Tracing Primordial Magnetic Fields with 21 cm Line Observations
Abstract
:1. Introduction
2. The 21 cm Line Signal Induced by the Magnetic Mode
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Govoni, F.; Murgia, M.; Vacca, V.; Loi, F.; Girardi, M.; Gastaldello, F.; Giovannini, G.; Feretti, L.; Paladino, R.; Carretti, E. Sardinia Radio Telescope observations of Abell 194—The intra-cluster magnetic field power spectrum. Astron. Astrophys. 2017, 603, A122. [Google Scholar] [CrossRef]
- Han, J.L. Observing Interstellar and Intergalactic Magnetic Fields. Ann. Rev. Astron. Astrophys. 2017, 55, 111. [Google Scholar] [CrossRef]
- Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2015, 24, 4. [Google Scholar] [CrossRef] [Green Version]
- Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J.H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; et al. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-Ray Observations of the Coma Cluster of Galaxies with VERITAS and Fermi. Astrophys. J. 2012, 757, 123. [Google Scholar] [CrossRef]
- Feretti, L.; Giovannini, G.; Govoni, F.; Murgia, M. Clusters of galaxies: Observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 2012, 20, 54. [Google Scholar] [CrossRef]
- Bonafede, A.; Feretti, L.; Murgia, M.; Govoni, F.; Giovannini, G.; Dallacasa, D.; Dolag, K.; Taylor, G.B. The Coma cluster magnetic field from Faraday rotation measures. Astron. Astrophys. 2010, 513, A30. [Google Scholar] [CrossRef] [Green Version]
- Clarke, T.E.; Kronberg, P.P.; Boehringer, H. A New radio—X-ray probe of galaxy cluster magnetic fields. Astrophys. J. 2001, 547, L111–L114. [Google Scholar] [CrossRef]
- Takahashi, K.; Mori, M.; Ichiki, K.; Inoue, S.; Takami, H. Lower Bounds on Magnetic Fields in Intergalactic Voids from Long-term GeV-TeV Light Curves of the Blazar Mrk 421. Astrophys. J. 2013, 771, L42. [Google Scholar] [CrossRef]
- Essey, W.; Ando, S.; Kusenko, A. Determination of intergalactic magnetic fields from gamma ray data. Astropart. Phys. 2011, 35, 135–139. [Google Scholar] [CrossRef]
- Tavecchio, F.; Ghisellini, G.; Foschini, L.; Bonnoli, G.; Ghirlanda, G.; Coppi, P. The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 2010, 406, L70–L74. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 2010, 328, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, F.; Ensslin, T.; Fletcher, A.; Girichides, P.; Hackstein, S.; Haverkorn, M.; Hoerandel, J.R.; Jaffe, T.R.; Jasche, J.; Kachelriess, M.; et al. IMAGINE: A comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays. arXiv, 2018; arXiv:1805.02496. [Google Scholar] [CrossRef]
- Kandus, A.; Kunze, K.E.; Tsagas, C.G. Primordial magnetogenesis. Phys. Rep. 2011, 505, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Durrer, R.; Neronov, A. Cosmological Magnetic Fields: Their Generation, Evolution and Observation. Astron. Astrophys. Rev. 2013, 21, 62. [Google Scholar] [CrossRef]
- Adamek, J.; Durrer, R.; Fenu, E.; Vonlanthen, M. A large scale coherent magnetic field: Interactions with free streaming particles and limits from the CMB. J. Cosmol. Astropart. Phys. 2011, 1106, 017. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ferreira, P.G.; Silk, J. Constraints on a primordial magnetic field. Phys. Rev. Lett. 1997, 78, 3610–3613. [Google Scholar] [CrossRef]
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. Rept. Prog. Phys. 2016, 79, 076901. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.R.; Lewis, A. Constraining Primordial Magnetism. Phys. Rev. 2012, D86, 043510. [Google Scholar] [CrossRef]
