Deuterium Tracer for Accurate Online Lube-Oil-Consumption Measurement: Stability, Compatibility and Tribological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Online Lube-Oil-Consumption Measurement
2.2. Analytic Methods
2.2.1. Infrared Spectrometry (IR)
2.2.2. Viscosity and Viscosity Index
2.2.3. Gas Chromatography (GC)
2.2.4. Thermogravimetry
3. Results and Discussion
3.1. Deuterated Tracer
3.2. Viscosity and Viscosity Index
3.3. Compatibility and Stability
3.3.1. Thermogravimetry
3.3.2. Gas Chromatography/Mass Spectroscopy (GC-MS)
3.4. Long-Term Stability Test—A Truck Diesel Engine
- Truck type: Mercedes Actros 2545 L/49 6*2
- Engine type: OM 471 LA.6-13
- Oil type: Fuchs Titan Cargo Maxx 10W40, Volume: 38.2 L,
- Tracer added: 0.38 L (1 wt.%) (LEC OilTracer)
4. Conclusions
5. Patents
- Title: Verfahren zur Bestimmung von Isotopenverhältnissen
- Method for determining isotope ratios
- Application Number: A 51070/2019
- Granted: 15 November 2021
- State: Granted/Registered
- Applicant: LEC GmbH
- Representative: Hüberscher & Partner Patent Attorneys GmbH
- Inventors: Bernhard Rossegger and Michael Engelmayer
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
wt.% | Weight percent |
at% | Atom percent |
1H | Protium |
2H; D | Deuterium |
3H; T | Tritium |
LOC | Lube-oil consumption |
FTIR | Fourier transform infrared spectroscopy |
IR | Infrared |
NMR | Nuclear magnetic resonance |
Pd | Palladium |
PAO | Polyalphaofeline |
LEC OilTracer | Deuterated PAO4 base oil (PAO4-d) |
CG | Gas chromatography |
MS | Mass spectroscopy |
VI | Viscosity index |
References
- Breiteneder, T.; Schubert-Zallinger, C.; Wimmer, A.; Vyštejn, J.; Hager, G.; Schallmeiner, S. Innovative Instrumented Sliding Bearings as a New Approach to On-Board Bearing Monitoring. In Proceedings of the ASME 2019 Internal Combustion Engine Division Fall Technical Conference; American Society of Mechanical Engineers, Chicago, IL, USA, 20–23 October 2019. [Google Scholar]
- Posch, S.; Winter, H.; Zelenka, J.; Pirker, G.; Wimmer, A. Development of a Tool for the Preliminary Design of Large Engine Prechambers Using Machine Learning Approaches. Appl. Therm. Eng. 2021, 191, 116774. [Google Scholar] [CrossRef]
- Amirante, R.; Distaso, E.; Napolitano, M.; Tamburrano, P.; Iorio, S.D.; Sementa, P.; Vaglieco, B.M.; Reitz, R.D. Effects of Lubricant Oil on Particulate Emissions from Port-Fuel and Direct-Injection Spark-Ignition Engines. Int. J. Engine Res. 2017, 18, 606–620. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.A. On the Emissions from Internal-Combustion Engines:A Review. Int. J. Energy Res. 1998, 22, 483–513. [Google Scholar] [CrossRef]
- Schweizer, T.; Zöbinger, N.; Eder, M.; Schießl, R. Initial Pre-Ignition; FVV: Frankfurt, Germany, 2021. [Google Scholar]
- Welling, O.; Moss, J.; Williams, J.; Collings, N. Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines. SAE Int. J. Fuels Lubr. 2014, 7, 1–8. [Google Scholar] [CrossRef]
- Tormos, B.; Garcia-Oliver, J.M.; Bastidas, S.; Domínguez, B.; Oliva, F.; Cárdenas, D. Investigation on Low-Speed Pre-Ignition from the Quantification and Identification of Engine Oil Droplets Release under Ambient Pressure Conditions. Measurement 2020, 163, 107961. [Google Scholar] [CrossRef]
- Delprete, C.; Razavykia, A. Piston Dynamics, Lubrication and Tribological Performance Evaluation: A Review. Int. J. Engine Res. 2020, 21, 725–741. [Google Scholar] [CrossRef]
- Shukla, D.S.; Gondal, A.K.; Nautiyal, P.C. Effect of Methanol Fuel Contaminants in Crankcase Oils on Wear. Wear 1992, 157, 371–380. [Google Scholar] [CrossRef]
