The UV Perspective of Low-Mass Star Formation
Abstract
:1. Introduction
1.1. A Short History of CTTSs
1.2. The First FUV Observations of Young, Accreting Stars
2. Stellar UV Emission of CTTSs from Magnetic Activity
3. Accretion
- The lines are broader in CTTSs than in WTTSs [61].
4. Protoplanetary Disks
4.1. Fluorescently Excited Molecular Emission Lines
4.2. The “1600 Å Bump”
4.3. Disk Absorption
4.4. Disk Chemistry and the UV SED
4.5. Disk Dispersal
5. Jets and Outflows
6. Variability
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Imhoff, C.L. An historical perspective. In search of the T tauri stars. Astron. Q. 1977, 1, 213–238. [Google Scholar] [CrossRef]
- Joy, A.H. T Tauri Variable Stars. Astrophys. J. 1945, 102, 168. [Google Scholar] [CrossRef]
- Greenstein, J.L. A Possible Energy Source for T Tauri Stars. Publ. Astron. Soc. Pac. 1950, 62, 156. [Google Scholar] [CrossRef]
- Henyey, L.G.; Lelevier, R.; Levée, R.D. The Early Phases of Stellar Evolution. Publ. Astron. Soc. Pac. 1955, 67, 154. [Google Scholar] [CrossRef]
- Ambartsumian, V.A. On the Origin of Stars. In Nuclear Processes in the Stars, Proceedings of the Fifth International Astrophysical Symposium, Liège, Belgium, 10–12 September 2014; Cambridge University Press: Cambridge, UK; Volume 5, p. 293.
- Walker, M.F. Studies of extremely young clusters. I. NGC 2264. Astrophys. J. 1956, 124, 668. [Google Scholar]
- Magazzu, A.; Rebolo, R.; Pavlenko, I.V. Lithium Abundances in Classical and Weak T Tauri Stars. Astrophys. J. 1992, 392, 159. [Google Scholar] [CrossRef] [Green Version]
- Pinsonneault, M. Mixing in Stars. Annu. Rev. Astron. Astrophys. 1997, 35, 557–605. [Google Scholar] [CrossRef]
- Kuhi, L.V. Spectral energy distributions of T Tauri stars. Astron. Astrophys. Suppl. 1974, 15, 47–89. [Google Scholar]
- Strom, S.E.; Strom, K.M.; Grasdalen, G.L. Young stellar objects and dark interstellar clouds. Annu. Rev. Astron. Astrophys. 1975, 13, 187–216. [Google Scholar] [CrossRef]
- Kuhi, L.V. Ultraviolet Continuous Emission in T Tauri Stars. Publ. Astron. Soc. Pac. 1966, 78, 430. [Google Scholar] [CrossRef] [Green Version]
- Kuhi, L.V. Optical Observations of Very Young Stars. In Interstellar Ionized Hydrogen Proceedings of the Symposium on HII; Terzian, Y., Ed.; National Radio Astronomy Observatory: Charlottesville, VA, USA, 1968; p. 13. [Google Scholar]
- Cram, L.E. Atmospheres of T Tau stars: The photosphere and low chromosphere. Astrophys. J. 1979, 234, 949–957. [Google Scholar] [CrossRef]
- Dumont, S.; Heidmann, N.; Kuhi, L.V.; Thomas, R.N. Chromospheres of T Tauri-type stars. Astron. Astrophys. 1973, 29, 199. [Google Scholar]
- Brown, A.; de M. Ferraz, M.C.; Jordan, C. The chromosphere and corona of T Tauri. Mon. Not. RAS 1984, 207, 831–859. [Google Scholar] [CrossRef] [Green Version]
- Calvet, N.; Basri, G.; Kuhi, L.V. The chromospheric hypothesis for the T Tauri phenomenon. Astrophys. J. 1984, 277, 725–737. [Google Scholar] [CrossRef]
- Walker, M.F. A Possible Interpretation of the Ultraviolet Excess Stars. Astron. J. 1963, 68, 298. [Google Scholar] [CrossRef]
- Kuhi, L.V. Mass Loss from T Tauri Stars. Astrophys. J. 1964, 140, 1409. [Google Scholar] [CrossRef]
- Larson, R.B. Processes in Collapsing Interstellar Clouds. Annu. Rev. Astron. Astrophys. 1973, 11, 219. [Google Scholar] [CrossRef]
- Walker, M.F. Studies of Extremely Young Clusters.VI. Spectroscopic Observations of the Ultraviolet-Excess Stars in the Orion Nebula Cluster and NGC 2264. Astrophys. J. 1972, 175, 89. [Google Scholar] [CrossRef]
- Cohen, M.; Kuhi, L.V. Observational studies of pre-main-sequence evolution. Astrophys. J. 1979, 41, 743–843. [Google Scholar] [CrossRef]
- Dullemond, C.P.; Monnier, J.D. The Inner Regions of Protoplanetary Disks. Annu. Rev. Astron. Astrophys. 2010, 48, 205–239. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.P.; Cieza, L.A. Protoplanetary Disks and Their Evolution. Annu. Rev. Astron. Astrophys. 2011, 49, 67–117. [Google Scholar] [CrossRef] [Green Version]
