The Origin of the Most Energetic Galactic Cosmic Rays: Supernova Explosions into Massive Star Plasma Winds
Abstract
:1. Introduction
2. Massive Star Plasma Winds
3. The Supernova Remnants in the Starburst Galaxy M82
3.1. The CR Proton/Electron Ratio k
3.2. The Magnetic Field in the SN-Shocked Wind, and Implications
4. The Origin of High Energy Galactic Cosmic Rays
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hess, V.F. Die Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 1912, 13, 1084. [Google Scholar]
- Kohlhörster, W. Messungen der durchdringenden Strahlung im Freiballon in größeren Höhen. Phys. Z. 1913, 14, 1153. [Google Scholar]
- Linsley, J. Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV. Phys. Rev. Lett. 1963, 10, 146–148. [Google Scholar] [CrossRef]
- Baade, W.; Zwicky, F. Cosmic rays from supernovae. Proc. Nat. Acad. Sci. USA 1934, 20, 259. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, V.L.; Syrovatskii, S.I. Cosmic Rays in Metagalactic Space. Astron. Zh. 1963, 40, 466, translation in Sov. Astron. A. J. 1963, 7, 357. [Google Scholar]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. 1949, 75, 1169–1174. [Google Scholar] [CrossRef]
- Fermi, E. Galactic Magnetic Fields and the Origin of Cosmic Radiation. Astrophys. J. 1954, 119, 1–6. [Google Scholar] [CrossRef]
- Axford, W.I.; Leer, E.; Skadron, G. The acceleration of cosmic rays by shock waves. In Proceedings of the 15th International Cosmic Ray Conference, Plovdiv, Bulgaria, 13–26 August 1977; Volume 11, pp. 132–137. [Google Scholar]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 1978, 182, 443–455. [Google Scholar] [CrossRef]
- Blandford, R.D.; Ostriker, J.P. Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 1978, 221, L29–L32. [Google Scholar] [CrossRef]
- Krymskii, G.F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk Dokl. 1977, 234, 1306–1308, translation in Sov. Phys. Dokl. 1977, 22, 327–328. [Google Scholar]
- Ginzburg, V.L.; Ptuskin, V.S. On the origin of cosmic rays: some problems in high-energy astrophysics. Rev. Mod. Phys. 1976, 48, 161–189. [Google Scholar] [CrossRef]
- Drury, L.O’C. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Pro. Phys. 1983, 46, 973–1027. [Google Scholar] [CrossRef]
- Lovelace, R.V.E. Dynamo model of double radio sources. Nature 1976, 262, 649–652. [Google Scholar] [CrossRef]
- Biermann, P.L.; Strittmatter, P.A. Synchrotron emission from shockwaves in active galactic nuclei. Astrophys. J. 1987, 322, 643–649. [Google Scholar] [CrossRef]
- Kronberg, P.P.; Dufton, Q.W.; Li, H.; Colgate, S.A. Magnetic energy of the Intergalactic Medium from galactic black holes. Astrophys. J. 2001, 560, 178–186. [Google Scholar] [CrossRef]
- Kronberg, P.P. Intergalactic Magnetic Fields. Phys. Today 2002, 55, 40–46. [Google Scholar] [CrossRef]
- Kronberg, P.P.; Colgate, S.A.; Li, H.; Dufton, Q.W. Giant Radio Galaxies and Cosmic-Ray Acceleration. Astrophys. J. 2004, 604, L77–L80. [Google Scholar] [CrossRef] [Green Version]
- Colgate, S.A. Acceleration mechanisms 2: Force-free reconnection. Comptes Rendus Phys. 2004, 5, 431–440. [Google Scholar] [CrossRef]
- Colgate, S.A.; Fowler, T.K.; Li, H.; Pino, J. Quasi-Static Model of Collimated Jets I. Accretion Disk and Jets. Astrophys. J. 2014, 789, 144. [Google Scholar] [CrossRef]
- Biermann, P.L.; Caramete, L.I.; Fraschetti, F.; Gergely, L.Á.; Harms, B.C.; Kun, E.; Lundquist, J.P.; Meli, A.; Nath, B.B.; Seo, E.S.; et al. The Nature and Origin of Ultra-High Energy Cosmic Ray Particles, Review at the Vulcano Meeting, Vulcano Island, May 2016. Available online: http://www.lnf.infn.it/sis/frascatiseries/Volume64/Volume64.pdf (accessed on 9 April 2019).
