On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer?
Abstract
:1. Introduction
2. A Brief Historical Perspective
2.1. Accretion in T Tauri Stars
2.2. Accretion in Herbig Ae/Be Stars
3. Is Magnetospheric Accretion Plausible for Herbig Ae/Be Stars?
4. Magnetospheric Accretion Measurements of HAeBe Stars
- Accretion shock modeling (Figure 2, top left): This is the most accurate method to directly infer a value of by reproducing the observed excess in the near-UV region of the spectrum from the contribution of the accretion shock. Such a contribution can be modeled as a blackbody for HAeBes [56,61], and its influence depends on free parameters relatively constrained by theory, like the inward flux of energy carried by the accretion funnels and the fraction of the stellar surface covered by the accretion shocks. The wavelength region of study in HAeBes has so far been centered on the Balmer jump, D, but it could be extended to shorter wavelengths (Section 6, and see [35] for TTs). The value of D, and thus the inferred value of , is itself distance-independent, but it could indirectly depend on the distance given that the measured excess depends on the stellar parameters assumed. Considering usual uncertainties and dependencies, the typical errorbar for as estimated from this method is <0.5 dex. Details about the procedure, uncertainties involved, and measurements for dozens of northern and southern HAeBes can be consulted in the literature [61,63].
- Emission line modeling (Figure 2, top right): According to MA several emission lines like the Balmer series, the sodium doublet, or HeI transitions are at least partially generated in the hot gas free-falling within the magnetic channels that connect the inner disk and the accretion shocks on the stellar surface. Radiative transfer is applied normally assuming a simple dipole geometry for the magnetic field. Apart from the stellar parameters (T, M, R, and rotational velocity), MA line modeling depends on the disk inclination, the size of the magnetosphere—i.e., the disk truncation radius—and the gas temperature, on top of which is normally the parameter that one wants to determine. Even in the best case scenario when the stellar parameters and geometry are well constrained, so far we can only derive upper limits on the disk truncation radius based on spectro-interferometry, although more direct constraints can be inferred from spectro-polarimetry for a few stars (the potential of this latter technique to probe such small scales is discussed in [108,109]). In turn, rough estimates of the gas temperature are solely based on empirical constraints but theory is still lacking in this respect [28]. Given the number of free parameters, MA line modeling normally serves to estimate within ∼ an order of magnitude accuracy, although for well-known sources and a careful modeling the uncertainty can be significantly reduced (see e.g., the recent work for a TT star in [110]). As noted in Section 3, MA line modeling including a complete treatment of the high rotational velocities that are typical in many HAeBes is still pending. Examples and details of line modeling applied to HAeBes, either considering MA alone or combined with magnetically driven winds, can be found in the literature [56,61,74,77,78,79,80,81].
- Empirical correlations with the luminosity of emission lines (Figure 2, bottom left): The accretion luminosities of HAeBes inferred from the direct methods described above (L∼ GM/R) correlate with the luminosities of dozens of emission lines spreading from the near-UV to the near-IR, as previously found for CTTs (the extension of such correlations to specific lines at shorter and longer wavelengths in the far-UV and the mid-IR can be found e.g., in [111,112] respectively). Regardless of the physical origin of those lines all can be used to derive accretion rates by measuring the emission line luminosity and using the corresponding empirical expression with the form log (L/L) = A( ± A) + B( ± B) × log (L/L) [65]. The errors for the slopes and intercepts are determined from the least-square fits to the L-L data, and the final typical uncertainty for (once transformed from L using the above mentioned formula and the stellar parameters) is ∼ 1 dex. This uncertainty could in principle be reduced by averaging the results obtained from different emission lines [41]. The most recent L-L empirical expressions for HAeBes including dozens of emission lines can be found in Fairlamb et al. (2017) [64], and accretion rates inferred from this method (in particular, from the correlation with L) can also be found in the literature for hundreds of HAeBes [66,68].
- Empirical correlations with the stellar luminosity (Figure 2, bottom right): As mentioned above the fact that the luminosity of a given emission line correlates with L does not necessarily mean that there is an actual physical link between the origin of the line and the accretion process, and such a correlation naturally results from the underlying one between L and L [65]. Because the scatter in the latter correlation is similar than for the L-L correlations, ∼ ± 1 dex, accretion rates can be similarly derived from the L-L empirical expression. This expression depends on the mass regime as described in Wichittanakom et al. (2020) [66] including HAeBes, and has been recently used to derive accretion rates for almost all HAeBes known [69].
- Spectroscopic line veiling: CTTs show optical photospheric absorption lines smaller in depth than observed in WTTs or low-mass stars in the MS, which can be explained from the contribution of the hot accretion shock. Indeed, by removing the contribution of the stellar photosphere to the observed photospheric lines one can directly infer a value of (see e.g., [115,116,117,118] and references therein). In contrast, optical spectroscopic line veiling is not commonly observed in HAeBes, not because they are not accreting but due to the fact that the temperature of the accretion shocks is comparable or smaller to that of the stellar photosphere (∼10000 K) and therefore the contrast effect is negligible (see [56] for more details). Thus, optical spectroscopic line veiling is not a method to routinely derive accretion rates of HAeBes excepts perhaps for the coldest sources (see an example in [119]).
- H line width: The H line width at 10% of peak emission, W (H), not only serves as a qualitative indicator of accretion in CTTs and brown dwarfs [117] but also as a rough quantitative estimator through an empirical correlation with [39]. Based on the study of a HBe source, Boley et al. (2009) [120] already suggested that such an empirical correlation may not extend to higher masses, which was later confirmed by Mendigutía et al. (2011) [61] from the study of a larger sample of HAeBe stars. This work showed that while their typically large vsini values are reflected by H emission broadening in possible agreement with MA, the influence of rotation is that important that the -W (H) correlation breaks and thus cannot be used for the HAeBe regime.
5. Boundary Layer Measurements of HAeBe Stars
6. The Ultraviolet Link
- The relation between the excesses and the accretion rate is strongly dependent on the stellar properties not only for MA (see also Figures 1 and 9 in [61,63] respectively) but also for the BL models. A given excess can correspond to accretion rates different by orders of magnitude, depending on the stellar parameters (T, M/R) of the source. Additional dependencies in the BL model are discussed below.
