Magnetic Fields in Molecular Clouds—Observation and Interpretation
Abstract
:1. Introduction
2. Zeeman Measurements
2.1. Usually Ignored Facts about the Bρ Relation
2.2. Simulations Aiming to Reproduce the Zeeman Bρ Relation
2.3. Bayesian Analysis
3. Grain Alignment Measurements and Implication
3.1. Anchoring Galactic B-Field in Cloud Cores?
3.2. The Effects of B-Field Orientations on Cloud Fragmentation and Star Formation
4. Turbulence-Field Interaction
4.1. Turbulence Anisotropy
4.2. Turbulence-Induced Ambipolar Diffusion
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Shu, F.; Adams, F.; Lizano, S. Star Formation in Molecular Clouds: Observation and Theory. Ann. Rev. Astron. Astrophys. 1987, 25, 23–81. [Google Scholar] [CrossRef]
- McKee, C.; Ostriker, E. Theory of Star Formation. Ann. Rev. Astron. Astrophys. 2007, 45, 565–687. [Google Scholar] [CrossRef] [Green Version]
- Crutcher, R.M.; Wandelt, B.D.; Heiles, C.; Falgarone, E.; Troland, T.H. Magnetic Fields in Interstellar Clouds from Zeeman Observations: Inference of Total Field Strengths by Bayeslan Analysis. Astrophys. J. 2010, 725, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Heyer, M.H.; Brunt, C.M. Trans-Alfvénic Motions in the Taurus Molecular Cloud. Mon. Not. R. Astron. Soc. 2012, 420, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Li, H.-B.; Fan, X. Bayesian Revisit of the Relationship between the Total Field Strength and the Volume Density of Interstellar Clouds. Astrophys. J. 2020, 890, 153. [Google Scholar] [CrossRef]
- Mouschovias, T.C.; Spitzer, L. Note on the Collapse of Magnetic Interstellar Clouds. Astrophys. J. 1976, 210, 326–327. [Google Scholar] [CrossRef]
- Li, H.-B.; Yuen, K.H.; Otto, F.; Leung, P.K.; Sridharan, T.K.; Zhang, Q.; Liu, H.; Tang, Y.-W.; Qiu, K. Self-similar Fragmentation Regulated by Magnetic Fields in a Region Forming Massive stars. Nature 2015, 520, 518–521. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.C.; Kritsuk, A.G.; Padoan, P.; Li, H.; Xu, H.; Ustyugov, S.D.; Norman, M.L. The two States of Star-Forming Clouds. Astrophys. J. 2012, 750, 13. [Google Scholar] [CrossRef]
- Collins, D.C.; Padoan, P.; Norman, M.L.; Xu, H. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence. Astrophys. J. 2011, 731, 59. [Google Scholar] [CrossRef] [Green Version]
- Li, P.S.; McKee, C.F.; Klein, R.I. Magnetized Interstellar Molecular Clouds—I. Comparison between Simulations and Zeeman Observations. Mon. Not. R. Astron. Soc. 2015, 452, 2500–2527. [Google Scholar] [CrossRef]
- Mocz, P.; Burkhart, B.; Hernquist, L.; McKee, C.F.; Springel, V. The Star Formation Rate in the Gravoturbulent Interstellar Medium. Astrophys. J. 2017, 838, 40. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Guo, Z.-T.; Li, H.-B.; Wang, H.H. Anchoring Magnetic Fields in Turbulent Molecular Clouds II-from 0.1 to 0.01 parsec. Astrophys. J. 2019, 871, 98. [Google Scholar] [CrossRef]
- Li, H.-B. The Tai Chi in Star Formation; Morgan & Claypool Publishers: San Rafael, CA, USA, 2017. [Google Scholar]
- Crutcher, R. Magnetic Fields in Molecular Clouds. Annu. Rev. 2012, 50, 29. [Google Scholar] [CrossRef]
- Li, H.-B.; Fang, M.; Henning, T.; Kainulainen, J. The Link between Magnetic Fields and Filamentary Clouds: Bimodal Cloud Orientations in the Gould Belt. Mon. Not. R. Astron. Soc. 2013, 436, 3707–3719. [Google Scholar] [CrossRef] [Green Version]