- Aharonian, F.A. Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe; World Scientific Publishing: Singapore, 2004. [Google Scholar]
- Stanev, T. High Energy Cosmic Rays; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Kotera, K.; Olinto, A.V. The Astrophysics of Ultrahigh-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 2011, 49, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Letessier-Selvon, A.; Stanev, T. Ultrahigh energy cosmic rays. Rev. Mod. Phys. 2011, 83, 907–942. [Google Scholar] [CrossRef] [Green Version]
- Bykov, A.M.; Ellison, D.C.; Gladilin, P.E.; Osipov, S.M. Galactic cosmic ray origin sites: Supernova remnants and superbubbles. AIP Conf. Proc. 2012, 1505, 46–55. [Google Scholar]
- Diehl, R. Nuclear astrophysics lessons from INTEGRAL. Rep. Pro. Phys. 2013, 76, 026301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, R. Gamma-ray line measurements from supernova explosions. In Proceedings of the IAU Symposium 331 “SN1987A 30 Years After”, La Reunion Island, France, 20–24 February 2017; Volume 331, pp. 157–163. [Google Scholar]
- Blasi, P. The origin of galactic cosmic rays. Astron. Astroph. Rev. 2013, 21, 70. [Google Scholar] [CrossRef]
- Gaisser, T.K.; Engel, R.; Resconi, E. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Kronberg, P.P. Cosmic Magnetic Fields; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Amato, E.; Blasi, P. Cosmic Ray Transport in the Galaxy: A Review. Adv. Space Res. 2018, 62, 2731–2749. [Google Scholar] [CrossRef]
- Biermann, P.L.; Becker Tjus, J.; de Boer, W.; Caramete, L.I.; Chieffi, A.; Diehl, R.; Gebauer, I.; Gergely, L.Á.; Haug, E.; Kronberg, P.P.; et al. Supernova explosions of massive stars and cosmic rays. Adv. Space Res. 2018, 62, 2773–2816. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Astrophysical neutrinos and cosmic rays observed by IceCube. Adv. Space Res. 2018, 62, 2902–2930. [Google Scholar] [CrossRef]
- Moskalenko, I.V.; Seo, E.-S. Preface: Origins of cosmic rays. Adv. Space Res. 2018, 62, 2729–2730. [Google Scholar] [CrossRef]
- Seo, E.-S.; Anderson, T.; Angelaszek, D.; Baek, S.J.; Baylon, J.; Buénerd, M.; Copley, M.; Coutu, S.; Derome, L.; Fields, B.; et al. Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM). Adv. Space Res. 2014, 53, 1451–1455. [Google Scholar] [CrossRef]
- Seo, E.-S. Investigating Mysteries of Cosmic Rays with Space-based Experiments. 2018. Available online: http://meetings.aps.org/Meeting/MAS18/Session/G02.1 (accessed on 9 April 2019).
- Stanev, T.; Biermann, P.L.; Gaisser, T.K. Cosmic rays IV. The spectrum and chemical composition above 104 GeV. Astron. Astrophys. 1993, 274, 902–908. [Google Scholar]
- Bell, A.R.; Lucek, S.G. Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 2001, 321, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Helder, E.A.; Vink, J.; Bykov, A.M.; Ohira, Y.; Raymond, J.C.; Terrier, R. Observational Signatures of Particle Acceleration in Supernova Remnants. Space Sci. Rev. 2012, 173, 369–431. [Google Scholar] [CrossRef] [Green Version]
- Zirakashvili, V.N.; Ptuskin, V.S. Cosmic ray acceleration in magnetic circumstellar bubbles. Astropart. Phys. 2018, 98, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Jokipii, J.R. Particle drift, diffusion, and acceleration at shocks. Astrophys. J. 1982, 255, 716–720. [Google Scholar] [CrossRef]
- Jokipii, J.R. Particle acceleration at a termination shock. I–Application to the solar wind and the anomalous component. J. Geophys. Res. 1986, 91, 2929–2932. [Google Scholar] [CrossRef]
- Jokipii, J.R.; Morfill, G. Ultra-high-energy cosmic rays in a galactic wind and its termination shock. Astrophys. J. 1987, 312, 170–177. [Google Scholar] [CrossRef]
- Kronberg, P.P.; Biermann, P.L.; Schwab, F.R. The continuum radio structure of the nucleus of M82. Astrophys. J. 1981, 246, 751–760. [Google Scholar] [CrossRef]
- Kronberg, P.P.; Biermann, P.L.; Schwab, F.R. The nucleus of M82 at radio and X-ray bands–Discovery of a new radio population of supernova candidates. Astrophys. J. 1985, 291, 693–707. [Google Scholar] [CrossRef]
- Fenech, D.M.; Muxlow, T.W.B.; Beswick, R.J.; Pedlar, A.; Argo, M.K. Deep MERLIN 5GHz radio imaging of supernova remnants in the M82 starburst. Mon. Not. R. Astron. Soc. 2008, 391, 1384–1402. [Google Scholar] [CrossRef]
- Fenech, D.M.; Beswick, R.J.; Muxlow, T.W.B.; Pedlar, A.; Argo, M.K. Wide-field Global VLBI and MERLIN combined monitoring of supernova remnants in M82. Mon. Not. R. Astron. Soc. 2010, 408, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.P. Cooling and Evolution of a Supernova Remnant. Astrophys. J. 1972, 178, 159–168. [Google Scholar] [CrossRef]