- The differences between predictions from MA and BL become more significant (i.e., above errorbars from broadband photometry) for high excesses/accretion rates. Those differences are generally larger for the Balmer excess than for the UV excess, at least for the space parameters explored here. For instance, the Balmer excess predicted by MA in the mid-left panel of Figure 4 is ∼3 times larger than from BL, for ∼ 3 × 10 M yr.
- For the general case analyzed here BL requires higher accretion rates than MA to reproduce a given, large enough Balmer excess. In other words, for relatively large Balmer excesses accretion rates predicted from MA are lower limits to the corresponding from BL, in agreement with the discussion in Section 5.
- The ratio between the UV and Balmer excesses (/) predicted by both models tends to differ significantly in most cases. For instance, the ratio predicted in the mid-left panel of Figure 4 is close to unity from MA, while it can reach a factor ∼2 from BL. Similarly, for a given star / can be < 0 from MA, and > 0 from BL (bottom panels in Figure 4). This particular difference between predictions represents a good opportunity to observationally compare the two competing models.
7. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BL | Boundary Layer |
CTT | Classical T Tauri |
HAe | Herbig Ae |
HAeBe | Herbig Ae/Be |
HBe | Herbig Be |
IMTT | Intermediate-Mass T Tauri |
IR | Infrared |
IUE | International Ultraviolet Explorer |
MA | Magnetospheric Accretion |
MS | Main Sequence |
MYSO | Massive Young Stellar Object |
PMS | Pre-Main Sequence |
SFR | Star Formation Rate |
TT | T Tauri |
ULLYSES | Ultraviolet Legacy Library of Young Stars as Essential Standards |
UV | Ultraviolet |
WTT | Weak T Tauri |
References
- Lada, C.J. Star formation: From OB associations to protostars. IAU Symp. 1987, 115, 1. [Google Scholar]
- Simon, T.; Ayres, T.R.; Redfield, S.; Linsky, J.L. Limits on Chromospheres and Convection among the Main-Sequence A Stars. Astrophys. J. 2002, 579, 800. [Google Scholar] [CrossRef] [Green Version]
- Villebrun, F.; Alecian, E.; Hussain, G.; Bouvier, J.; Folsom, C.P.; Lebreton, Y.; Amard, L.; Charbonnel, C.; Gallet, F.; Haemmerlé, L.; et al. Magnetic fields of intermediate-mass T Tauri stars. I. Magnetic detections and fundamental stellar parameters. Astron. Astrophys. 2018, 622, A72. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.R.; Grady, C.A. Observational Overview of Young Intermediate-Mass Objects: Herbig Ae/Be Stars. Space Sci. Rev. 1997, 82, 407. [Google Scholar] [CrossRef]
- Waters, L.B.F.M.; Waelkens, C. Herbig Ae/Be Stars. Ann. Rev. Astron. Astrophys. 1998, 36, 233. [Google Scholar] [CrossRef] [Green Version]
- de Wit, W.J.; Oudmaijer, R.D.; van den Ancker, M.E.; Calvet, N. Report on the Workshop Herbig Ae/Be Stars: The Missing Link in Star Formation. Messenger 2014, 157, 50. [Google Scholar]
- Padoan, P.; Haugbølle, T.; Nordlund, A. Infall-driven Protostellar Accretion and the Solution to the Luminosity Problem. Astrophys. J. 2014, 797, 32. [Google Scholar] [CrossRef]
- Mendigutía, I.; Lada, C.J.; Oudmaijer, R.D. A global correlation linking young stars, clouds, and galaxies. Towards a unified view of star formation. Astron. Astrophys. 2018, 618, A119. [Google Scholar] [CrossRef]
- Lin, D.N.C.; Bodenheimer, P.; Richardson, D.C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 1996, 380, 606. [Google Scholar] [CrossRef]
- Beltrán, M.T.; de Wit, W.J. Accretion disks in luminous young stellar objects. Astron. Astrophys. Rev. 2016, 24, 6. [Google Scholar] [CrossRef]
- Uchida, Y.; Shibata, K. Magnetodynamical acceleration of CO and optical bipolar flows from the region of star formation. Publ. Astron. Soc. Jpn. 1985, 37, 515. [Google Scholar]
- Koenigl, A. Disk Accretion onto Magnetic T Tauri Stars. Astrophys. J. 1991, 370, L39. [Google Scholar] [CrossRef]
- Shu, F.; Najita, J.; Ostriker, E.; Wilkin, F.; Ruden, S.; Lizano, S. Magnetocentrifugally driven flows from young stars and disks. I: A generalized model. Astrophys. J. 1994, 429, 781. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Pringle, J.E. The evolution of viscous discs and the origin of the nebular variables. Mon. Notices R. Astron. Soc. 1974, 168, 603. [Google Scholar] [CrossRef]
- Bertout, C.; Basri, G.; Bouvier, J. Accretion Disks around T Tauri Stars. Astrophys. J. 1988, 330, 350. [Google Scholar] [CrossRef]
- Hartigan, P.; Kenyon, S.J.; Hartmann, L.; Strom, S.E.; Edwards, S.; Welty, A.D.; Stauffer, J. Optical Excess Emission in T Tauri Stars. Astrophys. J. 1991, 382, 617. [Google Scholar] [CrossRef]
- Popham, R.; Narayan, R.; Hartmann, L.; Kenyon, S. Boundary Layers in Pre-Main-Sequence Accretion Disks. Astrophys. J. 1993, 415, L127. [Google Scholar] [CrossRef]
- Hartigan, P.; Edwards, S.; Ghandour, L. Disk Accretion and Mass Loss from Young Stars. Astrophys. J. 1995, 452, 736. [Google Scholar] [CrossRef]
- Valenti, J.A.; Basri, G.; Johns, C.M. T Tauri Stars in Blue. Astron. J. 1993, 106, 2024. [Google Scholar] [CrossRef]