- Brandenburg, A.; Kahniashvili, T.; Mandal, S.; Pol, A.R.; Tevzadze, A.G.; Vachaspati, T. Evolution of hydromagnetic turbulence from the electroweak phase transition. Phys. Rev. 2017, D96, 123528. [Google Scholar] [CrossRef]
- Loeb, A.; Furlanetto, S. The First Galaxies in the Universe; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Mo, H.; van den Bosch, F.; White, S. Galaxy Formation and Evolution; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef]
- Monsalve, R.A.; Fialkov, A.; Bowman, J.D.; Rogers, A.E.E.; Mozdzen, T.J.; Cohen, A.; Barkana, R.; Mahesh, N. Results from EDGES High-Band: III. New Constraints on Parameters of the Early Universe. arXiv, 2019; arXiv:1901.10943. [Google Scholar]
- Kunze, K.E. 21 cm line signal from magnetic modes. J. Cosmol. Astropart. Phys. 2019, 1901, 033. [Google Scholar] [CrossRef]
- Kunze, K.E. Effects of helical magnetic fields on the cosmic microwave background. Phys. Rev. 2012, D85, 083004. [Google Scholar] [CrossRef]
- Kunze, K.E.; Komatsu, E. Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background. J. Cosmol. Astropart. Phys. 2015, 1506, 027. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar] [CrossRef]
- Kunze, K.E. CMB anisotropies in the presence of a stochastic magnetic field. Phys. Rev. 2011, D83, 023006. [Google Scholar] [CrossRef]
- Kim, E.j.; Olinto, A.; Rosner, R. Generation of density perturbations by primordial magnetic fields. Astrophys. J. 1996, 468, 28. [Google Scholar] [CrossRef]
- Sethi, S.K.; Subramanian, K. Primordial magnetic fields in the post-recombination era and early reionization. Mon. Not. R. Astron. Soc. 2005, 356, 778–788. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.G.; Ferramacho, L.; Silva, M.B.; Amblard, A.; Cooray, A. Fast and Large Volume Simulations of the 21 cm Signal from the Reionization and pre-Reionization Epochs. Mon. Not. R. Astron. Soc. 2010, 406, 2421–2432. [Google Scholar] [CrossRef]
- Hassan, S.; Dave, R.; Finlator, K.; Santos, M.G. Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations. Mon. Not. R. Astron. Soc. 2016, 457, 1550–1567. [Google Scholar] [CrossRef] [Green Version]
- Mesinger, A.; Furlanetto, S.; Cen, R. 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal. Mon. Not. R. Astron. Soc. 2011, 411, 955. [Google Scholar] [CrossRef]
- Paoletti, D.; Chluba, J.; Finelli, F.; Rubino-Martin, J.A. Improved CMB anisotropy constraints on primordial magnetic fields from the post-recombination ionization history. Mon. Not. R. Astron. Soc. 2018, 484, 185–195. [Google Scholar] [CrossRef]
- Trivedi, P.; Reppin, J.; Chluba, J.; Banerjee, R. Magnetic heating across the cosmological recombination era: Results from 3D MHD simulations. Mon. Not. R. Astron. Soc. 2018, 481, 3401–3422. [Google Scholar] [CrossRef]
- Koopmans, L.V.E.; Pritchard, J.; Mellema, G.; Abdalla, F.; Aguirre, J.; Ahn, K.; Barkana, R.; van Bemmel, I.; Bernardi, G.; Bonaldi, A.; Briggs, F. The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array. arXiv, 2015; arXiv:1505.07568. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys. 2016, 594, A19. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunze, K.E. Tracing Primordial Magnetic Fields with 21 cm Line Observations. Galaxies 2019, 7, 37. https://doi.org/10.3390/galaxies7010037
Kunze KE. Tracing Primordial Magnetic Fields with 21 cm Line Observations. Galaxies. 2019; 7(1):37. https://doi.org/10.3390/galaxies7010037
Chicago/Turabian StyleKunze, Kerstin E. 2019. "Tracing Primordial Magnetic Fields with 21 cm Line Observations" Galaxies 7, no. 1: 37. https://doi.org/10.3390/galaxies7010037
APA StyleKunze, K. E. (2019). Tracing Primordial Magnetic Fields with 21 cm Line Observations. Galaxies, 7(1), 37. https://doi.org/10.3390/galaxies7010037