- Biermann, P.L.; Cassinelli, J.P. Cosmic rays II. Evidence for a magnetic rotator Wolf-Rayet star origin. Astron. Astrophys. 1993, 277, 691–706. [Google Scholar]
- Biermann, P.L.; Strom, R.G. Cosmic Rays III. The cosmic ray spectrum between 1 GeV and 104 GeV and the radio emission from supernova remnants. Astron. Astrophys. 1993, 275, 659–669. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Course of Theoretical Physics (book Series); Pergamon Press: Oxford, UK, 1959; (In English translation from the original Russian). [Google Scholar]
- Meli, A.; Biermann, P.L. Cosmic rays X. The cosmic ray knee and beyond: Diffusive acceleration at oblique shocks. Astron. Astrophys. 2006, 454, 687–694. [Google Scholar] [CrossRef]
- Biermann, P.L. Cosmic rays I. The cosmic ray spectrum between 104 GeV and 3 109 GeV. Astron. Astrophys. 1993, 271, 649–661. [Google Scholar]
- Parker, E.N. Dynamics of the Interplanetary Gas and Magnetic Fields. Astrophys. J. 1958, 128, 664–676. [Google Scholar] [CrossRef]
- Weber, E.J.; Davis, L., Jr. The Angular Momentum of the Solar Wind. Astrophys. J. 1967, 148, 217–227. [Google Scholar] [CrossRef]
- Jokipii, J.R. Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 1987, 313, 842–846. [Google Scholar] [CrossRef]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 1984, 22, 425–444. [Google Scholar] [CrossRef]
- Völk, H.J.; Biermann, P.L. Maximum energy of cosmic-ray particles accelerated by supernova remnant shocks in stellar wind cavities. Astrophys. J. Lett. 1988, 333, L65–L68. [Google Scholar] [CrossRef]
- Biermann, P.L.; Becker, J.K.; Meli, A.; Rhode, W.; Seo, E.-S.; Stanev, T. Cosmic Ray Electrons and Positrons from Supernova Explosions of Massive Stars. Phys. Rev. Lett. 2009, 103, 061101. [Google Scholar] [CrossRef]
- Bartel, N.; Ratner, M.I.; Rogers, A.E.E.; Shapiro, I.I.; Bonometti, R.J.; Cohen, N.L.; Gorenstein, M.V.; Marcaide, J.M.; Preston, R.A. VLBI observations of 23 hot spots in the starburst galaxy M82. Astrophys. J. 1987, 323, 505–515. [Google Scholar] [CrossRef]
- Muxlow, T.W.B.; Pedlar, A.; Wilkinson, P.N.; Axon, D.J.; Sanders, E.M.; de Bruyn, A.G. The structure of young supernova remnants in M82. Mon. Not. R. Astron. Soc. 1994, 266, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Golla, G.; Allen, M.L.; Kronberg, P.P. The Starburst Nuclear Region in M82 Compared in Several Wave Bands. Astrophys. J. 1996, 473, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.L.; Kronberg, P.P. Radio Spectra of Selected Compact Sources in the Nucleus of M82. Astrophys. J. 1998, 502, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.L. Radio Continuum Studies of the Evolved Starburst in M82. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1999. [Google Scholar]
- Kronberg, P.P.; Sramek, R.A.; Birk, G.T.; Dufton, Q.W.; Clarke, T.E.; Allen, M.L. A Search for Flux Density Variations in 24 Compact Radio Sources in M82. Astrophys. J. 2000, 535, 706–711. [Google Scholar] [CrossRef] [Green Version]
- McDonald, A.R.; Muxlow, T.W.B.; Wills, K.A.; Pedlar, A.; Beswick, R.J. A parsec-scale study of the 5/15-GHz spectral indices of the compact radio sources in M82. Mon. Not. R. Astron. Soc. 2002, 334, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Muxlow, T.W.B.; Pedlar, A.; Beswick, R.J.; Argo, M.K.; O’Brien, T.J.; Fenech, D.; Trotman, W. Is 41.95+575 in M82 actually an SNR? Mem. Soc. Astron. Ital. 2005, 76, 586–588. [Google Scholar]
- Gendre, M.A.; Fenech, D.M.; Beswick, R.J.; Muxlow, T.W.B.; Argo, M.K. Flux density variations of radio sources in M82 over the last three decades. Mon. Not. R. Astron. Soc. 2013, 431, 1107–1120. [Google Scholar] [CrossRef] [Green Version]
- Miley, G.K. The structure of extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1980, 18, 165. [Google Scholar] [CrossRef]
- Parker, E.N. The dynamical state of the interstellar gas and field. Astrophys. J. 1966, 145, 811–833. [Google Scholar] [CrossRef]
- Ames, S. Magneto-Gravitational and Thermal Instability in the Galactic Disk. Astrophys. J. 1973, 182, 387–404. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Physics of Fully Ionized Gases, 2nd ed.; Wiley Interscience: New York, NY, USA, 1962. [Google Scholar]
- Caprioli, D. Fermi acceleration at supernova remnant shocks. AIP Conf. Proc. 2012, 1505, 237–240. [Google Scholar]
- McClements, K.G.; Dendy, R.O.; Bingham, R.; Kirk, J.G.; Drury, L.O’C. Acceleration of cosmic ray electrons by ion-excited waves at quasi-perpendicular shocks. Mon. Not. R. Astron. Soc. 1997, 291, 241–249. [Google Scholar] [CrossRef]