- Lynden-Bell, D.; Pringle, J.E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. RAS 1974, 168, 603–637. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Ulrich, R.K. An infall model for the T Tauri phenomenon. Astrophys. J. 1976, 210, 377–391. [Google Scholar] [CrossRef]
- Bertout, C. The accretion disk paradigm for young stars. In Star-Disk Interaction in Young Stars; Bouvier, J., Appenzeller, I., Eds.; IAU Symposium; Cambridge University Press: Cambridge, UK, 2007; Volume 243, pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, C.L.; Giampapa, M.S. The ultraviolet spectrum of the T Tau star RW Aur. Astrophys. J. Lett. 1980, 239, L115–L119. [Google Scholar] [CrossRef]
- Appenzeller, I.; Wolf, B. The satellite-UV spectrum of S CrA. Astron. Astrophys. 1979, 75, 164–169. [Google Scholar]
- Herczeg, G.J.; Linsky, J.L.; Valenti, J.A.; Johns-Krull, C.M.; Wood, B.E. The Far-Ultraviolet Spectrum of TW Hydrae. I. Observations of H2 Fluorescence. Astrophys. J. 2002, 572, 310–325. [Google Scholar] [CrossRef]
- Schindhelm, E.; France, K.; Herczeg, G.J.; Bergin, E.; Yang, H.; Brown, A.; Brown, J.M.; Linsky, J.L.; Valenti, J. Lyα Dominance of the Classical T Tauri Far-ultraviolet Radiation Field. Astrophys. J. Lett. 2012, 756, L23. [Google Scholar] [CrossRef] [Green Version]
- France, K.; Schindhelm, E.; Burgh, E.B.; Herczeg, G.J.; Harper, G.M.; Brown, A.; Green, J.C.; Linsky, J.L.; Yang, H.; Abgrall, H.; et al. The Far-ultraviolet “Continuum” in Protoplanetary Disk Systems. II. Carbon Monoxide Fourth Positive Emission and Absorption. Astrophys. J. 2011, 734, 31. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; Eislöffel, J.; Güdel, M.; Günther, H.M.; Herczeg, G.; Robrade, J.; Schmitt, J.H.M.M. HST FUV C iv observations of the hot DG Tauri jet. Astron. Astrophys. 2013, 550, L1. [Google Scholar] [CrossRef] [Green Version]
- Van Duinen, R.J.; Aalders, J.W.G.; Wesselius, P.R.; Wildeman, K.J.; Wu, C.C.; Luinge, W.; Snel, D. The ultraviolet experiment onboard the Astronomical Netherlands Satellite—ANS. Astron. Astrophys. 1975, 39, 159–163. [Google Scholar]
- De Boer, K.S. Far-UV observations of T Tau-like stars. Astron. Astrophys. 1977, 61, 605–608. [Google Scholar]
- France, K.; Roueff, E.; Abgrall, H. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation. Astrophys. J. 2017, 844, 169. [Google Scholar] [CrossRef] [Green Version]
- Boggess, A.; Carr, F.A.; Evans, D.C.; Fischel, D.; Freeman, H.R.; Fuechsel, C.F.; Klinglesmith, D.A.; Krueger, V.L.; Longanecker, G.W.; Moore, J.V. The IUE spacecraft and instrumentation. Nature 1978, 275, 372–377. [Google Scholar] [CrossRef]
- Gahm, G.F.; Fredga, K.; Liseau, R.; Dravins, D. The far-UV spectrum of the T Tauri star RU Lupi. Astron. Astrophys. 1979, 73, L4–L6. [Google Scholar]
- Bouvier, J.; Bertout, C.; Benz, W.; Mayor, M. Rotation in T Tauri stars. I. Obervations and immediate analysis. Astron. Astrophys. 1986, 165, 110–119. [Google Scholar]
- Bouvier, J.; Cabrit, S.; Fernandez, M.; Martin, E.L.; Matthews, J.M. COYOTES I: The photometric variability and rotational evolution of T Tauri stars. Astron. Astrophys. 1993, 272, 176–206. [Google Scholar]
- Herbst, W.; Eislöffel, J.; Mundt, R.; Scholz, A. The Rotation of Young Low-Mass Stars and Brown Dwarfs. In Protostars and Planets V; Reipurth, B., Jewitt, D., Keil, K., Eds.; University of Arizona Press: Tucson, AZ, USA, 2007; p. 297. [Google Scholar]
- Bouvier, J.; Matt, S.P.; Mohanty, S.; Scholz, A.; Stassun, K.G.; Zanni, C. Angular Momentum Evolution of Young Low-Mass Stars and Brown Dwarfs: Observations and Theory. In Protostars and Planets VI; Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T., Eds.; The University of Arizona Press: Tucson, AZ, USA, 2014; p. 433. [Google Scholar] [CrossRef] [Green Version]
- Gregory, S.G.; Jardine, M.; Gray, C.G.; Donati, J.F. The magnetic fields of forming solar-like stars. Rep. Prog. Phys. 2010, 73, 126901. [Google Scholar] [CrossRef]