- Johns-Krull, C.M.; Valenti, J.A.; Koresko, C. Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri. Astrophys. J. 1999, 516, 900. [Google Scholar] [CrossRef] [Green Version]
- Johns-Krull, C.M.; Gafford, A.D. New Tests of Magnetospheric Accretion in T Tauri Stars. Astrophys. J. 2002, 573, 685. [Google Scholar] [CrossRef]
- Bouvier, J.; Alencar, S.H.P.; Harries, T.J.; Johns-Krull, C.M.; Romanova, M.M. Magnetospheric Accretion in Classical T Tauri Stars. Protostars Planets V 2007, 951, 479. [Google Scholar]
- Gullbring, E.; Hartmann, L.; Briceño, C.; Calvet, N. Disk accretion rates for T Tauri stars. Astrophys. J. 1998, 492, 323. [Google Scholar] [CrossRef]
- Calvet, N.; Gullbring, E. The structure and emission of the accretion shock in T Tauri stars. Astrophys. J. 1998, 509, 802. [Google Scholar] [CrossRef] [Green Version]
- Calvet, N.; Hartmann, L. Balmer Line Profiles for Infalling T Tauri Envelopes. Astrophys. J. 1992, 386, 239. [Google Scholar] [CrossRef]
- Edwards, S.; Hartigan, P.; Ghandour, L.; Andrulis, C. Spectroscopic Evidence for Magnetospheric Accretion in Classical T Tauri Stars. Astron. J. 1994, 108, 1056. [Google Scholar] [CrossRef]
- Hartmann, L.; Hewett, R.; Calvet, N. Magnetospheric Accretion Models for T Tauri Stars. I. Balmer Line Profiles without Rotation. Astrophys. J. 2001, 426, 669. [Google Scholar] [CrossRef]
- Muzerolle, J.; Calvet, N.; Hartmann, L. Emission-Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics. Astrophys. J. 2001, 550, 944. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, J.; Covino, E.; Kovo, O.; Martin, E.L.; Matthews, J.M.; Terranegra, L.; Beck, S.C. COYOTES II: SPOT properties and the origin of photometric period variations in T Tauri stars. Astron. Astrophys. 1995, 299, 89. [Google Scholar]
- Edwards, S.; Strom, S.E.; Hartigan, P.; Strom, K.M.; Hillenbrand, L.A.; Herbst, W.; Attridge, J.; Merrill, K.M.; Probst, R.; Gatley, I. Angular Momentum Regulation in Low-Mass Young Stars Surrounded by Accretion Disks. Astron. J. 1993, 106, 372. [Google Scholar] [CrossRef]
- Landin, N.R.; Mendes, L.T.S.; Vaz, L.P.R.; Alencar, S.H.P. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264. Astron. Astrophys. 2016, 586, A96. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.C.; Günther, H.M.; France, K. The UV Perspective of Low-Mass Star Formation. Galaxies 2020, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Kurosawa, R.; Harries, T.J.; Symington, N.H. On the formation of Hα line emission around classical T Tauri stars. Mon. Notices R. Astron. Soc. 2006, 370, 580. [Google Scholar] [CrossRef]
- Lima, G.H.R.A.; Alencar, S.H.P.; Calvet, N.; Hartmann, L.; Muzerolle, J. Modeling the Hα line emission around classical T Tauri stars using magnetospheric accretion and disk wind models. Astron. Astrophys. 2010, 522, A104. [Google Scholar] [CrossRef] [Green Version]
- Ingleby, L.; Calvet, N.; Herczeg, G.; Blaty, A.; Walter, F.; Ardila, D.; Alexander, R.; Edwards, S.; Espaillat, C.; Gregory, S.G.; et al. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra. Astrophys. J. 2013, 767, 112. [Google Scholar] [CrossRef]
- Manara, C.F.; Fedele, D.; Herczeg, G.J.; Teixeira, P.S. X-Shooter study of accretion in Chamaeleon I. Astron. Astrophys. 2016, 585, A136. [Google Scholar] [CrossRef] [Green Version]
- Herczeg, G.J.; Hillenbrand, L.A. UV Excess Measures of Accretion onto Young Very Low Mass Stars and Brown Dwarfs. Astrophys. J. 2008, 681, 594. [Google Scholar] [CrossRef]
- Rei, A.C.S.; Petrov, P.P.; Gameiro, J.F. Line-dependent veiling in very active classical T Tauri stars. Astron. Astrophys. 2018, 610, A40. [Google Scholar] [CrossRef] [Green Version]
- Natta, A.; Testi, L.; Muzerolle, J.; Randich, S.; Comerón, F.; Persi, P. Accretion in brown dwarfs: An infrared view. Astron. Astrophys. 2004, 424, 603. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; van Boekel, R.; Wang, W.; Carmona, A.; Sicilia-Aguilar, A.; Henning, T. Star and protoplanetary disk properties in Orion’s suburbs. Astron. Astrophys. 2009, 504, 461. [Google Scholar] [CrossRef] [Green Version]
- Rigliaco, E.; Natta, A.; Testi, L.; Randich, S.; Alcalá, J.M.; Covino, E.; Stelzer, B. X-shooter spectroscopy of young stellar objects. I. Mass accretion rates of low-mass T Tauri stars in σ Orionis. Astron. Astrophys. 2012, 548, A56. [Google Scholar] [CrossRef] [Green Version]
- Alcalá, J.M.; Natta, A.; Manara, C.F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; et al. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus. Astron. Astrophys. 2014, 561, A2. [Google Scholar] [CrossRef]
- Bertout, C. The accretion disk paradigm for young stars. In Star-Disk Interaction in Young Stars, Proceedings of the International Astronomical Union, IAU Symposium, Prague, Czech Republic, 14–25 August 2007; IAU: Paris, France, 2007; Volume 243, p. 1. [Google Scholar]
- Basri, G. T Tauri stars: From mystery to magnetospheric accretion. In Star-Disk Interaction in Young Stars, Proceedings of the International Astronomical Union, IAU Symposium, Prague, Czech Republic, 14–25 August 2007; IAU: Paris, France, 2007; Volume 243, p. 13. [Google Scholar]
