Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution
Abstract
:1. Introduction
2. The Grazing Envelope Evolution (GEE)
2.1. Preventing the CEE
2.2. Postponing the CEE and Removing Mass before the CEE
2.3. Shaping the Outflow
2.4. Counteracting Tidal Circularization
2.5. Experiencing ILOT Events
2.6. Forming Type IIb Supernovae (SNe IIb)
3. Evolutionary Phases of the Jets’ Launch
4. Supporting observations to the GEE
5. The Mass-Accreting Secondary Star
5.1. Planets as Secondary Objects
5.2. WD Secondary Stars
5.3. Main Sequence Secondary Stars (Low Masses and High Masses)
5.4. Neutron Stars and Black Holes
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Morris, M. Mechanisms for mass loss from cool stars. Publ. Astron. Soc. Pac. 1987, 99, 1115. [Google Scholar] [CrossRef]
- Sahai, R.; Trauger, J.T. Multipolar Bubbles and Jets in Low-Excitation Planetary Nebulae: Toward a New Understanding of the Formation and Shaping of Planetary Nebulae. Archit. J. 1998, 116, 1357. [Google Scholar] [CrossRef]
- Soker, N. On the Formation of Ansae in Planetary Nebulae. Archit. J. 1990, 99, 1869. [Google Scholar] [CrossRef]
- Akashi, M.; Soker, N. The formation of ‘columns crowns’ by jets interacting with a circumstellar dense shell. Mon. Not. R. Astron. Soc. 2018, 481, 2754–2765. [Google Scholar] [CrossRef]
- Balick, B.; Frank, A.; Liu, B. Models of the Mass-ejection Histories of Pre-planetary Nebulae. III. The Shaping of Lobes by Post-AGB Winds. Astrophys. J. 2019, 877, 30. [Google Scholar] [CrossRef] [Green Version]
- Balick, B.; Frank, A.; Liu, B. Models of the Mass-ejection Histories of Pre-planetary Nebulae. IV. Magnetized Winds and the Origins of Jets, Bullets, and FLIERs. Astrophys. J. 2020, 889, 13. [Google Scholar] [CrossRef] [Green Version]
- Derlopa, S.; Akras, S.; Boumis, P.; Steffen, W. High-velocity string of knots in the outburst of the planetary nebula Hb4. Mon. Not. R. Astron. Soc. 2019, 484, 3746. [Google Scholar] [CrossRef]
- Estrella-Trujillo, D.; Hernández-Martínez, L.; Velázquez, P.F.; Esquivel, A.; Raga, A.C. Hydrodynamical Models of Protoplanetary Nebulae Including the Photoionization of the Central Star. Astrophys. J. 2019, 876, 29. [Google Scholar] [CrossRef]
- Rechy-García, J.S.; Guerrero, M.A.; Duarte Puertas, S.; Chu, Y.-H.; Toala, J.A.; Miranda, L.F. Kinematical investigation of possible fast collimated outflows in twelve planetary nebulae. Mon. Not. R. Astron. Soc. 2020, 492, 1957. [Google Scholar]
- Rechy-García, J.; Velázquez, P.F.; Peña, M.; Raga, A.C. Observations and 3D hydrodynamical models of planetary nebulae with Wolf-Rayet type central stars. Mon. Not. R. Astron. Soc. 2017, 464, 2318. [Google Scholar] [CrossRef] [Green Version]
- Tafoya, D.; Orosz, G.; Vlemmings, W.H.T.; Sahai, R.; Pérez-Sánchez, A.F. Spatio-kinematical model of the collimated molecular outflow in the water-fountain nebula IRAS 16342-3814. Astron. Astrophys. 2019, 629, A8. [Google Scholar] [CrossRef]
- Tocknell, J.; De Marco, O.; Wardle, M. Constraints on common envelope magnetic fields from observations of jets in planetary nebulae. Mon. Not. R. Astron. Soc. 2014, 439, 2014. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.A.; Rechy-Garcia, J.S.; Ortiz, R. Space Velocity and Time Span of Jets in Planetary Nebulae. Astrophys. J. 2020, 890, 50. [Google Scholar] [CrossRef]
- Boffin, H.M.J.; Miszalski, B.; Rauch, T.; Jones, D.; Corradi, R.L.M.; Napiwotzki, R.; Day-Jones, A.C.; Köppen, J. An Interacting Binary System Powers Precessing Outflows of an Evolved Star. Science 2012, 338, 773–775. [Google Scholar] [CrossRef] [Green Version]