- Houdebine, E.R.; Mathioudakis, M.; Doyle, J.G.; Foing, B.H. Observation and modelling of main sequence star chromospheres. V. Ultraviolet excess emission in active M dwarfs. Astron. Astrophys. 1996, 305, 209. [Google Scholar]
- Feigelson, E.D.; Montmerle, T. High-Energy Processes in Young Stellar Objects. Annu. Rev. Astron. Astrophys. 1999, 37, 363–408. [Google Scholar] [CrossRef] [Green Version]
- Walter, F.M. The naked T Tauri stars: The low-mass pre-main sequence unveiled. Publ. Astron. Soc. Pac. 1987, 99, 31–37. [Google Scholar] [CrossRef]
- Ingleby, L.; Calvet, N.; Bergin, E.; Herczeg, G.; Brown, A.; Alexander, R.; Edwards, S.; Espaillat, C.; France, K.; Gregory, S.G.; et al. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission. Astrophys. J. 2011, 743, 105. [Google Scholar] [CrossRef]
- Costa, V.M.; Lago, M.T.V.T.; Norci, L.; Meurs, E.J.A. T Tauri stars: The UV/X-ray connection. Astron. Astrophys. 2000, 354, 621–635. [Google Scholar]
- Findeisen, K.; Hillenbrand, L.; Soderblom, D. Stellar Activity in the Broadband Ultraviolet. Astron. J. 2011, 142, 23. [Google Scholar] [CrossRef] [Green Version]
- Ardila, D.R.; Herczeg, G.J.; Gregory, S.G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Johns-Krull, C.; Linsky, J.L.; Yang, H.; et al. Hot Gas Lines in T Tauri Stars. Astrophys. J. Suppl. 2013, 207, 1. [Google Scholar] [CrossRef] [Green Version]
- Johns-Krull, C.M. The Magnetic Fields of Classical T Tauri Stars. Astrophys. J. 2007, 664, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Koenigl, A. Disk Accretion onto Magnetic T Tauri Stars. Astrophys. J. Lett. 1991, 370, L39. [Google Scholar] [CrossRef]
- Calvet, N.; Gullbring, E. The Structure and Emission of the Accretion Shock in T Tauri Stars. Astrophys. J. 1998, 509, 802–818. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; Günther, H.M.; Robrade, J. Stellar X-ray accretion signatures. Astron. Nachrichten 2017, 338, 201–206. [Google Scholar] [CrossRef]
- Hartmann, L.; Herczeg, G.; Calvet, N. Accretion onto Pre-Main-Sequence Stars. Annu. Rev. Astron. Astrophys. 2016, 54, 135–180. [Google Scholar] [CrossRef]
- Simon, T.; Vrba, F.J.; Herbst, W. The Ultraviolet and Visible Light Variability of BP Tauri: Possible Clues for the Origin of T Tauri Star Activity. Astron. J. 1990, 100, 1957. [Google Scholar] [CrossRef]
- Gómez de Castro, A.I.; Fernández, M. Ultraviolet spectroscopy of the hotspot in the classical T Tauri star DI Cep: Observational indications of magnetically channelled accretion. Mon. Not. RAS 1996, 283, 55–65. [Google Scholar] [CrossRef]
- Gómez de Castro, A.I.; Franqueira, M. Accretion and UV Variability in BP Tauri. Astrophys. J. 1997, 482, 465–469. [Google Scholar] [CrossRef]
- Johns-Krull, C.M.; Valenti, J.A.; Linsky, J.L. An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars. Astrophys. J. 2000, 539, 815–833. [Google Scholar] [CrossRef] [Green Version]
- Calvet, N.; Hartmann, L.; Hewett, R.; Valenti, J.A.; Basri, G.; Walter, F. C IV in classical T Tauri stars. In Cool Stars, Stellar Systems, and the Sun; Pallavicini, R., Dupree, A.K., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1996; Volume 109, p. 419. [Google Scholar]
- Valenti, J.A.; Basri, G.; Walter, F.; Hartmann, L.; Calvet, N. GHRS Profiles of Hot UV Lines in T Tauri Stars. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 1993; Volume 183, p. 1351. [Google Scholar]
- Yang, H.; Herczeg, G.J.; Linsky, J.L.; Brown, A.; Johns-Krull, C.M.; Ingleby, L.; Calvet, N.; Bergin, E.; Valenti, J.A. A Far-ultraviolet Atlas of Low-resolution Hubble Space Telescope Spectra of T Tauri Stars. Astrophys. J. 2012, 744, 121. [Google Scholar] [CrossRef] [Green Version]
- Muzerolle, J.; Calvet, N.; Hartmann, L. Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars. Astrophys. J. 1998, 492, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Kwan, J.; Fischer, W. Origins of the H, He I and Ca II line emission in classical T Tauri stars. Mon. Not. RAS 2011, 411, 2383–2425. [Google Scholar] [CrossRef] [Green Version]