- Dieckmann, M.E.; Chapman, S.C.; McClements, K.G.; Dendy, R.O.; Drury, L.O’C. Electron acceleration due to high frequency instabilities at supernova remnant shocks. Astron. Astrophys. 2000, 356, 377–388. [Google Scholar]
- van der Laan, H. A Model for Variable Extragalactic Radio Sources. Nature 1966, 211, 1131–1133. [Google Scholar] [CrossRef]
- Shklovskii, I.S. Secular Variation of the Flux and Intensity of Radio Emission from Discrete Sources. Astron. Zh. 1960, 37, 256–264, translation in Sov. Astron. A. J. 1960, 4, 243–249. [Google Scholar]
- Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Angüner, E.O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J.B.; Berge, D.; et al. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 2016, 531, 476–479. [Google Scholar] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I.A.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-MuAiz, J.; Anastasi, G.A.; et al. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. J. Cosm. Astrop. Phys. 2017, 4, 038. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017, 96, 122003. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory. Astrophys. J. 2018, 868, 4. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Evidence of Intermediate-scale Energy Spectrum Anisotropy of Cosmic Rays E ≥ 1019.2 eV with the Telescope Array Surface Detector. Astrophys. J. 2018, 862, 91. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. The Cosmic Ray Energy Spectrum between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode. Astrophys. J. 2018, 865, 74. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Mass composition of ultra-high-energy cosmic rays with the Telescope Array Surface Detector Data. Phys. Rev. D 2018, arXiv:1808.03680. [Google Scholar]
- Abeysekara, A.U.; Alfaro, R.; Alvarez, C.; Alvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.; Becerril, A.; Belmont-Moreno, E.; et al. Observation of Anisotropy of TeV Cosmic Rays with Two Years of HAWC. Astrophys. J. 2018, 865, 57. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Belmont-Moreno, E.; BenZvi, S.Y.; Brisbois, C.; Capistrán, T.; et al. All-Sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field. Astrophys. J. 2019, 871, 96. [Google Scholar] [CrossRef]
- Sedov, L.I. Examples of Gas Motion and Certain Hypotheses on the Mechanism of Stellar Outbursts. Rev. Mod. Phys. 1958, 30, 1077–1079. [Google Scholar] [CrossRef]
- Hamuy, M. Observed and Physical Properties of Core-Collapse Supernovae. Astrophys. J. 2003, 582, 905–914. [Google Scholar] [CrossRef]
- Lusk, J.A.; Baron, E. Bolometric Light Curves of Peculiar Type II-P Supernovae. Publ. Astron. Soc. Pac. 2017, 129, 044202. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.; Tominaga, N.; Umeda, H.; Nomoto, K.; Suzuki, T. Supernova nucleosynthesis and stellar population in the early Universe. Mem. Soc. Astron. Ital. 2010, 81, 151–156. [Google Scholar]
- Nakar, E.; Poznanski, D.; Katz, B. The Importance of 56Ni in Shaping the Light Curves of Type II Supernovae. Astrophys. J. 2016, 823, 127. [Google Scholar] [CrossRef]
- Utrobin, V.P.; Wongwathanarat, A.; Janka, H.-T.; Müller, E. Light-curve Analysis of Ordinary Type IIP Supernovae Based on Neutrino-driven Explosion Simulations in Three Dimensions. Astrophys. J. 2017, 846, 37. [Google Scholar] [CrossRef] [Green Version]
- Kronberg, P.P.; Wilkinson, P.N. High-resolution, multifrequency radio observations of M82. Astrophys. J. 1975, 200, 430–435. [Google Scholar] [CrossRef]
- Weliachew, L.; Fomalont, E.B.; Greisen, E.W. Radio observations of H I and OH in the center of the galaxy M82. Astron. Astrophys. 1984, 137, 335–342. [Google Scholar]
- Todero Peixoto, C.J.; de Souza, V.; Biermann, P.L. Cosmic rays: The spectrum and chemical composition from 1010 to 1020 eV. J. Cosm. Astrop. Phys. 2015, arXiv:1502.003052015, 042. [Google Scholar] [CrossRef]
- Thoudam, S.; Rachen, J.P.; van Vliet, A.; Achterberg, A.; Buitink, S.; Falcke, H.; Hörandel, J.R. Cosmic-ray energy spectrum and composition up to the ankle: The case for a second Galactic component. Astron. Astrophys. 2016, 595, A33. [Google Scholar] [CrossRef]
- Biermann, P.L.; Langer, N.; Seo, E.-S.; Stanev, T. Cosmic Rays IX. Interactions and transport of cosmic rays in the Galaxy. Astron. Astrophys. 2001, 369, 269–277. [Google Scholar] [CrossRef]
- de Boer, W.; Bosse, L.; Gebauer, I.; Neumann, A.; Biermann, P.L. Molecular Clouds as the Origin of the Fermi Gamma-Ray GeV-Excess. Phys. Rev. D 2017, 96, 043012. [Google Scholar] [CrossRef]