- Kainulainen, J.; Beuther, H.; Henning, T.; Plume, R. Probing the Evolution of Molecular Cloud Structure. Astron. Astrophys. 2009, 508, L35–L38. [Google Scholar] [CrossRef]
- Froebrich, D.; Rowles, J. The Structure of Molecular Clouds – II. Column Density and Mass Distributions. MNRAS 2010, 406, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Lada, C.J.; Lombardi, M.; Alves, J.F. On the Star Formation Rates in Molecular Clouds. Astrophys. J. 2010, 724, 687–693. [Google Scholar] [CrossRef]
- Heiderman, A.; Evans, N.J.; Allen, L.E.; Huard, T.; Heyer, M. The Star Formation Rate and Gas Surface Density Relation in the Milky Way: Implications for Extragalactic Studies. Astrophys. J. 2010, 723, 1019–1037. [Google Scholar] [CrossRef]
- Mouschovias, T.C.; Tassis, K. Self-consistent Analysis of OH-Zeeman Observations: Too much Noise about Noise. Mon. Not. R. Astron. Soc. 2010, 409, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Tritsis, A.; Panopoulou, G.V.; Mouschovias, T.C.; Tassis, K.; Pavlidou, V. Magnetic Field–gas Density Relation and Observational Implications Revisited. Mon. Not. R. Astron. Soc. 2015, 451, 4384–4396. [Google Scholar] [CrossRef] [Green Version]
- Shirley, Y. The Critical Density and the Effective Excitation Density of Commonly Observed Molecular Dense Gas Tracers. Astron. Soc. Pac. 2015, 127, 949. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Cook, S.R.; Gelman, A.; Rubin, D.B. Validation of Software for Bayesian Models Using Posterior Quantiles. J. Comput. Graph. Stat. 2006, 15, 675–692. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-B.; Henning, T. The Alignment of Molecular Cloud Magnetic Fields with the Spiral Arms in M33. Nature 2011, 479, 499–501. [Google Scholar] [CrossRef]
- Li, H.-B.; Dowell, C.D.; Goodman, A.; Hildebrand, R.; Novak, G. Anchoring Mangetic Field in Turbulent Molecular Clouds. Astrophys. J. 2009, 704, 891–897. [Google Scholar] [CrossRef]
- Hull, C.L.H.; Plambeck, R.L.; Kwon, W.; Bower, G.C.; Carpenter, J.M.; Crutcher, R.M.; Fiege, J.D.; Franzmann, E.; Hakobian, N.S.; Heiles, C.; et al. TADPOL: A 1.3 mm Survey of Dust Polarization in Star-Forming Cores and Regions. Astrophys. J. Suppl. Ser. 2014, 213, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Qiu, K.; Girart, J.M.; Tang, Y.-W.; Koch, P.M.; Li, Z.-Y.; Keto, E.R.; Ho, P.T.P.; Rao, R.; Lai, S.P.; et al. Magnetic Fields and Massive Star Formation. Astrophys. J. 2014, 792, 116. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.S. Topics of Magnetic Field and Turbulence in Star Formation. A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Philosophy in Physics. Master’s Thesis, The Chinese University of Hong Kong, Hong Kong, China, 2016. [Google Scholar]
- Planck Collaboration Int. Planck Intermediate Results. XXXV. Probing the Role of the Magnetic Field in the Formation of Structure in Molecular Clouds. Astron. Astrophys. 2016, 586, A138. [Google Scholar] [CrossRef] [Green Version]
- Heiles, C. 9286 Stars: An Agglomeration of Stellar Polarization Catalogs. Astron. J. 2000, 119, 923–927. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.-L.; Li, H.-B. A Comparison between Magnetic Field Directions Inferred from Planck and Starlight Polarimetry toward Gould Belt Clouds. Astrophys. J. Lett. 2019, 871. [Google Scholar] [CrossRef]