- Lamzin, S.A. The structure of shock waves in the case of accretion onto low-mass young stars. Astron. Rep. 1998, 42, 322–335. [Google Scholar]
- Ardila, D.R.; Basri, G.; Walter, F.M.; Valenti, J.A.; Johns-Krull, C.M. Observations of T Tauri Stars using Hubble Space Telescope GHRS. I. Far-Ultraviolet Emission Lines. Astrophys. J. 2002, 566, 1100–1123. [Google Scholar] [CrossRef]
- Günther, H.M.; Schmitt, J.H.M.M. Where are the hot ion lines in classical T Tauri stars formed? Astron. Astrophys. 2008, 481, 735–745. [Google Scholar] [CrossRef]
- Herczeg, G.J.; Walter, F.M.; Linsky, J.L.; Gahm, G.F.; Ardila, D.R.; Brown, A.; Johns-Krull, C.M.; Simon, M.; Valenti, J.A. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence. Astron. J. 2005, 129, 2777–2791. [Google Scholar] [CrossRef]
- Lamzin, S.A. Intercombinational Line Profiles in the UV Spectra of T Tauri Stars and Analysis of the Accretion Zone. Astron. Rep. 2000, 44, 323–333. [Google Scholar] [CrossRef]
- Ingleby, L.; Calvet, N.; Herczeg, G.; Blaty, A.; Walter, F.; Ardila, D.; Alexand er, R.; Edwards, S.; Espaillat, C.; Gregory, S.G.; et al. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra. Astrophys. J. 2013, 767, 112. [Google Scholar] [CrossRef]
- Robinson, C.E.; Espaillat, C.C. Multiepoch Ultraviolet HST Observations of Accreting Low-mass Stars. Astrophys. J. 2019, 874, 129. [Google Scholar] [CrossRef] [Green Version]
- Gomez de Castro, A.I.; Lamzin, S.A. Accretion shocks in T Tauri stars: Diagnosis via semiforbidden ultraviolet line ratios. Mon. Not. RAS 1999, 304, L41–L45. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.M.; Huang, J.; Pérez, L.M.; Isella, A.; Dullemond, C.P.; Kurtovic, N.T.; Guzmán, V.V.; Carpenter, J.M.; Wilner, D.J.; Zhang, S.; et al. ALMA Observations of the Epoch of Planet Formation. Messenger 2018, 174, 19–23. [Google Scholar] [CrossRef]
- Bary, J.S.; Weintraub, D.A.; Shukla, S.J.; Leisenring, J.M.; Kastner, J.H. Quiescent H2 Emission From Pre-Main-Sequence Stars in Chamaeleon I. Astrophys. J. 2008, 678, 1088–1098. [Google Scholar] [CrossRef] [Green Version]
- Bitner, M.A.; Richter, M.J.; Lacy, J.H.; Herczeg, G.J.; Greathouse, T.K.; Jaffe, D.T.; Salyk, C.; Blake, G.A.; Hollenbach, D.J.; Doppmann, G.W.; et al. The TEXES Survey for H2 Emission from Protoplanetary Disks. Astrophys. J. 2008, 688, 1326–1344. [Google Scholar] [CrossRef]
- Miotello, A.; Bruderer, S.; van Dishoeck, E.F. Protoplanetary disk masses from CO isotopologue line emission. Astron. Astrophys. 2014, 572, A96. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, H.; Roueff, E.; Launay, F.; Roncin, J.Y.; Subtil, J.L. Table of Lyman band system of molecular hydrogen. Astron. Astrophys. Suppl. 1993, 101, 273–321. [Google Scholar]
- Abgrall, H.; Roueff, E.; Launay, F.; Roncin, J.Y.; Subtil, J.L. Table of the Werner band system of molecular hydrogen. Astron. Astrophys. Suppl. 1993, 101, 323–362. [Google Scholar]
- France, K.; Schindhelm, E.; Herczeg, G.J.; Brown, A.; Abgrall, H.; Alexand er, R.D.; Bergin, E.A.; Brown, J.M.; Linsky, J.L.; Roueff, E.; et al. A Hubble Space Telescope Survey of H2 Emission in the Circumstellar Environments of Young Stars. Astrophys. J. 2012, 756, 171. [Google Scholar] [CrossRef] [Green Version]
- Herczeg, G.J.; Wood, B.E.; Linsky, J.L.; Valenti, J.A.; Johns-Krull, C.M. The Far-Ultraviolet Spectra of TW Hydrae. II. Models of H2 Fluorescence in a Disk. Astrophys. J. 2004, 607, 369–383. [Google Scholar] [CrossRef]
- Hoadley, K.; France, K.; Alexander, R.D.; McJunkin, M.; Schneider, P.C. The Evolution of Inner Disk Gas in Transition Disks. Astrophys. J. 2015, 812, 41. [Google Scholar] [CrossRef] [Green Version]
- Ádámkovics, M.; Najita, J.R.; Glassgold, A.E. FUV Irradiated Disk Atmospheres: Lyα and the Origin of Hot H2 Emission. Astrophys. J. 2016, 817, 82. [Google Scholar] [CrossRef] [Green Version]