- Nayerhoda, A.; Salesa Greus, F.; Casanova, S. TeV Diffuse emission from the inner Galaxy. Front. Astron. Space Sci. 2018, 5, 8. [Google Scholar] [CrossRef]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2017, 119, 251101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 120, 021101. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Cavasonza, L.A.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 121, 051103. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.; Barber, A.S.; Becerril, A.; Belmont-Moreno, E.; et al. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV. Phys. Rev. D 2017, 96, 122001. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M.; Usov, V. Possible Association of Ultra-High-Energy Cosmic-Ray Events with Strong Gamma-Ray Bursts. Astrophys. J. Lett. 1995, 449, L37–L40. [Google Scholar] [CrossRef]
- Milgrom, M.; Usov, V. Gamma-ray bursters as sources of cosmic rays. Astropart. Phys. 1996, 4, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Vietri, M. The Acceleration of Ultra-High-Energy Cosmic Rays in Gamma-Ray Bursts. Astrophys. J. 1995, 453, 883–889. [Google Scholar] [CrossRef]
- Vietri, M. Coronal gamma-ray bursts as the sources of ultra-high-energy cosmic rays? Mon. Not. R. Astron. Soc. Lett. 1996, 278, L1–L4. [Google Scholar] [CrossRef]
- Vietri, M. Ultrahigh Energy Neutrinos from Gamma Ray Bursts. Phys. Rev. Lett. 1998, 80, 3690–3693. [Google Scholar] [CrossRef] [Green Version]
- Miralda-Escudé, J.; Waxman, E. Signatures of the Origin of High-Energy Cosmic Rays in Cosmological Gamma-Ray Bursts. Astrophys. J. Lett. 1996, 462, L59–L62. [Google Scholar] [CrossRef]
- Waxman, E. Cosmological Gamma-Ray Bursts and the Highest Energy Cosmic Rays. Phys. Rev. Lett. 1995, 75, 386–389. [Google Scholar] [CrossRef] [Green Version]
- Waxman, E.; Bahcall, J. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Phys. Rev. Lett. 1997, 78, 2292–2295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Mészáros, P. Gamma-Ray Bursts: Progress, problems & prospects. Int. J. Mod. Phys. A 2004, 19, 2385–2472. [Google Scholar]
- Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 2004, 76, 1143–1210. [Google Scholar] [CrossRef]
- Abbasi, R.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; et al. Indications of intermediate-scale anisotropy of cosmic rays with energies greater than 57 EeV in the Northern sky measured with the surface detector of the Telescope Array experiment. Astrophys. J. Lett. 2014, 790, L21. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; et al. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature 2012, 484, 351–354. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Search for high-energy neutrinos from bright GRBs with ANTARES. Mon. Not. R. Astron. Soc. 2017, 469, 906–915. [Google Scholar] [CrossRef]
- Meli, A.; Becker, J.K.; Quenby, J.J. On the origin of ultra high energy cosmic rays: Subluminal and superluminal relativistic shocks. Astron. Astrophys. 2008, 492, 323–326. [Google Scholar] [CrossRef]
- Rachen, J.P.; Biermann, P.L. Extragalactic ultra-high energy cosmic rays I. Contribution from hot spots in FR-II radio galaxies. Astron. Astrophys. 1993, 272, 161–175. [Google Scholar]
- Rachen, J.P.; Stanev, T.; Biermann, P.L. Extragalactic ultra high energy cosmic rays II. Comparison with experimental data. Astron. Astrophys. 1993, 273, 377–382. [Google Scholar]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar]
- Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 2016, 12, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Kun, E.; Biermann, P.L.; Gergely, L.Á. A flat spectrum candidate for a track-type high energy neutrino emission event, the case of blazar PKS 0723-008. Mon. Not. R. Astron. Soc. Lett. 2017, 466, L34–L38. [Google Scholar] [CrossRef]
- Kun, E.; Biermann, P.L.; Gergely, L.Á. VLBI radio structure and core-brightening of the high-energy neutrino emitter TXS 0506+056. Mon. Not. R. Astron. Soc. Lett. 2019, 483, L42–L46. [Google Scholar] [CrossRef]
- Halzen, F. Lectures at Erice. 2018. Available online: https://icecube.wisc.edu/~halzen/presentations.htm (accessed on 9 April 2019).
- Caramete, L.I.; Biermann, P.L. The mass function of nearby black hole candidates. Astron. Astrophys. 2010, 521, A55. [Google Scholar] [CrossRef] [Green Version]
- Gergely, L.Á.; Biermann, P.L. Supermassive black hole mergers. Astrophys. J. 2009, 697, 1621–1633. [Google Scholar] [CrossRef]
- Probing Local Sources with High Energy Cosmic Ray Electrons. Available online: https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2017/09/ (accessed on 9 April 2019).