- Bujarrabal, V.; Castro-Carrizo, A.; Van Winckel, H.; Alcolea, J.; Sánchez Contreras, C.; Santander-García, M.; Hillen, M. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind. Astron. Astrophys. 2018, 614, A58. [Google Scholar] [CrossRef] [Green Version]
- Corradi, R.L.M.; Sabin, L.; Miszalski, B.; Rodríguez-Gil, P.; Santander-García, M.; Jones, D.; Drew, J.E.; Mampaso, A.; Barlow, M.J.; Rubio-Díez, M.M.; et al. The Necklace: Equatorial and polar outflows from the binary central star of the new planetary nebula IPHASX J194359.5+170901. Mon. Not. R. Astron. Soc. 2011, 410, 1349–1359. [Google Scholar] [CrossRef]
- Jones, D. The binary central stars of planetary nebulae. In Highlights on Spanish Astrophysics X, Proceedings of the XIII Scientific Meeting of the Spanish Astronomical Society, Salamanca, Spain, 16–20 July 2018; The Spanish Astronomical Society: Salamanca, Spain, 2019; p. 340. [Google Scholar]
- Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O. The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5. Astron. Astrophys. 2017, 600, L9. [Google Scholar] [CrossRef] [Green Version]
- Kovári, Z.; Strassmeier, K.G.; Oláh, K.; Kriskovics, L.; Vida, K.; Carroll, T.A.; Granzer, T.; Ilyin, I.; Jurcsik, J.; Kővári, E.; et al. Surface magnetic activity of the fast-rotating G5 giant IN Comae, central star of the faint planetary nebula LoTr 5. Astron. Astrophys. 2019, 624, A83. [Google Scholar] [CrossRef] [Green Version]
- Miszalski, B.; Corradi, R.L.M.; Boffin, H.M.J.; Jones, D.; Sabin, L.; Santander-García, M.; Rodríguez-Gil, P.; Rubio-Díez, M.M. ETHOS 1: A high-latitude planetary nebula with jets forged by a post-common-envelope binary central star. Mon. Not. R. Astron. Soc. 2011, 413, 1264. [Google Scholar] [CrossRef] [Green Version]
- Miszalski, B.; Manick, R.; Van Winckel, H.; Mikołajewska, J. The post-common-envelope binary nucleus of the planetary nebula IC 4776: Neither an anomalously long orbital period nor a Wolf-Rayet binary. Mon. Not. R. Astron. Soc. 2019, 487, 1040–1046. [Google Scholar] [CrossRef]
- Orosz, G.; Gómez, J.F.; Imai, H.; Tafoya, D.; Torrelles, J.M.; Burns, R.A.; Frau, P.; Guerrero, M.A.; Miranda, L.F.; Perez-Torres, M.A.; et al. Rapidly evolving episodic outflow in IRAS 18113-2503: Clues to the ejection mechanism of the fastest water fountain. Mon. Not. R. Astron. Soc. 2019, 482, L40. [Google Scholar] [CrossRef]
- Wesson, R.; Jones, D.; García-Rojas, J.; Boffin, H.M.J.; Corradi, R.L.M. Confirmation of the link between central star binarity and extreme abundance discrepancy factors in planetary nebulae. Mon. Not. R. Astron. Soc. 2018, 480, 4589–4613. [Google Scholar] [CrossRef]
- Soker, N. The jet feedback mechanism (JFM) in stars, galaxies and clusters. New Astron. Rev. 2016, 75, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Shiber, S.; Schreier, R.; Soker, N. Binary interactions with high accretion rates onto main sequence stars. Res. Astron. Astrophys. 2016, 16, 117. [Google Scholar] [CrossRef] [Green Version]
- Chamandy, L.; Frank, A.; Blackman, E.G.; Carroll-Nellenback, J.; Liu, B.; Tu, Y.; Nordhaus, J.; Chen, Z.; Peng, B. Accretion in common envelope evolution. Mon. Not. R. Astron. Soc. 2018, 480, 1898–1911. [Google Scholar] [CrossRef] [Green Version]
- Bollen, D.; Kamath, D.; Van Winckel, H.; De Marco, O. A spatio-kinematic model for jets in post-AGB stars. Astron. Astrophys. 2019, 631, A53. [Google Scholar] [CrossRef] [Green Version]