- France, K.; Beasley, M.; Ardila, D.R.; Bergin, E.A.; Brown, A.; Burgh, E.B.; Calvet, N.; Chiang, E.; Cook, T.A.; Désert, J.M.; et al. From Protoplanetary Disks to Extrasolar Planets: Understanding the Life Cycle of Circumstellar Gas with Ultraviolet Spectroscopy. arXiv 2012, arXiv:1208.2270. [Google Scholar]
- Arulanantham, N.; France, K.; Hoadley, K.; Manara, C.F.; Schneider, P.C.; Alcalá, J.M.; Banzatti, A.; Günther, H.M.; Miotello, A.; van der Marel, N.; et al. A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi. Astrophys. J. 2018, 855, 98. [Google Scholar] [CrossRef] [Green Version]
- France, K.; Burgh, E.B.; Herczeg, G.J.; Schindhelm, E.; Yang, H.; Abgrall, H.; Roueff, E.; Brown, A.; Brown, J.M.; Linsky, J.L. CO and H2 Absorption in the AA Tauri Circumstellar Disk. Astrophys. J. 2012, 744, 22. [Google Scholar] [CrossRef] [Green Version]
- Hoadley, K.; France, K.; Arulanantham, N.; Loyd, R.O.P.; Kruczek, N. Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations. Astrophys. J. 2017, 846, 6. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; France, K.; Günther, H.M.; Herczeg, G.; Robrade, J.; Bouvier, J.; McJunkin, M.; Schmitt, J.H.M.M. X-ray to NIR emission from AA Tauri during the dim state. Occultation of the inner disk and gas-to-dust ratio of the absorber. Astron. Astrophys. 2015, 584, A51. [Google Scholar] [CrossRef] [Green Version]
- Herczeg, G.J.; Linsky, J.L.; Walter, F.M.; Gahm, G.F.; Johns-Krull, C.M. The Origins of Fluorescent H2 Emission From T Tauri Stars. Astrophys. J. Suppl. 2006, 165, 256–282. [Google Scholar] [CrossRef] [Green Version]
- Salyk, C.; Blake, G.A.; Boogert, A.C.A.; Brown, J.M. High-resolution 5 μm Spectroscopy of Transitional Disks. Astrophys. J. 2009, 699, 330–347. [Google Scholar] [CrossRef]
- Salyk, C.; Blake, G.A.; Boogert, A.C.A.; Brown, J.M. CO Rovibrational Emission as a Probe of Inner Disk Structure. Astrophys. J. 2011, 743, 112. [Google Scholar] [CrossRef]
- Brown, J.M.; Pontoppidan, K.M.; van Dishoeck, E.F.; Herczeg, G.J.; Blake, G.A.; Smette, A. VLT-CRIRES Survey of Rovibrational CO Emission from Protoplanetary Disks. Astrophys. J. 2013, 770, 94. [Google Scholar] [CrossRef] [Green Version]
- Bergin, E.; Calvet, N.; D’Alessio, P.; Herczeg, G.J. The Effects of UV Continuum and Lyα Radiation on the Chemical Equilibrium of T Tauri Disks. Astrophys. J. Lett. 2003, 591, L159–L162. [Google Scholar] [CrossRef]
- Ingleby, L.; Calvet, N.; Bergin, E.; Yerasi, A.; Espaillat, C.; Herczeg, G.; Roueff, E.; Abgrall, H.; Hernández, J.; Briceño, C.; et al. Far-Ultraviolet H2 Emission from Circumstellar Disks. Astrophys. J. Lett. 2009, 703, L137–L141. [Google Scholar] [CrossRef] [Green Version]
- Espaillat, C.C.; Robinson, C.; Grant, S.; Reynolds, M. Using Multiwavelength Variability to Explore the Connection among X-ray Emission, the Far-ultraviolet H2 Bump, and Accretion in T Tauri Stars. Astrophys. J. 2019, 876, 121. [Google Scholar] [CrossRef] [Green Version]
- Burgh, E.B.; France, K.; McCandliss, S.R. Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium. Astrophys. J. 2007, 658, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Feldman, P.D.; Burgh, E.B.; Durrance, S.T.; Davidsen, A.F. Far-Ultraviolet Spectroscopy of Venus and Mars at 4 Å Resolution with the Hopkins Ultraviolet Telescope on Astro-2. Astrophys. J. 2000, 538, 395–400. [Google Scholar] [CrossRef] [Green Version]
- McJunkin, M.; France, K.; Burgh, E.B.; Herczeg, G.J.; Schindhelm, E.; Brown, J.M.; Brown, A. Probing the Inner Regions of Protoplanetary Disks with CO Absorption Line Spectroscopy. Astrophys. J. 2013, 766, 12. [Google Scholar] [CrossRef] [Green Version]
- Woitke, P.; Riaz, B.; Duchêne, G.; Pascucci, I.; Lyo, A.R.; Dent, W.R.F.; Phillips, N.; Thi, W.F.; Ménard, F.; Herczeg, G.J.; et al. The unusual protoplanetary disk around the T Tauri star ET Chamaeleontis. Astron. Astrophys. 2011, 534, A44. [Google Scholar] [CrossRef]