- Kardashev, N.S. Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission. Astron. Zh. 1962, 39, 393–409, reprinted in Sov. Astron. A. J. 1962, 6, 317–327. [Google Scholar]
- Beck, R.; Brandenburg, A.; Moss, D.; Shukurov, A.; Sokoloff, D. Galactic Magnetism: Recent Developments and perspectives. Annu. Rev. Astron. Astrophys. 1996, 34, 155–206. [Google Scholar] [CrossRef]
- Yüksel, H.; Kistler, M.D.; Stanev, T. TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess. Phys. Rev. Lett. 2009, 103, 051101. [Google Scholar] [CrossRef]
- Yüksel, H.; Stanev, T.; Kistler, M.D.; Kronberg, P.P. The Centaurus A Ultrahigh-energy Cosmic-Ray Excess and the Local Extragalactic Magnetic Field. Astrophys. J. 2012, 758, 16. [Google Scholar] [CrossRef]
- Murphy, R.P.; Sasaki, M.; Binns, W.R.; Brandt, T.J.; Hams, T.; Israel, M.H.; Labrador, A.W.; Link, J.T.; Mewaldt, R.A.; Mitchell, J.W.; et al. Galactic Cosmic Ray Origins and OB Associations: Evidence from SuperTIGER Observations of Elements 26Fe through 40Zr. Astrophys. J. 2016, 831, 148. [Google Scholar] [CrossRef]
- Biermann, P.L.; Chini, R.; Haslam, C.G.T.; Kreysa, E.; Lemke, R.; Sievers, A. Evidence for heavy element dust clumps from the increasing 1300 micron emission from supernova 1987A. Astron. Astroph. 1992, 255, L5–L8. [Google Scholar]
- Wesson, R.; Barlow, M.J.; Matsuura, M.; Ercolano, B. The timing and location of dust formation in the remnant of SN 1987A. Mon. Not. R. Astron. Soc. 2015, 446, 2089–2101. [Google Scholar] [CrossRef]
- Bethe, H.A. Supernova mechanisms. Rev. Mod. Phys. 1990, 62, 801–866. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S. The Explosion of a Rotating Star As a Supernova Mechanism. Astron. Zh. 1971, 47, 813–816. [Google Scholar]
- Bisnovatyi-Kogan, G.S.; Moiseenko, S.G.; Ardelyan, N.V. Different magneto-rotational supernovae. Astron. Rep. 2008, 52, 997–1008. [Google Scholar] [CrossRef]
- Seemann, H.; Biermann, P.L. Unstable waves in winds of magnetic massive stars. Astron. Astrophys. 1997, 327, 273–280. [Google Scholar]
- Fischer, T.; Bastian, N.-U.F.; Wu, M.-R.; Baklanov, P.; Sorokina, E.; Blinnikov, S.; Typel, S.; Klähn, T.; Blaschke, D.B. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars. Nat. Astron. 1954. [Google Scholar] [CrossRef]
- Shen, K.J.; Kasen, D.; Miles, B.J.; Broxton, J.; Townsley, D.M. Sub-Chandrasekhar-mass White Dwarf Detonations Revisited. Astrophys. J. 2018, 854, 52. [Google Scholar] [CrossRef] [Green Version]
- Raddi, R.; Hollands, M.A.; Gänsicke, B.T.; Townsley, D.M.; Hermes, J.J.; Gentile Fusillo, N.P.; Koester, D. Anatomy of the hyper-runaway star LP 40-365 with Gaia. Mon. Not. R. Astron. Soc. Lett. 2018, 479, L96–L101. [Google Scholar] [CrossRef]
- Shen, K.J.; Boubert, D.; Gänsicke, B.T.; Jha, S.W.; Andrews, J.E.; Chomiuk, L.; Foley, R.J.; Fraser, M.; Gromadzki, M.; Guillochon, J.; et al. Three Hypervelocity White Dwarfs in Gaia DR2: Evidence for Dynamically Driven Double-degenerate Double-detonation Type Ia Supernovae. Astrophys. J. 2018, 865, 15. [Google Scholar] [CrossRef]
- Dickel, J.R.; van Breugel, W.J.M.; Strom, R.G. Radio structure of the remnant of Tycho’s supernova (SN 1572). Astron. J. 1991, 101, 2151–2159. [Google Scholar] [CrossRef]
- Chevalier, R.A. Are young supernova remnants interacting with circumstellar gas? Astrophys. J. 1982, 259, L85–L89. [Google Scholar] [CrossRef]
- Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Buckley, J.H.; Bugaev, V.; Cerruti, M.; Connolly, M.P.; et al. Gamma-Ray Observations of Tycho’s Supernova Remnant with VERITAS and Fermi. Astrophys. J. 2017, 836, 23. [Google Scholar] [CrossRef]
- Bykov, A.M.; Ellison, D.C.; Marcowith, A.; Osipov, S.M. Cosmic Ray Production in Supernovae. Space Sci. Rev. 2018, 214, 41. [Google Scholar] [CrossRef] [Green Version]