- Hartmann, L.; Herczeg, G.; Calvet, N. Accretion onto Pre-Main-Sequence Stars. Annu. Rev. Astron. Astrophys. 2016, 54, 135. [Google Scholar] [CrossRef]
- Peréz, M.; Thé, P.S. The clumpy accretion in Herbig Ae/Be stars. Revista Mexicana de Astronomía y Astrofísica 1994, 29, 54. [Google Scholar]
- Hillenbrand, L.A.; Strom, S.E.; Vrba, F.J.; Keene, J. Herbig Ae/Be Stars: Intermediate-Mass Stars Surrounded by Massive Circumstellar Accretion Disks. Astrophys. J. 1992, 397, 613. [Google Scholar] [CrossRef]
- Blondel, P.F.C.; Tjin A Djie, H.R.E. Modeling of PMS Ae/Fe stars using UV spectra. Astron. Astrophys. 2006, 457, 1045. [Google Scholar] [CrossRef]
- Sorelli, C.; Grinin, V.P.; Natta, A. Infall in Herbig Ae/Be stars: What NA D lines tell us. Astron. Astrophys. 1996, 309, 155. [Google Scholar]
- Vink, J.S.; Drew, J.E.; Harries, T.J.; Oudmaijer, R.D. Probing the circumstellar structure of Herbig Ae/Be stars. Mon. Notices R. Astron. Soc. 2002, 337, 356. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.S.; Drew, J.E.; Harries, T.J.; Oudmaijer, R.D.; Unruh, Y.C. Resolved polarization changes across Hα in the classical T Tauri star RY Tauri. Astron. Astrophys. 2003, 406, 703. [Google Scholar] [CrossRef] [Green Version]
- Mottram, J.C.; Vink, J.S.; Oudmaijer, R.D.; Patel, M. On the difference between Herbig Ae and Herbig Be stars. Mon. Notices R. Astron. Soc. 2007, 37, 1363. [Google Scholar] [CrossRef] [Green Version]
- Ababakr, K.M.; Oudmaijer, R.D.; Vink, J.S. A statistical spectropolarimetric study of Herbig Ae/Be stars. Mon. Notices R. Astron. Soc. 2017, 472, 854. [Google Scholar] [CrossRef] [Green Version]
- Eisner, J.A.; Lane, B.F.; Hillenbrand, L.A.; Akeson, R.L.; Sargent, A.I. Resolved Inner Disks around Herbig Ae/Be Stars. Astrophys. J. 2004, 613, 1049. [Google Scholar] [CrossRef]
- Calvet, N.; Muzerolle, J.; Briceño, C.; Hernández, J.; Hartmann, L.; Saucedo, J.L.; Gordon, K.D. The Mass Accretion Rates of Intermediate-Mass T Tauri Stars. Astron. J. 2004, 128, 1294. [Google Scholar] [CrossRef]
- Muzerolle, J.; D’Alessio, P.; Calvet, N.; Hartmann, L. Magnetoshpheres and disk accretion in Herbig Ae/Be stars. Astrophys. J. 2004, 617, 406. [Google Scholar] [CrossRef] [Green Version]
- Garrison, L.M. Observational studies of the Herbig Ae/Be stars. III. Spectrophotometry. Astrophys. J. 1978, 224, 535. [Google Scholar] [CrossRef]
- Garcia Lopez, R.; Natta, A.; Testi, L.; Habart, E. Accretion rates in Herbig Ae stars. Astron. Astrophys. 2006, 459, 837. [Google Scholar] [CrossRef]
- Donehew, B.; Brittain, S. Measuring the Stellar Accretion Rates of Herbig Ae/Be Stars. Astron. J. 2011, 141, 46. [Google Scholar] [CrossRef]
- Pogodin, M.A.; Hubrig, S.; Yudin, R.V.; Schöller, M.; González, J.F.; Stelzer, B. Measuring the mass accretion rates of Herbig Ae/Be stars with X-shooter. Astronomische Nachrichten 2012, 333, 594. [Google Scholar] [CrossRef] [Green Version]
- Mendigutía, I.; Calvet, N.; Montesinos, B.; Mora, A.; Muzerolle, J.; Eiroa, C.; Oudmaijer, R.D.; Merín, B. Accretion rates and accretion tracers of Herbig Ae/Be stars. Astron. Astrophys. 2011, 535, A99. [Google Scholar] [CrossRef]
- Mendigutía, I.; Brittain, S.; Eiroa, C.; Meeus, G.; Montesinos, B.; Mora, A.; Muzerolle, J.; Oudmaijer, R.D.; Rigliaco, E. Accretion variability of Herbig Ae/Be stars observed by X-Shooter. HD 31648 and HD 163296. Astrophys. J. 2013, 776, 44. [Google Scholar] [CrossRef] [Green Version]
- Fairlamb, J.R.; Oudmaijer, R.D.; Mendigutía, I.; Ilee, J.D.; van den Ancker, M.E. A spectroscopic survey of Herbig Ae/Be stars with X-shooter—I. Stellar parameters and accretion rates. Mon. Notices R. Astron. Soc. 2015, 453, 976. [Google Scholar] [CrossRef]
- Fairlamb, J.R.; Oudmaijer, R.D.; Mendigutía, I.; Ilee, J.D.; van den Ancker, M.E. A spectroscopic survey of Herbig Ae/Be stars with X-Shooter—II. Accretion diagnostic lines. Mon. Notices R. Astron. Soc. 2017, 464, 4721. [Google Scholar] [CrossRef]
- Mendigutía, I.; Oudmaijer, R.D.; Rigliaco, E.; Fairlamb, J.R.; Calvet, N.; Muzerolle, J.; Cunningham, N.; Lumsden, S.L. On the origin of the correlations between the accretion luminosity and emission line luminosities in pre-main-sequence stars. Mon. Notices R. Astron. Soc. 2020, 452, 2837. [Google Scholar] [CrossRef] [Green Version]
- Wichittanakom, C.; Oudmaijer, R.D.; Fairlamb, J.R.; Mendigutía, I.; Vioque, M.; Ababakr, K.M. The accretion rates and mechanisms of Herbig Ae/Be stars. Mon. Notices R. Astron. Soc. 2020, 493, 234. [Google Scholar] [CrossRef] [Green Version]
- Vioque, M.; Oudmaijer, R.D.; Baines, D.; Mendigutía, I.; Pérez-Martínez, R. Gaia DR2 study of Herbig Ae/Be stars. Astron. Astrophys. 2018, 620, A128. [Google Scholar] [CrossRef] [Green Version]
- Arun, R.; Mathew, B.; Manoj, P.; Ujjwal, K.; Kartha, S.S.; Viswanath, G.; Narang, M.; Paul, K.T. On the Mass Accretion Rate and Infrared Excess in Herbig Ae/Be Stars. Astron. J. 2019, 157, 159. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Díaz, J.; Mendigutía, I.; Montesinos, B. Homogeneous characterization of stellar and circumstellar parameters of Herbig Ae/Be stars. in preparation.