- Law, C.Y.; Li, H.-B.; Leung, P.K. The Link between Magnetic Fields and Filamentary Clouds II: Bimodal Linear Mass Distributions. Mon. Not. R. Astron. Soc. 2019, 484, 3604–3619. [Google Scholar] [CrossRef] [Green Version]
- Law, C.Y.; Li, H.-B.; Cao, Z.; Ng, C.-Y. The Links between Magnetic Fields and Filamentary Clouds – III. Field Regulated Mass Cumulative Functions. MNRAS 2020, 498, 850–858. [Google Scholar] [CrossRef]
- Li, H.-B.; Jiang, H.; Fan, X.; Gu, Q.; Zhang, Y. The Link between Magnetic Field Orientations and Star Formation Rates. Nat. Astron. 2017, 1, 0158. [Google Scholar] [CrossRef]
- Li, H.-B.; Goodman, A.; Sridharan, T.K.; Houde, M.; Li, Z.-Y.; Novak, G.; Tang, K.S. The Link Between Magnetic Fields and Cloud/Star Formation. Prot. Planets VI 2014, VI, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Heyer, M.; Gong, H.; Ostriker, E.; Brunt, C. Magnetically Aligned Velocity Anisotropy in the Taurus Molecular Cloud. Astrophys. J. 2008, 680, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.; Ji, W.; Li, H.-B. Velocity Anisotropy in Self-gravitating Molecular Clouds. I. Simulation. Astrophys. J. 2017, 836, 95. [Google Scholar] [CrossRef] [Green Version]
- Goldreich, P.; Sridhar, S. Magnetohydrodynamic Turbulence Revisited. Astrophys. J. 1995, 438, 763. [Google Scholar] [CrossRef]
- Luk, S.S.; Li, H.-B.; Li, D. Velocity Anisotropy in Self-gravitating Molecular Clouds. II. Observation. Astrophys. J. 2021, 928, 132. [Google Scholar] [CrossRef]
- Li, H.-B.; Houde, M. Probing the Turbulence Dissipation Range and Magnetic Field Strengths in Molecular Clouds. Astrophys. J. 2008, 677, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Balsara, D.S. Wave Propagation in Molecular Clouds. Astrophys. J. 1996, 465, 775. [Google Scholar] [CrossRef]
- Oishi, J.S.; Mac Low, M. The Inability of Ambipolar Diffusion to Set a Characteristic Mass Scale in Molecular Clouds. Astrophys. J. 2006, 638, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Tilley, D.A.; Balsara, D.S. Direct Evidence for Two-fluid Effects in Molecular Clouds. Mon. Not. R. Astron. Soc. 2010, 406, 1201–1207. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.D.; Balsara, D.S.; Burkhart, B.; Lazarian, A. Observational Diagnostics for Two-fluid Turbulence in Molecular Clouds as Suggested by Simulations. Mon. Not. R. Astron. Soc. 2014, 439, 2197–2210. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.S.; Li, H.-B.; Lee, W.-K. Probing the Turbulence Dissipation Range and Magnetic Field Strengths in Molecular Clouds. II. Directly Probing the Ion–neutral Decoupling Scale. Astrophys. J. 2018, 862, 42. [Google Scholar] [CrossRef]
- Biskamp, D. Magnetohydrodynamic Turbulence; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Nakano, T. Contraction of Magnetic Interstellar Clouds. Fund. Cosmic Phys. 1984, 9, 139–231. [Google Scholar]
- Henriksen, R.N.; Turner, B.E. Star-cloud Turbulence. Astrophys. J. 1984, 287, 200–207. [Google Scholar] [CrossRef]
- Heyer, M.H.; Brunt, C.M. The Universality of Turbulence in Galactic Molecular Clouds. Astrophys. J. Lett. 2004, 615, L45–L48. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-B.; Houde, M.; Lai, S.-P.; Sridharan, T.K. Tracing Turbulent Ambipolar Diffusion in Molecular Clouds. Astrophys. J. 2010, 718, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Houde, M.; Bastien, P.; Peng, R.; Phillips, T.G.; Yoshida, H. Probing the Magnetic Field with Molecular Ion Spectra. Astrophys. J. 2000, 536, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Houde, M.; Peng, R.; Phillips, T.G.; Bastien, P.; Yoshida, H. Probing the Magnetic Field with Molecular Ion Spectra. II. Astrophys. J. 2000, 537, 245–254. [Google Scholar] [CrossRef]