- Miller, A.L.; Stipe, C.B.; Habjan, M.C.; Ahlstrand, G.G. Role of Lubrication Oil in Particulate Emissions from a Hydrogen-Powered Internal Combustion Engine. Environ. Sci. Technol. 2007, 41, 6828–6835. [Google Scholar] [CrossRef]
- Evans, R. A Tritium-Tracer Technique for the Measurement of Oil Consumption in Gasoline and Diesel Engines. Int. J. Appl. Radiat. Isot. 1973, 24, 19–27. [Google Scholar] [CrossRef]
- Lucas, L.L.; Unterweger, M.P. Comprehensive Review and Critical Evaluation of the Half-Life of Tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541–549. [Google Scholar] [CrossRef]
- Zellbeck, H.; Bergmann, M.; Röthig, J.; Seibold, J.; Zeuner, A. A Method of Measuring Oil Consumption by Labelling with Radioactive Bromine. Tribotest 2000, 6, 251–265. [Google Scholar] [CrossRef]
- Robota, A.; Plückers, J.; Delvigne, T.; Courtois, O. Oil Emission Measurement For A Holistic Estimation Of Oil Consumption; Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2015. [Google Scholar]
- V&F Analyse; Messtechnik GmbH. IMR-MS—How It Works; Technical Description: Absam; Messtechnik GmbH: Duisburg, Germany, 2013. [Google Scholar]
- Sellmeier, S. Laserspektroskopische Spurenanalytik von Ölbestandteilen in Abgasen von Verbrennungsmotoren. Ph.D. Dissertation, Technische Universität München, Munich, Germany, 2011. [Google Scholar]
- Lee, P.S.; Majkowski, R.F.; Schreck, R.M. Method for Determining Fuel and Engine Oil Consumption Using Tunable Diode Laser Spectroscopy, General Motors Corporation. U.S. Patent 4,990,780, 5 February 1991. [Google Scholar]
- Rossegger, B.; Schubert-Zallinger, C.; Wimmer, A. Lube Oil Consumption Measurement On Internal Combustion Engines. In Proceedings of the STLE Annual Meeting, Atlanta, GA, USA, 21–25 May 2017. [Google Scholar]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef]
- Rossegger, B.; Leis, A.; Vareka, M.; Engelmayer, M.; Wimmer, A. Lubricating Oil Consumption Measurement on Large Gas Engines. Lubricants 2022, 10, 40. [Google Scholar] [CrossRef]
- Rossegger, B.; Eder, M.; Vareka, M.; Engelmayer, M.; Wimmer, A. A Novel Method for Lubrication Oil Consumption Measurement for Wholistic Tribological Assessments of Internal Combustion Engines. Tribol. Int. 2021, 162, 107141. [Google Scholar] [CrossRef]
- Soejima, M.; Harigaya, Y.; Hamatake, T.; Wakuri, Y. Study on Lubricating Oil Consumption from Evaporation of Oil-Film on Cylinder Wall for Diesel Engine. SAE Int. SAE Int. J. Fuels Lubr. 2017, 10, 487–501. [Google Scholar] [CrossRef]
- Atkinson, J.G.; Luke, M.O.; Stuart, R.S. A Direct Preparation of Fully Deuterated High-Molecular-Weight Hydrocarbons. Chem. Commun. 1967, 10, 474. [Google Scholar] [CrossRef]
- Atkinson, J.G.; Luke, M.O.; Stuart, R.S. A Simplified Preparation of Fully Deuterated, High Molecular Weight Hydrocarbons. Can. J. Chem. 1967, 45, 1511–1518. [Google Scholar] [CrossRef]
- Atkinson, J.G.; Luke, M.O.; Stuart, R.S. The Mechanism of Exchange between Deuterium and Alkanes in the Liquid Phase. J. Chem. Soc. D 1969, 6, 283. [Google Scholar] [CrossRef]
- Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Efficient C-H/C-D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Org. Lett. 2004, 6, 1485–1487. [Google Scholar] [CrossRef]