- Costigan, G.; Vink, J.S.; Scholz, A.; Ray, T.; Testi, L. Temperaments of young stars: rapid mass accretion rate changes in T Tauri and Herbig Ae stars. Mon. Notices R. Astron. Soc. 2014, 440, 3444. [Google Scholar] [CrossRef]
- Mendigutía, I.; Eiroa, C.; Montesinos, B.; Mora, A.; Oudmaijer, R.D.; Merín, B.; Meeus, G. Optical spectroscopic variability of Herbig Ae/Be stars. Astron. Astrophys. 2011, 529, A34. [Google Scholar] [CrossRef]
- Cauley, P.W.; Johns-Krull, C.M. Diagnosing Mass Flows around Herbig Ae/Be Stars Using the He I λ10830 Line. Astrophys. J. 2014, 797, 112. [Google Scholar] [CrossRef] [Green Version]
- Cauley, P.W.; Johns-Krull, C.M. Optical Mass Flow Diagnostics in Herbig Ae/Be Stars Line. Astrophys. J. 2015, 810, 5. [Google Scholar] [CrossRef] [Green Version]
- Mendigutía, I.; Oudmaijer, R.D.; Mourard, D.; Muzerolle, J. The compact Hα emitting regions of the Herbig Ae/Be stars HD 179218 and HD 141569 from CHARA spectro-interferometry. Mon. Notices R. Astron. Soc. 2017, 464, 1984. [Google Scholar] [CrossRef] [Green Version]
- Eisner, J.A.; Hillenbrand, L.A.; Stone, J.M. Constraining the sub-au-scale distribution of hydrogen and carbon monoxide gas around young stars with the Keck Interferometer. Mon. Notices R. Astron. Soc. 2014, 443, 1916. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, J.; Perraut, K.; Le Bouquin, J.B.; Duvert, G.; Dougados, C.; Brandner, W.; Benisty, M.; Berger, J.P.; Alécian, E. Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY. Astron. Astrophys. 2020, in press. [Google Scholar] [CrossRef]
- Tambovtseva, L.V.; Grinin, V.P.; Weigelt, G. Hydrogen lines as a diagnostic tool for studying multicomponent emitting regions in hot young stars: magnetosphere, X-wind, and disk wind. Astron. Astrophys. 2014, 562, A104. [Google Scholar] [CrossRef] [Green Version]
- Tambovtseva, L.V.; Grinin, V.P.; Weigelt, G. Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars. Astron. Astrophys. 2016, 590, A97. [Google Scholar] [CrossRef] [Green Version]
- Tambovtseva, L.V.; Grinin, V.P.; Potravnov, I.S.; Mkrtichian, D.E. Disk wind and magnetospheric accretion in emission from the Herbig Ae star MWC 480. Astron. Lett. 2016, 42, 583. [Google Scholar] [CrossRef]
- Garcia Lopez, R.; Kurosawa, R.; Carattio Garatti, A.; Kreplin, A.; Weigelt, G.; Tambovtseva, L.V.; Grinin, V.P.; Ray, T.P. Investigating the origin and spectroscopic variability of the near-infrared H I lines in the Herbig star VV Ser. Mon. Notices R. Astron. Soc. 2016, 456, 156. [Google Scholar] [CrossRef] [Green Version]
- Moura, T.; Alencar, S.H.P.; Sousa, A.P.; Alecian, E.; Lebreton, Y. Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon. Mon. Notices R. Astron. Soc. 2020, in press. [Google Scholar] [CrossRef]
- Hernández, J.; Calvet, N.; Hartmann, L.; Briceño, C.; Sicilia-Aguilar, A.; Berlind, P. Herbig Ae/Be Stars in nearby OB Associations. Astron. J. 2005, 129, 856. [Google Scholar] [CrossRef]
- Alecian, E.; Wade, G.A.; Catala, C.; Grunhut, J.H.; Landstreet, J.D.; Böhm, T.; Folsom, C.P.; Marsden, S. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars—II. Rotation. Mon. Notices R. Astron. Soc. 2013, 429, 1027. [Google Scholar] [CrossRef] [Green Version]
- Aarnio, A.N.; Monnier, J.D.; Harries, T.J.; Kraus, S.; Calvet, N.; Acreman, D.; Che, X. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila. Astrophys. J. 2017, 848, 18. [Google Scholar] [CrossRef] [Green Version]
- Reiter, M.; Calvet, N.; Thanathibodee, T.; Kraus, S.; Cauley, P.W.; Monnier, J.; Rubinstein, A.; Aarnio, A.; Harries, T.J. Linking Signatures of Accretion with Magnetic Field Measurements-Line Profiles are not Significantly Different in Magnetic and Non-magnetic Herbig Ae/Be Stars. Astrophys. J. 2018, 852, 5. [Google Scholar] [CrossRef] [Green Version]
- Donati, J.F.; Semel, M.; Carter, B.D.; Rees, D.E.; Collier Cameron, A. Spectropolarimetric observations of active stars. Mon. Notices R. Astron. Soc. 1997, 291, 658. [Google Scholar] [CrossRef]
- Hubrig, S.; Schöller, M.; Yudin, R.V. Magnetic fields in Herbig Ae stars. Astron. Astrophys. 2004, 428, L1. [Google Scholar] [CrossRef] [Green Version]
- Wade, G.A.; Bagnulo, S.; Drouin, D.; Landstreet, J.D.; Monin, D. A search for strong, ordered magnetic fields in Herbig Ae/Be stars. Mon. Notices R. Astron. Soc. 2007, 376, 1145. [Google Scholar] [CrossRef] [Green Version]
- Hubrig, S.; Stelzer, B.; Schöller, M.; Grady, C.; Schütz, O.; Pogodin, M.A.; Curé, M.; Hamaguchi, K.; Yudin, R.V. Searching for a link between the magnetic nature and other observed properties of Herbig Ae/Be stars and stars with debris disks. Astron. Astrophys. 2009, 502, 283. [Google Scholar] [CrossRef]
