio observational constraints on Galactic 3D-emission models. Astron. Astrophys. 2008, 477, 573–592. [Google Scholar] [CrossRef]
- Fauvet, L.; Macías-Pérez, J.F.; Aumont, J.; Désert, F.X.; Jaffe, T.R.; Banday, A.J.; Tristram, M.; Waelkens, A.H.; Santos, D. Joint 3D modelling of the polarized Galactic synchrotron and thermal dust foreground diffuse emission. Astron. Astrophys. 2011, 526, A145. [Google Scholar] [CrossRef]
- Jaffe, T.R.; Ferrière, K.M.; Banday, A.J.; Strong, A.W.; Orlando, E.; Macías-Pérez, J.F.; Fauvet, L.; Combet, C.; Falgarone, E. Comparing polarized synchrotron and thermal dust emission in the Galactic plane. Mon. Not. R. Astron. Soc. 2013, 431, 683–694. [Google Scholar] [CrossRef] [Green Version]
- Ferrière, K.; Terral, P. Analytical models of X-shape magnetic fields in galactic halos. Astron. Astrophys. 2014, 561, A100. [Google Scholar] [CrossRef]
- Shukurov, A.; Snodin, A.P.; Seta, A.; Bushby, P.J.; Wood, T.S. Cosmic Rays in Intermittent Magnetic Fields. Astrophys. J. Lett. 2017, 839, L16. [Google Scholar] [CrossRef] [Green Version]
- Enßlin, T.A.; Frommert, M.; Kitaura, F.S. Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis. Phys. Rev. D 2009, 80, 105005. [Google Scholar] [CrossRef]
- Alves, M.I.R.; Boulanger, F.; Ferrière, K.; Montier, L. The Local Bubble: A magnetic veil to our Galaxy. Astron. Astrophys. 2018, 611, L5. [Google Scholar] [CrossRef]
- Simard-Normandin, M.; Kronberg, P.P. New large-scale magnetic features of the Milky Way. Nature 1979, 279, 115–118. [Google Scholar] [CrossRef]
- Farnes, J.S.; O’Sullivan, S.P.; Corrigan, M.E.; Gaensler, B.M. Faraday Rotation from Magnesium II Absorbers toward Polarized Background Radio Sources. Astrophys. J. 2014, 795, 63. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haverkorn, M.; Boulanger, F.; Enßlin, T.; Hörandel, J.R.; Jaffe, T.; Jasche, J.; Rachen, J.P.; Shukurov, A. IMAGINE: Modeling the Galactic Magnetic Field. Galaxies 2019, 7, 17. https://doi.org/10.3390/galaxies7010017
Haverkorn M, Boulanger F, Enßlin T, Hörandel JR, Jaffe T, Jasche J, Rachen JP, Shukurov A. IMAGINE: Modeling the Galactic Magnetic Field. Galaxies. 2019; 7(1):17. https://doi.org/10.3390/galaxies7010017
Chicago/Turabian StyleHaverkorn, Marijke, François Boulanger, Torsten Enßlin, Jörg R. Hörandel, Tess Jaffe, Jens Jasche, Jörg P. Rachen, and Anvar Shukurov. 2019. "IMAGINE: Modeling the Galactic Magnetic Field" Galaxies 7, no. 1: 17. https://doi.org/10.3390/galaxies7010017
APA StyleHaverkorn, M., Boulanger, F., Enßlin, T., Hörandel, J. R., Jaffe, T., Jasche, J., Rachen, J. P., & Shukurov, A. (2019). IMAGINE: Modeling the Galactic Magnetic Field. Galaxies, 7(1), 17. https://doi.org/10.3390/galaxies7010017