- France, K.; Schindhelm, E.; Bergin, E.A.; Roueff, E.; Abgrall, H. High-resolution Ultraviolet Radiation Fields of Classical T Tauri Stars. Astrophys. J. 2014, 784, 127. [Google Scholar] [CrossRef] [Green Version]
- France, K.; Fleming, B.; West, G.; McCand liss, S.R.; Bolcar, M.R.; Harris, W.; Moustakas, L.; O’Meara, J.M.; Pascucci, I.; Rigby, J.; et al. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): Instrument definition and design. In SPIE Proceedings, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham, WA, USA, 2017; Volume 10397, p. 1039713. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.; Nomura, H.; Millar, T.J.; Aikawa, Y. Chemical Processes in Protoplanetary Disks. II. On the Importance of Photochemistry and X-ray Ionization. Astrophys. J. 2012, 747, 114. [Google Scholar] [CrossRef]
- Bergin, E.A.; Aikawa, Y.; Blake, G.A.; van Dishoeck, E.F. The Chemical Evolution of Protoplanetary Disks. In Protostars and Planets V; Reipurth, B., Jewitt, D., Keil, K., Eds.; The University of Arizona Press: Tucson, AZ, USA, 2007; p. 751. [Google Scholar]
- Shull, J.M.; Beckwith, S. Interstellar molecular hydrogen. Annu. Rev. Astron. Astrophys. 1982, 20, 163–190. [Google Scholar] [CrossRef]
- Van Dishoeck, E.F.; Black, J.H. The Photodissociation and Chemistry of Interstellar CO. Astrophys. J. 1988, 334, 771. [Google Scholar] [CrossRef]
- Van Zadelhoff, G.J.; Aikawa, Y.; Hogerheijde, M.R.; van Dishoeck, E.F. Axi-symmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry. Astron. Astrophys. 2003, 397, 789–802. [Google Scholar] [CrossRef]
- Vasyunin, A.I.; Wiebe, D.S.; Birnstiel, T.; Zhukovska, S.; Henning, T.; Dullemond, C.P. Impact of Grain Evolution on the Chemical Structure of Protoplanetary Disks. Astrophys. J. 2011, 727, 76. [Google Scholar] [CrossRef]
- Bethell, T.J.; Bergin, E.A. The Propagation of Lyα in Evolving Protoplanetary Disks. Astrophys. J. 2011, 739, 78. [Google Scholar] [CrossRef] [Green Version]
- Fogel, J.K.J.; Bethell, T.J.; Bergin, E.A.; Calvet, N.; Semenov, D. Chemistry of a Protoplanetary Disk with Grain Settling and Lyα Radiation. Astrophys. J. 2011, 726, 29. [Google Scholar] [CrossRef] [Green Version]
- McJunkin, M.; France, K.; Schindhelm, E.; Herczeg, G.; Schneider, P.C.; Brown, A. Empirically Estimated Far-UV Extinction Curves for Classical T Tauri Stars. Astrophys. J. 2016, 828, 69. [Google Scholar] [CrossRef]
- Fedele, D.; van den Ancker, M.E.; Henning, T.; Jayawardhana, R.; Oliveira, J.M. Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 2010, 510, A72. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.D.; Clarke, C.J.; Pringle, J.E. Photoevaporation of protoplanetary discs - I. Hydrodynamic models. Mon. Not. RAS 2006, 369, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Gorti, U.; Hollenbach, D. Photoevaporation of Circumstellar Disks By Far-Ultraviolet, Extreme-Ultraviolet and X-ray Radiation from the Central Star. Astrophys. J. 2009, 690, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Dodson-Robinson, S.E.; Salyk, C. Transitional Disks as Signposts of Young, Multiplanet Systems. Astrophys. J. 2011, 738, 131. [Google Scholar] [CrossRef] [Green Version]
- Chiang, E.; Murray-Clay, R. Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability. Nat. Phys. 2007, 3, 604–608. [Google Scholar] [CrossRef] [Green Version]
- Banzatti, A.; Pontoppidan, K.M. An Empirical Sequence of Disk Gap Opening Revealed by Rovibrational CO. Astrophys. J. 2015, 809, 167. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.; Ray, T.P.; Cabrit, S.; Hartigan, P.; Arce, H.G.; Bacciotti, F.; Bally, J.; Benisty, M.; Eislöffel, J.; Güdel, M.; et al. Jets and Outflows from Star to Cloud: Observations Confront Theory. In Protostars and Planets VI; Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T., Eds.; The University of Arizona Press: Tucson, AZ, USA, 2014; p. 451. [Google Scholar] [CrossRef] [Green Version]