- Alecian, E.; Wade, G.A.; Catala, C.; Grunhut, J.H.; Landstreet, J.D.; Bagnulo, S.; Böhm, T.; Folsom, C.P.; Marsden, S.; Waite, I. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars—I. Observations and measurements. Mon. Notices R. Astron. Soc. 2013, 429, 1001. [Google Scholar] [CrossRef] [Green Version]
- Järvinen, S.P.; Carroll, T.A.; Hubrig, S.; Ilyin, I.; Schöller, M. New evidence for weak magnetic fields in Herbig Ae/Be stars. Mon. Notices R. Astron. Soc. 2019, 489, 886. [Google Scholar] [CrossRef]
- Sicilia-Aguilar, A.; Banzatti, A.; Carmona, A.; Stolker, T.; Kama, M.; Mendigutía, I.; Garufi, A.; Flaherty, K.; van der Marel, N.; Greaves, J. A ‘Rosetta Stone’ for Protoplanetary Disks: The Synergy of Multi-Wavelength Observations. Publ. Astron. Soc. Aust. 2016, 33, 59. [Google Scholar] [CrossRef] [Green Version]
- Collier Cameron, A.; Campbell, C.G. Rotational evolution of magnetic T Tauri stars with accretion discs. Astron. Astrophys. 1993, 274, 309. [Google Scholar]
- Hubrig, S.; Carroll, T.A.; Schöller, M.; Ilyin, I. The prevalence of weak magnetic fields in Herbig Ae stars: The case of PDS 2. Mon. Notices R. Astron. Soc. 2015, 449, L118. [Google Scholar] [CrossRef] [Green Version]
- Järvinen, S.P.; Carroll, T.A.; Hubrig, S.; Ilyin, I.; Schöller, M.; Drake, N.A.; Pogodin, M.A. The two magnetic components in the Herbig Ae SB2 system HD 104237. Mon. Notices R. Astron. Soc. 2019, 486, 5499. [Google Scholar] [CrossRef]
- Hubrig, S.; Schöller, M.; Savanov, I.; González, J.F.; Cowley, C.R.; Schütz, O.; Arlt, R.; Rüdiger, G. The exceptional Herbig Ae star HD 101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star. Astronomische Nachrichten 2010, 331, 361. [Google Scholar] [CrossRef] [Green Version]
- Mora, A.; Merín, B.; Solano, E.; Montesinos, B.; de Winter, D.; Eiroa, C.; Ferlet, R.; Grady, C.A.; Davies, J.K.; Miranda, L.F.; et al. EXPORT: Spectral classification and projected rotational velocities of Vega-type and pre-main sequence stars. Astron. Astrophys. 2001, 378, 116. [Google Scholar] [CrossRef]
- Kurosawa, R.; Kreplin, A.; Weigelt, G.; Natta, A.; Benisty, M.; Isella, A.; Tatulli, E.; Massi, F.; Testi, L.; Kraus, S.; et al. Probing the wind-launching regions of the Herbig Be star HD 58647 with high spectral resolution interferometry. Mon. Notices R. Astron. Soc. 2016, 457, 2236. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, L. Accretion Processes in Star Formation; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-53199-3. [Google Scholar]
- Alonso-Albi, T.; Fuente, A.; Bachiller, R.; Neri, R.; Planesas, P.; Testi, L.; Berné, O.; Joblin, C. Circumstellar disks around Herbig Be stars. Astron. Astrophys. 2009, 497, 1. [Google Scholar] [CrossRef] [Green Version]
- Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; et al. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astron. Astrophys. 2016, 595, A112. [Google Scholar] [CrossRef] [Green Version]
- Acke, B.; Waelkens, C. Chemical analysis of 24 dusty (pre-)main-sequence stars. Astron. Astrophys. 2004, 427, 1009. [Google Scholar] [CrossRef] [Green Version]
- Tatulli, E.; Benisty, M.; Ménard, F.; Varnière, P.; Martin-Zaïdi, C.; Thi, W.F.; Pinte, C.; Massi, F.; Weigelt, G.; Hofmann, K.H.; et al. Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546. Astron. Astrophys. 2011, 531, A1. [Google Scholar] [CrossRef] [Green Version]
- Garcia, P.J.V.; Benisty, M.; Dougados, C.; Bacciotti, F.; Clausse, J.M.; Massi, F.; Mérand, A.; Petrov, R.; Weigelt, G. Pre-main-sequence binaries with tidally disrupted discs: the Brγ in HD 104237. Mon. Notices R. Astron. Soc. 2013, 430, 1839. [Google Scholar] [CrossRef] [Green Version]
- Cowley, C.R.; Castelli, F.; Hubrig, S. The Herbig Ae SB2 system HD 104237. Mon. Notices R. Astron. Soc. 2013, 431, 3485. [Google Scholar] [CrossRef] [Green Version]
- Alecian, E.; Wade, G.A.; Catala, C.; Bagnulo, S.; Böhm, T.; Bouret, J.C.; Donati, J.F.; Folsom, C.P.; Grunhut, J.; Landstreet, J.D. Magnetism and binarity of the Herbig Ae star V380 Ori. Mon. Notices R. Astron. Soc. 2009, 400, 354. [Google Scholar] [CrossRef] [Green Version]
- Bagnulo, S.; Landstreet, J.D.; Fossati, L.; Kochukhov, O. Magnetic field measurements and their uncertainties: the FORS1 legacy. Astron. Astrophys. 2012, 538, A129. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.S.; Harries, T.J.; Drew, J.E. Polarimetric line profiles for scattering off rotating disks. Astron. Astrophys. 2005, 430, 213. [Google Scholar] [CrossRef]