- De Marco, O.; Passy, J.-C.; Moe, M.; Herwig, F.; Mac Low, M.-M.; Paxton, B. On the alpha formalism for the common envelope interaction. Mon. Not. R. Astron. Soc. 2011, 411, 2277–2292. [Google Scholar] [CrossRef] [Green Version]
- Jones, D. Observational Constraints on the Common Envelope Phase. arXiv 2020, arXiv:2001.03337. [Google Scholar]
- Soker, N. Close Stellar Binary Systems by Grazing Envelope Evolution. Astrophys. J. 2015, 800, 114. [Google Scholar] [CrossRef] [Green Version]
- López-Cámara, D.; De Colle, F.; Moreno Méndez, E. Self-regulating jets during the common-envelope phase. Mon. Not. R. Astron. Soc. 2019, 482, 3646. [Google Scholar] [CrossRef]
- Shiber, S. The Morphology of the Outflow in the Grazing Envelope Evolution. Galaxies 2018, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Shiber, S.; Soker, N. Simulating a binary system that experiences the grazing envelope evolution. Mon. Not. R. Astron. Soc. 2018, 477, 2584–2598. [Google Scholar] [CrossRef]
- Naiman, B.V.; Sabach, E.; Gilkis, A.; Soker, N. Type IIb supernovae by the grazing envelope evolution. Mon. Not. R. Astron. Soc. 2020, 491, 2736. [Google Scholar] [CrossRef]
- Abu-Backer, A.; Gilkis, A.; Soker, N. Orbital Radius during the Grazing Envelope Evolution. Astrophys. J. 2018, 861, 136. [Google Scholar] [CrossRef]
- Gorlova, N.; Van Winckel, H.; Ikonnikova, N.P.; Burlak, M.A.; Komissarova, G.V.; Jorissen, A.; Gielen, C.; Debosscher, J.; Degroote, P. IRAS 19135+3937: An SRd variable as interacting binary surrounded by a circumbinary disc. Mon. Not. R. Astron. Soc. 2015, 451, 2462. [Google Scholar] [CrossRef]
- Witt, A.N.; Vijh, U.P.; Hobbs, L.M.; Aufdenberg, J.P.; Thorburn, J.A.; York, D.G. The Red Rectangle: Its Shaping Mechanism and Its Source of Ultraviolet Photons. Astrophys. J. 2009, 693, 1946. [Google Scholar] [CrossRef]
- Bear, E.; Soker, N. Spinning-up the envelope before entering a common envelope phase. New Astron. 2010, 15, 483–490. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, M.; Loeb, A. Pre-Common-Envelope Mass Loss from Coalescing Binary Systems. arXiv 2020, arXiv:2003.01123. [Google Scholar]
- Shiber, S.; Kashi, A.; Soker, N. Simulating the onset of grazing envelope evolution of binary stars. Mon. Not. R. Astron. Soc. 2017, 465, L54. [Google Scholar] [CrossRef] [Green Version]
- Kashi, A.; Soker, N. Counteracting tidal circularization with the grazing envelope evolution. Mon. Not. R. Astron. Soc. 2018, 480, 3195. [Google Scholar] [CrossRef]
- Soker, N.; Rappaport, S. Departure from Axisymmetry in Planetary Nebulae. Astrophys. J. 2001, 557, 256. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Intermediate luminosity optical transients during the grazing envelope evolution (GEE). New Astron. 2016, 47, 16. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Efficiently jet-powered radiation in intermediate-luminosity optical transients (ILOTS). arXiv 2020, arXiv:2001.07879. [Google Scholar]
- Hillel, S.; Schreier, R.; Soker, N. A companion star launching jets in the wind acceleration zone of a giant star. Astrophys. J. 2020, 891, 33. [Google Scholar] [CrossRef]
- García-Arredondo, F.; Frank, A. Collimated Outflow Formation via Binary Stars: Three-Dimensional Simulations of Asymptotic Giant Branch Wind and Disk Wind Interactions. Astrophys. J. 2004, 600, 992. [Google Scholar] [CrossRef]