- Zanni, C.; Ferreira, J. MHD simulations of accretion onto a dipolar magnetosphere. II. Magnetospheric ejections and stellar spin-down. Astron. Astrophys. 2013, 550, A99. [Google Scholar] [CrossRef]
- Shu, F.; Najita, J.; Ostriker, E.; Wilkin, F.; Ruden, S.; Lizano, S. Magnetocentrifugally Driven Flows from Young Stars and Disks. I. A Generalized Model. Astrophys. J. 1994, 429, 781. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. RAS 1982, 199, 883–903. [Google Scholar] [CrossRef] [Green Version]
- Raga, A.C.; Reipurth, B.; Castellanos-Ramírez, A.; Chiang, H.F.; Bally, J. Collisionally Excited Filaments in Hubble Space Telescope Hα and Hβ Images of HH 1/2. Astrophys. J. Lett. 2015, 798, L1. [Google Scholar] [CrossRef] [Green Version]
- Loinard, L.; Zapata, L.A.; Rodriguez, L.F.; Pech, G.; Chandler, C.J.; Brogan, C.L.; Wilner, D.J.; Ho, P.T.P.; Parise, B.; Hartmann, L.W.; et al. ALMA and VLA observations of the outflows in IRAS 16293-2422. Mon. Not. RAS 2013, 430, L10–L14. [Google Scholar] [CrossRef] [Green Version]
- Güdel, M.; Eibensteiner, C.; Dionatos, O.; Audard, M.; Forbrich, J.; Kraus, S.; Rab, C.; Schneider, C.; Skinner, S.; Vorobyov, E. ALMA detects a radial disk wind in DG Tauri. Astron. Astrophys. 2018, 620, L1. [Google Scholar] [CrossRef]
- Pravdo, S.H.; Feigelson, E.D.; Garmire, G.; Maeda, Y.; Tsuboi, Y.; Bally, J. Discovery of X-rays from the protostellar outflow object HH2. Nature 2001, 413, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Güdel, M.; Skinner, S.L.; Audard, M.; Briggs, K.R.; Cabrit, S. Discovery of a bipolar X-ray jet from the T Tauri star DG Tauri. Astron. Astrophys. 2008, 478, 797–807. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; Günther, H.M.; Schmitt, J.H.M.M. The X-ray puzzle of the L1551 IRS 5 jet. Astron. Astrophys. 2011, 530, A123. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, R.E.; Scaife, A.M.M.; Ray, T.P.; Taylor, A.M.; Green, D.A.; Buckle, J.V. Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau. Astrophys. J. Lett. 2014, 792, L18. [Google Scholar] [CrossRef] [Green Version]
- Dupree, A.K.; Brickhouse, N.S.; Smith, G.H.; Strader, J. A Hot Wind from the Classical T Tauri Stars: TW Hydrae and T Tauri. Astrophys. J. Lett. 2005, 625, L131–L134. [Google Scholar] [CrossRef] [Green Version]
- Johns-Krull, C.; Herczeg, G.J. How Hot is the Wind from TW Hydrae? Astrophys. J. 2007, 655, 345. [Google Scholar] [CrossRef]
- Skinner, S.L.; Schneider, P.C.; Audard, M.; Güdel, M. Resolving the Inner Arcsecond of the RY Tau Jet with HST. Astrophys. J. 2018, 855, 143. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; Schmitt, J.H.M.M. The nature of the soft X-ray source in DG Tauri. Astron. Astrophys. 2008, 488, L13–L16. [Google Scholar] [CrossRef]
- Walter, F.M.; Herczeg, G.; Brown, A.; Ardila, D.R.; Gahm, G.F.; Johns-Krull, C.M.; Lissauer, J.J.; Simon, M.; Valenti, J.A. Mapping the Circumstellar Environment of T Tauri with Fluorescent H2 Emission. Astron. J. 2003, 126, 3076–3089. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; Eislöffel, J.; Güdel, M.; Günther, H.M.; Herczeg, G.; Robrade, J.; Schmitt, J.H.M.M. HST far-ultraviolet imaging of DG Tauri. Fluorescent molecular hydrogen emission from the wide opening-angle outflow. Astron. Astrophys. 2013, 557, A110. [Google Scholar] [CrossRef] [Green Version]
- Agra-Amboage, V.; Cabrit, S.; Dougados, C.; Kristensen, L.E.; Ibgui, L.; Reunanen, J. Origin of the wide-angle hot H2 in DG Tauri. New insight from SINFONI spectro-imaging. Astron. Astrophys. 2014, 564, A11. [Google Scholar] [CrossRef]
- Costigan, G.; Vink, J.S.; Scholz, A.; Ray, T.; Testi, L. Temperaments of young stars: Rapid mass accretion rate changes in T Tauri and Herbig Ae stars. Mon. Not. RAS 2014, 440, 3444–3461. [Google Scholar] [CrossRef]
- Ismailov, N.Z.; Alimardanova, F.N.; Baheddinova, G.R.; Adygezalzade, H.N. Ultraviolet Spectrum Variability of BP Tau. Odessa Astron. Publ. 2010, 23, 46. [Google Scholar]