- Vink, J.S.; Drew, J.E.; Harries, T.J.; Oudmaijer, R.D.; Unruh, Y. Probing the circumstellar structures of T Tauri stars and their relationship to those of Herbig stars. Mon. Notices R. Astron. Soc. 2005, 359, 1049. [Google Scholar] [CrossRef] [Green Version]
- Thanathibodee, T.; Molina, B.; Calvet, N.; Serna, J.; Bae, J.; Reynolds, M.; Hernández, J.; Muzerolle, J.; Hernández, R.F. Variable Accretion onto Protoplanet Host Star PDS 70. Astrophys. J. 2020, 892, 81. [Google Scholar] [CrossRef]
- Yang, H.; Herczeg, G.J.; Linsky, J.L.; Brown, A.; Johns-Krull, C.M.; Ingleby, L.; Calvet, N.; Bergin, E.; Valenti, J.A. A Far-ultraviolet Atlas of Low-resolution Hubble Space Telescope Spectra of T Tauri Stars. Astrophys. J. 2012, 744, 121. [Google Scholar] [CrossRef] [Green Version]
- Rigliaco, E.; Pascucci, I.; Duchene, G.; Edwards, S.; Ardila, D.R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Mulders, G.D.; Najita, J.R.; et al. Probing Stellar Accretion with Mid-infrared Hydrogen Lines. Astrophys. J. 2015, 801, 31. [Google Scholar] [CrossRef] [Green Version]
- Acke, B.; van den Ancker, M.E.; Dullemond, C.P. [O I] 6300 Å emission in Herbig Ae/Be systems: Signature of Keplerian rotation. Astron. Astrophys. 2005, 436, 209. [Google Scholar] [CrossRef] [Green Version]
- Dupree, A.K.; Brickhouse, N.S.; Cranmer, S.R.; Luna, G.J.M.; Schneider, E.E.; Bessell, M.S.; Bonanos, A.; Crause, L.A.; Lawson, W.A.; Mallik, S.V.; et al. TW Hya: Spectral Variability, X-Rays, and Accretion Diagnostics. Astrophys. J. 2012, 750, 73. [Google Scholar] [CrossRef]
- Hartigan, P.; Hartmann, L.; Kenyon, S.; Hewett, R.; Stauffer, J. How to Unveil a T Tauri Star. Astrophys. J. Suppl. 1989, 70, 899. [Google Scholar] [CrossRef]
- Hartmann, L.W.; Kenyon, S.J. Optical Veiling, Disk Accretion, and the Evolution of T Tauri Stars. Astrophys. J. 1990, 349, 190. [Google Scholar] [CrossRef]
- White, R.J.; Basri, G. Very low mass stars and brown dwarfs in Taurus-Auriga. Astrophys. J. 2003, 582, 1109. [Google Scholar] [CrossRef]
- White, R.J.; Hillenbrand, L.A. On the Evolutionary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus-Auriga. Astrophys. J. 2004, 616, 998. [Google Scholar] [CrossRef]
- Mendigutía, I.; Fairlamb, J.R.; Montesinos, B.; Oudmaijer, R.D.; Najita, J.R.; Brittain, S.D.; van den Ancker, M.E. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-Shooter. Astrophys. J. 2014, 790, 21. [Google Scholar] [CrossRef] [Green Version]
- Boley, P.A.; Sobolev, A.M.; Krushinsky, V.V.; van Boekel, R.; Henning, T.; Moiseev, A.V.; Yushkin, M.V. S 235 B explained: an accreting Herbig Be star surrounded by reflection nebulosity. Mon. Notices R. Astron. Soc. 2009, 399, 778. [Google Scholar] [CrossRef] [Green Version]
- Mendigutía, I.; Mora, A.; Montesinos, B.; Eiroa, C.; Meeus, G.; Merín, B.; Oudmaijer, R.D. Accretion-related properties of Herbig Ae/Be stars. Comparison with T Tauris. Astron. Astrophys. 2012, 543, A59. [Google Scholar] [CrossRef]
- Muzerolle, J.; Hillenbrand, L.; Calvet, N.; Briceño, C.; Hartmann, L. Accretion in Young Stellar/Substellar Objects. Astrophys. J. 2003, 592, 266. [Google Scholar] [CrossRef] [Green Version]
- Manara, C.F.; Rosotti, G.; Testi, L.; Natta, A.; Alcalá, J.M.; Williams, J.P.; Ansdell, M.; Miotello, A.; van der Marel, N.; Tazzari, M.; et al. Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks. Astron. Astrophys. 2016, 591, L3. [Google Scholar] [CrossRef]
- Andrews, S.M.; Terrell, M.; Tripathi, A.; Ansdell, M.; Williams, J.P.; Wilner, D.J. Scaling Relations Associated with Millimeter Continuum Sizes in Protoplanetary Disks. Astrophys. J. 2018, 865, 157. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, L.; Calvet, N.; Gullbring, E.; D’Alessio, P. Accretion and the Evolution of T Tauri Disks. Astrophys. J. 1998, 495, 385. [Google Scholar] [CrossRef]
- Andrews, S.M.; Williams, J.P. A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi. Astrophys. J. 2007, 671, 1800. [Google Scholar] [CrossRef]
- Dong, R.; Najita, J.R.; Brittain, S. Spiral Arms in Disks: Planets or Gravitational Instability? Astrophys. J. 2018, 862, 103. [Google Scholar] [CrossRef]
- Alexander, R.D.; Armitage, P.J. Dust dynamics during protoplanetary disc clearing. Mon. Notices R. Astron. Soc. 2007, 375, 500. [Google Scholar] [CrossRef] [Green Version]
- Najita, J.R.; Strom, S.E.; Muzerolle, J. Demographics of transition objects. Mon. Notices R. Astron. Soc. 2007, 378, 369. [Google Scholar] [CrossRef] [Green Version]
- Sicilia-Aguilar, A.; Henning, T.; Hartmann, L. Accretion in Evolved and Transitional Disks in CEP OB2: Looking for the Origin of the Inner Holes. Astrophys. J. 2010, 710, 597. [Google Scholar] [CrossRef] [Green Version]