- Harpaz, A.; Rappaport, S.; Soker, N. The Rings around the Egg Nebula. Astrophys. J. 1997, 487, 809. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.; Podsiadlowski, P. Wind Roche-Lobe Overflow: A New Mass-Transfer Mode for Wide Binaries. In Proceedings of the 15th European Workshop on White Dwarfs, Leicester, UK, 7–11 August 2006; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 372, p. 397. [Google Scholar]
- Kashi, A.; Soker, N. Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae. Astrophys. J. 2010, 723, 602. [Google Scholar] [CrossRef]
- Shiber, S.; Iaconi, R.; De Marco, O.; Soker, N. Companion-launched jets and their effect on the dynamics of common envelope interaction simulations. Mon. Not. R. Astron. Soc. 2019, 488, 5615. [Google Scholar] [CrossRef]
- Soker, N. Variable jets at the termination of the common envelope evolution. Mon. Not. R. Astron. Soc. 2019, 483, 5020–5025. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Podsiadlowski, P. Rapid Orbital Decay in Detached Binaries: Evidence for Circumbinary Disks. Astrophys. J. Lett. 2017, 837, L19. [Google Scholar] [CrossRef] [Green Version]
- Kashi, A.; Soker, N. A circumbinary disc in the final stages of common envelope and the core-degenerate scenario for Type Ia supernovae. Mon. Not. R. Astron. Soc. 2011, 417, 1466–1479. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.-M.; Krolik, J.H. Three-dimensional MHD Simulation of Circumbinary Accretion Disks. II. Net Accretion Rate. Astrophys. J. 2015, 807, 131. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Jet Formation in the Transition from the Asymptotic Giant Branch to Planetary Nebulae. Astrophys. J. 1992, 389, 628. [Google Scholar] [CrossRef]
- Zou, Y.; Frank, A.; Chen, Z.; Reichardt, T.; Marco, O.D.; Blackman, E.G.; Nordhaus, J.; Balick, B.; Carroll-Nellenback, J.; Chamandy, L.; et al. Bipolar Planetary Nebulae from Outflow Collimation by Common Envelope Evolution. arXiv 2019, arXiv:1912.01647. [Google Scholar]
- Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Sánchez Contreras, C. Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae. Astron. Astrophys. 2001, 377, 868. [Google Scholar] [CrossRef] [Green Version]
- Blackman, E.G.; Lucchini, S. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. 2014, 440, L16. [Google Scholar] [CrossRef] [Green Version]
- Santander-García, M.; Jones, D.; Alcolea, J.; Wesson, R.; Bujarrabal, V. The missing mass conundrum of post-common-envelope planetary nebulae. In Highlights on Spanish Astrophysics X, Proceedings of the XIII Scientific Meeting of the Spanish Astronomical Society, Salamanca, Spain, 16–20 July 2018; Cambridge University Press: Cambridge, UK, 2019; p. 392. [Google Scholar]
- Corradi, R.L.M.; García-Rojas, J.; Jones, D.; Rodríguez-Gil, P. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae. Astrophys. J. 2015, 803, 99. [Google Scholar] [CrossRef]
- Brown, A.J.; Jones, D.; Boffin, H.M.J.; Van Winckel, H. On the post-common-envelope central star of the planetary nebula NGC 2346. Mon. Not. R. Astron. Soc. 2019, 482, 4951–4955. [Google Scholar] [CrossRef]
- Huggins, P.J. Jets and Tori in Proto-Planetary Nebulae. Astrophys. J. 2007, 663, 342. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Boffin, H.M.J. Binary stars as the key to understanding planetary nebulae. Nature Astron. 2017, 1, 0117. [Google Scholar] [CrossRef]