- Ingleby, L.; Espaillat, C.; Calvet, N.; Sitko, M.; Russell, R.; Champney, E. Using FUV to IR Variability to Probe the Star-Disk Connection in the Transitional Disk of GM Aur. Astrophys. J. 2015, 805, 149. [Google Scholar] [CrossRef] [Green Version]
- Lamzin, S.A.; Kravtsova, A.S.; Romanova, M.M.; Batalha, C. Kinematics and Parameters of the Gas in the Vicinity of TW Hya. Astron. Lett. 2004, 30, 413–427. [Google Scholar] [CrossRef]
- Kastner, J.H.; Huenemoerder, D.P.; Schulz, N.S.; Canizares, C.R.; Weintraub, D.A. Evidence for Accretion: High-Resolution X-ray Spectroscopy of the Classical T Tauri Star TW Hydrae. Astrophys. J. 2002, 567, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Brickhouse, N.S.; Cranmer, S.R.; Dupree, A.K.; Luna, G.J.M.; Wolk, S. A Deep Chandra X-Ray Spectrum of the Accreting Young Star TW Hydrae. Astrophys. J. 2010, 710, 1835–1847. [Google Scholar] [CrossRef] [Green Version]
- Curran, R.L.; Argiroffi, C.; Sacco, G.G.; Orland o, S.; Peres, G.; Reale, F.; Maggio, A. Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs. Astron. Astrophys. 2011, 526, A104. [Google Scholar] [CrossRef]
- Günther, H.M.; Schmitt, J.H.M.M.; Robrade, J.; Liefke, C. X-ray emission from classical T Tauri stars: Accretion shocks and coronae? Astron. Astrophys. 2007, 466, 1111–1121. [Google Scholar] [CrossRef]
- Schneider, P.C.; Günther, H.M.; Robrade, J.; Schmitt, J.H.M.M.; Güdel, M. Multiepoch, multiwavelength study of accretion onto T Tauri. X-ray versus optical and UV accretion tracers. Astron. Astrophys. 2018, 618, A55. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, J.; Grankin, K.; Ellerbroek, L.E.; Bouy, H.; Barrado, D. AA Tauri’s sudden and long-lasting deepening: Enhanced extinction by its circumstellar disk. Astron. Astrophys. 2013, 557, A77. [Google Scholar] [CrossRef] [Green Version]
- Reipurth, B.; Aspin, C. FUors and Early Stellar Evolution. In Evolution of Cosmic Objects through Their Physical Activity; Harutyunian, H.A., Mickaelian, A.M., Terzian, Y., Eds.; National Academy of Sciences of the Republic of Armenia: Yerevan, Armenia, 2010; pp. 19–38. [Google Scholar]
- Kenyon, S.J.; Hartmann, L.; Imhoff, C.L.; Cassatella, A. Ultraviolet Spectroscopy of Pre–Main-Sequence Accretion Disks. Astrophys. J. 1989, 344, 925. [Google Scholar] [CrossRef]
- Kravtsova, A.S.; Lamzin, S.A.; Errico, L.; Vittone, A. Ultraviolet spectrum of FU Ori and a “Compromise” model of the FUor. Astron. Lett. 2007, 33, 755–765. [Google Scholar] [CrossRef]
- Devine, D.; Grady, C.A.; Kimble, R.A.; Woodgate, B.; Bruhweiler, F.C.; Boggess, A.; Linsky, J.L.; Clampin, M. A Lyα Bright Jet from a Herbig AE Star. Astrophys. J. Lett. 2000, 542, L115–L118. [Google Scholar] [CrossRef] [Green Version]
- Günther, H.M.; Schneider, P.C.; Li, Z.Y. The evolution of the jet from Herbig Ae star HD 163296 from 1999 to 2011. Astron. Astrophys. 2013, 552, A142. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.F.; González, R.F.; Raga, A.C.; Cantó, J.; Riera, A.; Loinard, L.; Dzib, S.A.; Zapata, L.A. Radio continuum emission from knots in the DG Tauri jet. Astron. Astrophys. 2012, 537, A123. [Google Scholar] [CrossRef]
- The LUVOIR Team. The LUVOIR Mission Concept Study Interim Report. arXiv 2018, arXiv:1809.09668.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, P.C.; Günther, H.M.; France, K. The UV Perspective of Low-Mass Star Formation. Galaxies 2020, 8, 27. https://doi.org/10.3390/galaxies8010027
Schneider PC, Günther HM, France K. The UV Perspective of Low-Mass Star Formation. Galaxies. 2020; 8(1):27. https://doi.org/10.3390/galaxies8010027
Chicago/Turabian StyleSchneider, P. Christian, H. Moritz Günther, and Kevin France. 2020. "The UV Perspective of Low-Mass Star Formation" Galaxies 8, no. 1: 27. https://doi.org/10.3390/galaxies8010027
APA StyleSchneider, P. C., Günther, H. M., & France, K. (2020). The UV Perspective of Low-Mass Star Formation. Galaxies, 8(1), 27. https://doi.org/10.3390/galaxies8010027