- Dwarkadas, V.V.; Chevalier, R.A. Interaction of Type IA Supernovae with Their Surroundings. Astrophys. J. 1998, 497, 807–823. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Röpke, F.K.; Benetti, S.; Hillebrandt, W. A Common Explosion Mechanism for Type Ia Supernovae. Science 2007, 315, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Townsley, D.M.; Jackson, A.P.; Calder, A.C.; Chamulak, D.A.; Brown, E.F.; Timmes, F.X. Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Progenitor 22Ne Content on Dynamics. Astrophys. J. 2009, 701, 1582–1604. [Google Scholar]
- Bell, A.R. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 2004, 353, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.R. Cosmic ray acceleration by a supernova shock in a dense circumstellar plasma. Mon. Not. R. Astron. Soc. 2008, 385, 1884–1892. [Google Scholar] [CrossRef] [Green Version]
- Lucek, S.G.; Bell, A.R. Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 2000, 314, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Raskin, C.; Scannapieco, E.; Rhoads, J.; Della Valle, M. Prompt Ia Supernovae are Significantly Delayed. Astrophys. J. 2009, 707, 74–78. [Google Scholar] [CrossRef]
- Scannapieco, E.; Bildsten, L. The Type Ia Supernova Rate. Astrophys. J. 2005, 629, L85–L88. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Herrero, A.; Engelbracht, C.W.; Rieke, M.J.; Rieke, G.H.; Quillen, A.C. NGC 1614: A Laboratory for Starburst Evolution. Astrophys. J. 2001, 546, 952–965. [Google Scholar] [CrossRef] [Green Version]
- Biermann, P.; Fricke, K. On the origin of the radio and optical radiation from Markarian galaxies. Astron. Astrophys. 1977, 54, 461–464. [Google Scholar]
- Huchra, J.P. Star formation in blue galaxies. Astrophys. J. 1977, 217, 928–939. [Google Scholar] [CrossRef]
- Huchra, J.P.; Geller, M.J.; Gallagher, J.; Hunter, D.; Hartmann, L.; Fabbiano, G.; Aaronson, M. Star formation in blue galaxies. I–Ultraviolet, optical, and infrared observations of NGC 4214 and NGC 4670. Astrophys. J. 1983, 274, 125–135. [Google Scholar] [CrossRef]
- Aliu, E.; Archambault, S.; Aune, T.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Buckley, J.H.; Bugaev, V.; et al. Investigating the TeV Morphology of MGRO J1908+06 with VERITAS. Astrophys. J. 2014, 787, 166. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.; Barber, A.S.; et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 2017, 358, 911–914. [Google Scholar] [CrossRef] [Green Version]
- Soderberg, A.M.; Chakraborti, S.; Pignata, G.; Chevalier, R.A.; Chandra, P.; Ray, A.; Wieringa, M.H.; Copete, A.; Chaplin, V.; Connaughton, V.; et al. A relativistic type Ibc supernova without a detected γ-ray burst. Nature 2010, 463, 513–515. [Google Scholar] [CrossRef]
- Seo, J.; Kang, H.; Ryu, D. The Contribution of Stellar Winds to Cosmic Ray Production. J. Korean Astron. Soc. 2018, 51, 37–48. [Google Scholar]
- Chini, R.; Hoffmeister, V.H.; Nasseri, A.; Stahl, O.; Zinnecker, H. A spectroscopic survey on the multiplicity of high-mass stars. Mon. Not. R. Astron. Soc. 2012, 424, 1925–1929. [Google Scholar] [CrossRef] [Green Version]
- Chini, R.; Nasseri, A.; Dembsky, T.; Buda, L.-S.; Fuhrmann, K.; Lehmann, H. Stellar multiplicity across the mass spectrum. In Setting a New Standard in the Analysis of Binary Stars; Pavlovski, K., Tkachenko, A., Torres, G., Eds.; EAS Publ. Ser. European Astron. Soc.: Geneva, Switzerland, 2013; Volume 64, pp. 155–162. [Google Scholar]
- Heinz, S.; Sunyaev, R. Cosmic rays from microquasars: A narrow component to the CR spectrum? Astron. Astrophys. 2002, 390, 751–766. [Google Scholar] [CrossRef] [Green Version]
- Mirabel, I.F. Microquasars and ULXs: Fossils of GRB Sources. In Compact Binaries in the Galaxy and Beyond; Tovmassian, G., Sion, E., Eds.; Rev. Mex. de Astron. Astrof. (Serie de Conf.); IAU Colloquium 2004; Volume 20, pp. 14–17. Available online: http://www.astroscu.unam.mx/~rmaa/ (accessed on 9 April 2019).