- Manara, C.F.; Morbidelli, F.; Guillot, T. Why do protoplanetary disks appear not massive enough to form the known exoplanet population? Astron. Astrophys. 2018, 618, L3. [Google Scholar] [CrossRef]
- Bodenheimer, P. Angular Momentum Evolution of Young Stars and Disks. Annu. Rev. Astron. Astrophys. 1995, 33, 199. [Google Scholar] [CrossRef]
- Stassun, K.G.; Terndrup, D. Angular Momentum Evolution of Young Stars: Toward a Synthesis of Observations, Theory, and Modeling. Publ. Astron.Soc. Pac. 2003, 115, 505. [Google Scholar] [CrossRef] [Green Version]
- Tylenda, R. The continuous radiation emitted by accretion discs in cataclysmic binaries: the dwarf nova SS Cyg during outburst and the old novae V603 Aql and RR Pic. Acta Astron. 1977, 27, 235. [Google Scholar]
- Narayan, R.; Popham, R. Accretion disk boundary layers. In Theory of Accretion Disks—2, Proceedings of the NATO Advanced Research Workshop, Vienna Austria, 10–14 January 1994; Springer: Berlin, Germany, 1994; Volume 417, p. 293. [Google Scholar]
- Abt, H.A.; Levato, H.; Grosso, M. Rotational Velocities of B Stars. Astrophys. J. 2002, 573, 359. [Google Scholar] [CrossRef] [Green Version]
- Zorec, J.; Royer, F. Rotational velocities of A-type stars. IV. Evolution of rotational velocities. Astron. Astrophys. 2012, 537, A120. [Google Scholar] [CrossRef] [Green Version]
- Takasao, S.; Tomida, K.; Iwasaki, K.; Suzuki, T.K. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star. Astrophys. J. 2018, 857, 4. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.C.; Strom, S.E.; Rebull, L.M. The Evolution of Circumstellar Disks Surrounding Intermediate-mass Stars: IC 1805. Astrophys. J. 2011, 726, 19. [Google Scholar] [CrossRef]
- Clarke, C.; Gendrin, A.; Sotomayor, M. The dispersal of circumstellar discs: the role of the ultraviolet switch. Mon. Notices R. Astron. Soc. 2001, 328, 485. [Google Scholar] [CrossRef]
- Gorti, U.; Dullemond, C.P.; Hollenbach, D. Time Evolution of Viscous Circumstellar Disks due to Photoevaporation by Far-Ultraviolet, Extreme-Ultraviolet, and X-ray Radiation from the Central Star. Astrophys. J. 2009, 705, 1237. [Google Scholar] [CrossRef] [Green Version]
1. | |
2. | |
3. | Please note that no BL model of line emission is yet available and it is not clear what exactly to expect from this scenario. |
4. | It is noted that accretion rates based on the “slab” models introduced in Valenti et al. (1993) [19] can be interpreted both from the BL and MA scenarios, and are not the same as the MA shock models based on the work by Calvet & Gullbring (1998) [24]. However, both provide roughly equivalent values of for CTTs based on the Balmer continuum (e.g., [23,37]). |
5. | |
6. |
Star | M | R | vsini | i | P | B | B | |
---|---|---|---|---|---|---|---|---|
... | M | R | km s | days | Myr | G | G | |
HD 31648 | 1.9 | 2.4 | 102 | 39 | 0.75 | 1.12 × 10 | 92 | 416 ± 125 |
HD 35929 | 2.2 | 7.6 | 64 | 32 | 3.19 | 3.98 × 10 | 38 | 54 ± 23 |
HD 36112 | 1.6 | 2.2 | 59 | 49 | 1.43 | 5.25 × 10 | 150 | 89 ± 84 |
V380 Ori | 2.6 | 4.0 | 7.8 | 27 | 4.20 | 3.02 × 10 | 347 | 2120 ± 150 |
BF Ori | 1.7 | 2.0 | 48 | 70 | 1.98 | 5.75 × 10 | 326 | 87 ± 36 |
HD 58647 | 3.4 | 5.5 | 122 | 55 | 1.87 | 1.07 × 10 | 125 | 218 ± 69 |
Z CMa | 1.9 | 11.8 | 110 | 30 | 2.72 | 1.82 × 10 | 5 | 1231 ± 164 |
HD 97048 | 2.3 | 2.4 | 160 | 38 | 0.47 | 1.78 × 10 | 77 | 105 ± 58 |
HD 98922 | 4.5 | 13.6 | 53 | 20 | 4.44 | 2.75 × 10 | 49 | 135 ± 64 |
HD 100546 | 2.2 | 2.0 | 55 | 22 | 0.69 | 1.02 × 10 | 150 | 106 ± 52 |
HD 101412 | 2.3 | 2.8 | 4 | 80 | 34.9 | 2.29 × 10 | 10,291 | 273 ± 53 |
HD 104237 | 2.0 | 3.0 | 8 | 8 | 2.64 | 1.41 × 10 | 255 | 56 ± 35 |
HD 139614 | <1.6 | 1.4 | 27 | 32 | 1.39 | 4.68 × 10 | <528 | 73 ± 26 |
HD 144432 | 1.6 | 2.4 | 83 | 24 | 0.60 | 5.75 × 10 | 42 | 100 ± 50 |
HD 144668 | 2.1 | 3.9 | 210 | 52 | 0.74 | 3.24 × 10 | 42 | 106 ± 34 |
HD 150193 | 2.0 | 2.4 | 113 | 32 | 0.57 | 1.23 × 10 | 72 | 159 ± 136 |
HD 176386 | 2.4 | 2.4 | 181 | 50 | 0.51 | 1.70 × 10 | 87 | 130 ± 81 |
HD 190073 | 3.8 | 12.5 | 8 | 31 | 40.8 | 1.82 × 10 | 642 | 62 ± 21 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendigutía, I. On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer? Galaxies 2020, 8, 39. https://doi.org/10.3390/galaxies8020039
Mendigutía I. On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer? Galaxies. 2020; 8(2):39. https://doi.org/10.3390/galaxies8020039
Chicago/Turabian StyleMendigutía, Ignacio. 2020. "On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer?" Galaxies 8, no. 2: 39. https://doi.org/10.3390/galaxies8020039
APA StyleMendigutía, I. (2020). On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer? Galaxies, 8(2), 39. https://doi.org/10.3390/galaxies8020039