- Sahai, R.; Claussen, M.; Sánchez Contreras, C.; Morris, M.; Sarkar, G. High-Velocity Interstellar Bullets in IRAS 05506+2414: A Very Young Protostar. Astrophys. J. 2008, 680, 483. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs). Galaxies 2018, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Sabach, E.; Soker, N. The class of Jsolated stars and luminous planetary nebulae in old stellar populations. Mon. Not. R. Astron. Soc. 2018, 479, 2249. [Google Scholar] [CrossRef]
- Pudritz, R.E.; Hardcastle, M.J.; Gabuzda, D.C. Magnetic Fields in Astrophysical Jets: From Launch to Termination. Space Sci. Rev. 2012, 169, 27. [Google Scholar] [CrossRef] [Green Version]
- Balick, B.; Perinotto, M.; Maccioni, A.; Terzian, Y.; Hajian, A. FLIERs and Other Microstructures in Planetary Nebulae. II. Astrophys. J. 1994, 424, 800. [Google Scholar] [CrossRef]
- Blackman, E.G.; Frank, A.; Welch, C. Magnetohydrodynamic Stellar and Disk Winds: Application to Planetary Nebulae. Astrophys. J. 2001, 546, 288. [Google Scholar] [CrossRef] [Green Version]
- Guidarelli, G.; Nordhaus, J.; Chamandy, L.; Chen, Z.; Blackman, E.G.; Frank, A.; Carroll-Nellenback, J.; Liu, B. Hydrodynamic simulations of disrupted planetary accretion discs inside the core of an AGB star. Mon. Not. R. Astron. Soc. 2019, 490, 1179. [Google Scholar] [CrossRef]
- Nordhaus, J.; Blackman, E.G. Low-mass binary-induced outflows from asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2006, 370, 2004. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Ruiz, M.; López, J.A. Accretion Disks in Pre-Planetary Nebulae. Astrophys. J. 1999, 524, 952. [Google Scholar] [CrossRef]
- Soker, N. Destruction of Brown Dwarfs and Jet Formation in Planetary Nebulae. Astrophys. J. 1996, 468, 774. [Google Scholar] [CrossRef]
- Soker, N. Energy and angular momentum deposition during common envelope evolution. New Astron. 2004, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Hachisu, I.; Kato, M.; Nomoto, K. A Wide Symbiotic Channel to Type IA Supernovae. Astrophys. J. 1999, 522, 487. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Boffin, H.M.J.; Rodríguez-Gil, P.; Wesson, R.; Corradi, R.L.M.; Miszalski, B.; Mohamed, S. The post-common envelope central stars of the planetary nebulae Henize 2-155 and Henize 2-161. Astron. Astrophys. 2015, 580, A19. [Google Scholar] [CrossRef] [Green Version]
- Prialnik, D.; Livio, M. The outcome of accretion on to a fully convective star Expansion or contraction? Mon. Not. R. Astron. Soc. 1985, 216, 37. [Google Scholar] [CrossRef] [Green Version]
- Akashi, M.; Kashi, A. Fast ejecta resulted from jet-wind interaction in the Great Eruption of Eta Carinae. 2020; preprint. [Google Scholar]
- Grichener, A.; Soker, N. The Common Envelope Jet Supernova (CEJSN) r-process Scenario. Astrophys. J. 2019, 878, 24. [Google Scholar] [CrossRef] [Green Version]
- Soker, N.; Grichener, A.; Gilkis, A. Diversity of common envelope jets supernovae and the fast transient AT2018cow. Mon. Not. R. Astron. Soc. 2019, 484, 4972. [Google Scholar] [CrossRef]
- Gilkis, A.; Soker, N.; Kashi, A. Common envelope jets supernova (CEJSN) impostors resulting from a neutron star companion. Mon. Not. R. Astron. Soc. 2019, 482, 4233. [Google Scholar] [CrossRef]
- Schreier, R.; Hillel, S.; Soker, N. Inclined jets inside a common envelope of a triple stellar system. Mon. Not. R. Astron. Soc. 2019, 490, 4748. [Google Scholar] [CrossRef] [Green Version]
1. Jets in Wind Acceleration Zone | 3. Jets during the GEE | 4. Jets during the CEE |
---|---|---|