- Houde, M.; Bastien, P.; Dotson, J.L.; Dowell, C.D.; Hildebrand, R.H.; Peng, R.; Phillips, T.G.; Vaillancourt, J.E.; Yoshida, H. On the Measurement of the Magnitude and Orientation of the Magnetic Field in Molecular Clouds. Astrophys. J. 2002, 569, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Shu, F.; Allen, A.; Shang, H.; Ostriker, E.; Li, Z.-Y. Low-mass Star Formation Fheory. In The Origin of Stars and Planetary Systems; Lada, C.J., Kylafis, N.D., Eds.; Kluwer Academic Publishers: Norwell, MA, USA, 1999; p. 193. [Google Scholar]
- Lazarian, A.; Pogosyan, D. Studying Turbulence Using Doppler-broadened Lines: Velocity Coordinate Spectrum. Astrophys. J. 2006, 652, 1348–1365. [Google Scholar] [CrossRef]
- Schneider, N.; Bontemps, S.; Simon, R.; Ossenkopf, V.; Federrath, C.; Klessen, R.; Motte, F.; André, P.; Stutzki, J.; Brunt, C. The Link between Molecular Cloud Structure and Turbulence. Astron. Astrophys. 2011, 529, A1. [Google Scholar] [CrossRef] [Green Version]
- Van Der Tak, F.F.S.; Black, J.H.; Schöier, F.L.; Jansen, D.J.; Van Dishoeck, E.F. A Computer Program for Fast Non-LTE Analysis of Interstellar Line Spectra. Astron. Astrophys. 2007, 468, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Zernickel, A.; Schilke, P.; Smith, R.J. The Global Velocity Field of the Filament in NGC 6334 Astron. Astrophys. 2013, 554, L2. [Google Scholar] [CrossRef] [Green Version]
- André, P.; Revéret, V.; Könyves, V.; Arzoumanian, D.; Tigé, J.; Gallais, P.; Roussel, H.; Le Pennec, J.; Rodriguez, L.; Doumayrou, E.; et al. Characterizing Filaments in Regions of High-mass Star Formation: High-resolution Submilimeter Imaging of the Massive Star-forming Complex NGC 6334 with ArTéMiS. Astron. Astrophys. 2016, 592, A54. [Google Scholar] [CrossRef]
- Godard, B.; Falgarone, E.; Gerin, M.; Hily-Blant, P.; De Luca, M. Molecular Absorption Lines toward Star-forming Regions: A Comparative Study of HCO+, HNC, HCN, and CN. Astron. Astrophys. 2010, 520, A20. [Google Scholar] [CrossRef] [Green Version]
- Lazarian, A. Obtaining Spectra of Turbulent Velocity from Observations. Space Sci. Rev. 2009, 143, 357–385. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, V.; Lewen, F.; Takano, S.; Winnewisser, G.; Štepán, U.; Negirev, A.A.; Koroliev, A.N. Sub-Doppler Saturation Spectroscopy of HCN up to 1 THz and Detection of J = 3 —> 2 (4—> 3) Emission from TMC. Z. Naturforschung A 2002, 57, 669–681. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-B. Magnetic Fields in Molecular Clouds—Observation and Interpretation. Galaxies 2021, 9, 41. https://doi.org/10.3390/galaxies9020041
Li H-B. Magnetic Fields in Molecular Clouds—Observation and Interpretation. Galaxies. 2021; 9(2):41. https://doi.org/10.3390/galaxies9020041
Chicago/Turabian StyleLi, Hua-Bai. 2021. "Magnetic Fields in Molecular Clouds—Observation and Interpretation" Galaxies 9, no. 2: 41. https://doi.org/10.3390/galaxies9020041
APA StyleLi, H. -B. (2021). Magnetic Fields in Molecular Clouds—Observation and Interpretation. Galaxies, 9(2), 41. https://doi.org/10.3390/galaxies9020041