- Mirabel, I.F. Microquasars. Mem. Soc. Astron. Ital. 2011, 82, 14–23. [Google Scholar]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.; Belmont-Moreno, E.; et al. Very high energy particle acceleration powered by the jets of the microquasar SS 433. Nature 2018, 562, 82–85. [Google Scholar] [CrossRef]
- Vulic, N.; Hornschemeier, A.E.; Wik, D.R.; Yukita, M.; Zezas, A.; Ptak, A.F.; Lehmer, B.D.; Antoniou, V.; Maccarone, T.F.; Williams, B.F.; et al. Black Holes and Neutron Stars in Nearby Galaxies: Insights from NuSTAR. Astrophys. J. 2018, 864, 150. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett. 2017, 850, 35. [Google Scholar] [CrossRef]
- Pshirkov, M.S.; Tinyakov, P.G.; Kronberg, P.P.; Newton-McGee, K.J. Deriving the Global Structure of the Galactic Magnetic Field from Faraday Rotation Measures of Extragalactic Sources. Astrophys. J. 2011, 738, 192. [Google Scholar] [CrossRef]
- Mao, S.A.; McClure-Griffiths, N.M.; Gaensler, B.M.; Brown, J.C.; van Eck, C.L.; Haverkorn, M.; Kronberg, P.P.; Stil, J.M.; Shukurov, A.; Taylor, A.R.; et al. New Constraints on the Galactic Halo Magnetic Field Using Rotation Measures of Extragalactic Sources toward the Outer Galaxy. Astrophys. J. 2012, 755, 21. [Google Scholar] [CrossRef]
- Kronberg, P.P. ISVHECRI 2012—XVII Int. Symp. on Very HE CR Interactions; Gensch, U., Walter, M., Eds.; EPJ Web of Conferences: Berlin, Germany, 2013; Volume 52, p. 06004. [Google Scholar]
- Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D.J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B.S.; et al. Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER. Mon. Not. R. Astron. Soc. 2018, 476, 158–183. [Google Scholar] [CrossRef]
- Krause, M.; Irwin, J.; Wiegert, T.; Miskolczi, A.; Damas-Segovia, A.; Beck, R.; Li, J.-T.; Heald, G.; Müller, P.; Stein, Y.; et al. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations. Astron. Astrophys. 2018, 611, A72. [Google Scholar] [CrossRef]
- Miskolczi, A.; Heesen, V.; Horellou, C.; Bomans, D.-J.; Beck, R.; Heald, G.; Dettmar, R.-J.; Blex, S.; Nikiel-Wroczyński, B.; Chyžy Bomans, D.-J.; et al. CHANG-ES XII: A LOFAR and VLA view of the edge-on star-forming galay NGC 3556. Astron. Astrophys. 2018, 622, A9. [Google Scholar] [CrossRef]
- Rossa, J.; Dettmar, R.-J. An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge-on spiral galaxies. I. How common are gaseous halos among non-starburst galaxies? Astron. Astrophys. 2003, 406, 493–503. [Google Scholar] [CrossRef]
- Merten, L.; Bustard, C.; Zweibel, E.G.; Becker Tjus, J. The Propagation of Cosmic Rays from the Galactic Wind Termination Shock: Back to the Galaxy? Astrophys. J. 2018, 859, 63. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Joint constraints on Galactic diffuse neutrino emission from ANTARES and IceCube Neutrino Telescopes. Astrophys. J. Lett. 2018, 868, L20. [Google Scholar] [CrossRef]
- Nath, B.B.; Gupta, N.; Biermann, P.L. Spectrum and ionization rate of low-energy Galactic cosmic rays. Mon. Not. R. Astron. Soc. Lett. 2012, 425, L86–L90. [Google Scholar] [CrossRef]
- Mirabel, I.F. The Formation of Stellar Black Holes. New Astron. Rev. 2017. [Google Scholar] [CrossRef]
- Mirabel, I.F. Stellar progenitors of black holes: Insights from optical and infrared observations. In New Frontiers in Black Hole Astrophysics; Cambridge University Press: Cambridge, UK, 2017; Volume 324, pp. 27–30. [Google Scholar]
- Mirabel, I.F. Black holes formed by direct collapse: Observational evidences. In New Frontiers in Black Hole Astrophysics; Cambridge University Press: Cambridge, UK, 2017; Volume 324, pp. 303–306. [Google Scholar]
Coordinate Name | Size 2 r in pc | Flux Density in mJy | sp. Index | est. Magnetic Field Strength B in mGauss | |
---|---|---|---|---|---|
40.68 + 550 | |||||
41.31 + 596 | |||||
41.96 + 574 | |||||
42.53 + 619 | |||||
42.67 + 556 | |||||
43.19 + 583 | |||||
43.31 + 591 | |||||
44.01 + 595 | |||||
44.52 + 581 | |||||
45.18 + 612 | |||||
45.86 + 640 | |||||
46.52 + 638 | |||||
46.70 + 670 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biermann, P.L.; Kronberg, P.P.; Allen, M.L.; Meli, A.; Seo, E.-S. The Origin of the Most Energetic Galactic Cosmic Rays: Supernova Explosions into Massive Star Plasma Winds. Galaxies 2019, 7, 48. https://doi.org/10.3390/galaxies7020048
Biermann PL, Kronberg PP, Allen ML, Meli A, Seo E-S. The Origin of the Most Energetic Galactic Cosmic Rays: Supernova Explosions into Massive Star Plasma Winds. Galaxies. 2019; 7(2):48. https://doi.org/10.3390/galaxies7020048
Chicago/Turabian StyleBiermann, Peter L., Philipp P. Kronberg, Michael L. Allen, Athina Meli, and Eun-Suk Seo. 2019. "The Origin of the Most Energetic Galactic Cosmic Rays: Supernova Explosions into Massive Star Plasma Winds" Galaxies 7, no. 2: 48. https://doi.org/10.3390/galaxies7020048
APA StyleBiermann, P. L., Kronberg, P. P., Allen, M. L., Meli, A., & Seo, E. -S. (2019). The Origin of the Most Energetic Galactic Cosmic Rays: Supernova Explosions into Massive Star Plasma Winds. Galaxies, 7(2), 48. https://doi.org/10.3390/galaxies7020048