Bondi–Hoyle–Lyttleton (BHL) accretion from the slow wind. | BHL + Roche lobe overflow (RLOF) accretion from envelope outskirts. | BHL accretion inside the giant envelope. |
Density-surface 3D maps of the gas that originated in the jets and mixed with the wind. Colours are density surfaces according to the colour bars on the left from (blue) to (red) (from [45]). | The asymptotic giant branch (AGB) is at the center. The secondary star (marked by “+”) is moving to the left in the figure. The red-green-blue colors show gas originated in the jets and moving with velocities . The gray denotes slow AGB gas. Axes from to . (For more details, see the original study [40]). | A temperature map (bar in K) in the meridional plane of a 3D CEE simulation. The secondary launches two opposite jets, in the and directions, as it orbits inside the envelope of a giant star. The high temperature (red) of the shocked jets’ gas shows the jets do not break out from the envelope; i.e., they are choked jets (from [50]). |
2. Jets from Pre-CEE RLOF Accretion | 5. Jets during the Post-CEE |
---|---|
Accretion onto the secondary star by RLOF from the giant envelope (+wind-RLOF accretion from wind acceleration zone). | The secondary star accretes from the post-CEE circumbinary disk (the remnant of the envelope) and launches jets. |
Velocity map in 3D together with density isosurface (wire mesh) from the 3D hydro simulations of [46]. Axes are in pixels. Jets manage to entrain AGB wind and expand out. | A schematic drawing (not to scale) of the last phase of the CEE. The orange hatched region depicts the hot bubble formed by the interaction of one jet with the envelope (opposite bubble not shown). At later times the jets might expand almost freely (from [51]). |
Property | Example | Possible Implications |
---|---|---|
Jets launching before main nebular ejection. | ETHOS 1 [20] | A strong binary interaction which involves mass transfer and jet launching takes place shortly before the CEE. Might be phase 2 (left column) of Table 2. |
Jets launching after main nebular ejection. | Hb4 [7] | A strong binary interaction which involves mass transfer and jet launching takes place shortly after the CEE. Might be mass accretion from a circumbinary disk, as phase 5 in Table 2. |
High-momentum jets in pre-PNe (or in PNe). | M1-92 [57] | Main sequence stars can accrete mass at high rates, , and launch jets when approaching, inside, or just exiting a CEE [58]. |
Post-AGBIBs with jets and a circumbinary disk. | IRAS 19135+3937 [27] | (1) Main sequence companion outside an AGB star can launch jets that shape the outflow. (2) Accretion might take place from a circumbinary disk [27]. |
Low-mass nebulae in some post-CEE PNe [59]. | Abell 63 [60] | Significant pre-CEE mass loss; possibly in a GEE [59]. |
PN central binaries with orbital periods of . | NGC 2346 [61] | Significant pre-CEE mass loss; possibly in a GEE [30]. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soker, N. Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution. Galaxies 2020, 8, 26. https://doi.org/10.3390/galaxies8010026
Soker N. Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution. Galaxies. 2020; 8(1):26. https://doi.org/10.3390/galaxies8010026
Chicago/Turabian StyleSoker, Noam. 2020. "Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution" Galaxies 8, no. 1: 26. https://doi.org/10.3390/galaxies8010026
APA StyleSoker, N. (2020). Shaping Planetary Nebulae with Jets and the Grazing Envelope Evolution. Galaxies, 8(1), 26. https://doi.org/10.3390/galaxies8010026