- Klenner, M.A.; Cagnes, M.; Wood, K.; Mita, K.; Kishimoto, M.; Darwish, T. Decagram Scale Production of Deuterated Mineral Oil and Polydecene as Solvents for Polymer Studies in Neutron Scattering. Polym. Chem. 2020, 11, 4986–4994. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, C.; Yang, Z.; Brown, C.E.; Hollebone, B.P.; Stout, S.A. Petroleum Biomarker Fingerprinting for Oil Spill Characterization and Source Identification. In Standard Handbook Oil Spill Environmental Forensics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 131–254. ISBN 9780128038321. [Google Scholar]
- Zhao, H.; Unhannanant, P.; Hanshaw, W.; Chickos, J.S. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid−Vapor Pressure Isotope Effects. J. Chem. Eng. Data 2008, 53, 1545–1556. [Google Scholar] [CrossRef]
Tracer | Positives | Negatives |
---|---|---|
Deuterated hydrocarbons dodecane-d, C12D26 | Commercially available | Low viscosity Low boiling point |
Deuterated base oil | Same evaporation curve Similar viscosity | Necessary to develop synthesis |
Deuterated lube oil | Same properties | Necessary to develop synthesis |
Base Oil | Deuteration | Note |
---|---|---|
PAO4 | 72–79 at% * | |
PAO6 | 71 at% | Worse work up due to higher RT viscosity |
Mineral base oil | 55 at% | Worse work up due to higher RT viscosity |
Tracer | wt.% of Tracer | Addition to 1 kg of Lube Oil |
---|---|---|
Deuterated hydrocarbons n-dodecane-d, C12D26 (98%), 26.0 wt% deuterium | 2.88–3.85 | 29–39 g |
PAO4-d, LEC OilTracer (75%), 20.2 wt% deuterium | 3.71–4.95 | 37–50 g |
Addition of Hydrocarbon C12H26 | Kin. Viscosity 40 °C, [cm2/s] | Kin. Viscosity 100 °C, [cm2/s] | VI |
---|---|---|---|
Pure lube oil | 116.52 | 13.29 (100%) | 109.6 |
2 wt.% | 91.75 | 11.67 (88%) * | 117.1 |
4 wt.% | 76.17 | 10.48 (79%) * | 122.5 |
Addition of LEC OilTracer | Kin. Viscosity 40 °C, [cm2/s] | Kin. Viscosity 100 °C, [cm2/s] | VI |
---|---|---|---|
Pure lube oil | 116.52 | 13.29 (100%) | 109.6 |
1 wt.% | 113.26 | 13.19 (99%) | 111.9 |
2 wt.% | 112.13 | 13.03 (98%) | 110.9 |
4 wt.% | 106.65 | 12.68 (95%) | 112.3 |
6 wt.% | 102.62 | 12.36 (93%) | 112.7 |
8 wt.% | 97.68 | 12.02 (90%) | 113.9 |
10 wt.% | 92.43 | 11.60 (87%) * | 114.8 |
Addition of LEC OilTracer | Kin. Viscosity 40 °C, [cm2/s] | Kin. Viscosity 100 °C, [cm2/s] | VI |
---|---|---|---|
Pure lube oil Titan SuperSyn 5W-30 | 52.37 | 9.67 (100%) | 172.2 |
2.5 wt.% | 50.28 | 9.37 (97%) | 172.3 |
5 wt.% | 48.76 | 9.20 (95%) | 173.9 |
7.5 wt.% | 47.88 | 9.04 (93%) | 172.9 |
10 wt.% | 46.28 | 8.79 (91%) | 172.8 |
12.5 wt.% | 44.96 | 8.59 (89%) * | 172.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vareka, M.; Rossegger, B.; Novotny-Farkas, F.; Engelmayer, M.; Wimmer, A. Deuterium Tracer for Accurate Online Lube-Oil-Consumption Measurement: Stability, Compatibility and Tribological Characteristics. Lubricants 2022, 10, 84. https://doi.org/10.3390/lubricants10050084
Vareka M, Rossegger B, Novotny-Farkas F, Engelmayer M, Wimmer A. Deuterium Tracer for Accurate Online Lube-Oil-Consumption Measurement: Stability, Compatibility and Tribological Characteristics. Lubricants. 2022; 10(5):84. https://doi.org/10.3390/lubricants10050084
Chicago/Turabian StyleVareka, Martin, Bernhard Rossegger, Franz Novotny-Farkas, Michael Engelmayer, and Andreas Wimmer. 2022. "Deuterium Tracer for Accurate Online Lube-Oil-Consumption Measurement: Stability, Compatibility and Tribological Characteristics" Lubricants 10, no. 5: 84. https://doi.org/10.3390/lubricants10050084
APA StyleVareka, M., Rossegger, B., Novotny-Farkas, F., Engelmayer, M., & Wimmer, A. (2022). Deuterium Tracer for Accurate Online Lube-Oil-Consumption Measurement: Stability, Compatibility and Tribological Characteristics. Lubricants, 10(5), 84. https://doi.org/10.3390/lubricants10050084