Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. The Preparation of Functionalized BN
2.2.1. The Preparation of h-BN-OH and h-BN-NH2
2.2.2. The Preparation of h-BN-OH@CS
2.2.3. The Preparation of h-BN-NH2@CS
2.2.4. Preparation of Thermally Conductive Silicone Grease
2.3. Characterization
3. Results and Discussions
3.1. FTIR Analysis
3.2. SEM Analysis
3.3. XRD Analysis
3.4. TEM Analysis
3.5. XPS Analysis
3.6. UV-Visible Analysis
3.7. Thermo Gravimetric Analysis
3.8. Viscosity Analysis
3.9. Thermal Conductivity and Interface Thermal Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Wu, W.; Wang, Y.; Liu, X.R.; Chen, Q.M.; Xia, S.X. Silver Nanoparticle-Enhanced Three-Dimensional Boron Nitride/Reduced Graphene Oxide Skeletons for Improving Thermal Conductivity of Polymer Composites. ACS Appl. Polym. Mater. 2021, 3, 3334–3343. [Google Scholar] [CrossRef]
- Jiang, Z.-H.; Xue, C.-H.; Guo, X.-J.; Liu, B.-Y.; Wang, H.-D.; Fan, T.-T.; Jia, S.-T.; Deng, F.-Q. Thermally Conductive, Superhydrophobic, and Flexible Composite Membrane of Polyurethane and Boron Nitride Nanosheets by Ultrasonic Assembly for Thermal Management. ACS Appl. Polym. Mater. 2023, 5, 1264–1275. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Huang, J.H.; Cao, M.; Jiang, G.W.; Hu, J.; Chen, Q. Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management. Materials 2020, 13, 4763. [Google Scholar] [CrossRef]
- Swamy, M.C.K.; Satyanarayan. A Review of the Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications. J. Electron. Mater. 2019, 48, 7623–7634. [Google Scholar] [CrossRef]
- Wu, T.T.; Hu, Y.X.; Liu, X.Q.; Wang, C.H. Effect Analysis on Thermal Management of Power Batteries Utilizing a Form-Stable Silicone Grease/Composite Phase Change Material. ACS Appl. Energy Mater. 2021, 4, 6233–6244. [Google Scholar] [CrossRef]
- Zhang, R.C.; Huang, Z.R.; Huang, Z.H.; Zhong, M.L.; Zang, D.M.; Lu, A.; Lin, Y.F.; Millar, B.; Garet, G.; Turner, J.; et al. Uniaxially stretched polyethylene/boron nitride nanocomposite films with metal-like thermal conductivity. Compos. Sci. Technol. 2020, 196, 108154. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, C.; Tang, Y.L.; Zhang, X.; Zheng, K.; Tian, X.Y. Preparation and properties of boron nitride nanosheets/cellulose nanofiber shear-oriented films with high thermal conductivity. Ceram. Int. 2019, 45, 12965–12974. [Google Scholar] [CrossRef]
- Yang, S.Y.; Huang, Y.F.; Lei, J.; Zhu, L.; Li, Z.M. Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing. Compos. Part A Appl. Sci. Manuf. 2018, 107, 135–143. [Google Scholar] [CrossRef]
- Zheng, X.R.; Kim, S.; Park, C.W. Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles. Compos. Part A Appl. Sci. Manuf. 2019, 121, 449–456. [Google Scholar] [CrossRef]
- Kusunose, T.; Sekino, T. Thermal conductivity of hot-pressed hexagonal boron nitride. Scr. Mater. 2016, 124, 138–141. [Google Scholar] [CrossRef]
- Ren, J.W.; Li, Q.H.; Yan, L.; Jia, L.C.; Huang, X.L.; Zhao, L.H.; Ran, Q.C.; Fu, M.L. Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater. Des. 2020, 191, 108663. [Google Scholar] [CrossRef]
- Chakraborty, P.; Xiong, G.P.; Cao, L.; Wang, Y. Lattice thermal transport in superhard hexagonal diamond and wurtzite boron nitride: A comparative study with cubic diamond and cubic boron nitride. Carbon 2018, 139, 85–93. [Google Scholar] [CrossRef]
- Zheng, J.C.; Zhang, L.; Kretinin, A.V.; Morozov, S.V.; Wang, Y.B.; Wang, T.; Li, X.J.; Ren, F.; Zhang, J.Y.; Lu, C.Y.; et al. High thermal conductivity of hexagonal boron nitride laminates. 2D Mater. 2016, 3, 011004. [Google Scholar] [CrossRef]
- Lewis, J.S.; Barani, Z.; Magana, A.S.; Kargar, F.; Balandin, A.A. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater. Res. Express 2019, 6, 8. [Google Scholar] [CrossRef]
- Ou, X.H.; Chen, S.S.; Lu, X.M.; Lu, Q.H. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Compos. Commun. 2021, 23, 100549. [Google Scholar] [CrossRef]
- Wang, S.; Xue, H.Q.; Araby, S.; Demiral, M.; Han, S.S.; Cui, C.; Zhang, R.; Meng, Q.S. Thermal conductivity and mechanical performance of hexagonal boron nitride nanosheets-based epoxy adhesives. Nanotechnology 2021, 32, 355707. [Google Scholar] [CrossRef]
- Hutchinson, J.M.; Moradi, S. Thermal Conductivity and Cure Kinetics of Epoxy-Boron Nitride Composites—A Review. Materials 2020, 13, 3634. [Google Scholar] [CrossRef]
- Zhong, B.; Zou, J.X.; An, L.L.; Ji, C.Y.; Huang, X.X.; Liu, W.; Yu, Y.L.; Wang, H.T.; Wen, G.W.; Zhao, K.; et al. The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105629. [Google Scholar] [CrossRef]
- Sun, N.; Sun, J.J.; Zeng, X.L.; Chen, P.; Qian, J.S.; Xia, R.; Sun, R. Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2018, 110, 45–52. [Google Scholar] [CrossRef]
- Yu, C.P.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.J.; Luo, J.; Li, Q.L.; Fan, X.D.; Yao, Y.G. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 25–31. [Google Scholar] [CrossRef]
- Ahn, H.J.; Cha, S.H.; Lee, W.S.; Kim, E.S. Effects of amphiphilic agent on thermal conductivity of boron nitride/poly(vinyl butyral) composites. Thermochim. Acta 2014, 591, 96–100. [Google Scholar] [CrossRef]
- Yu, J.H.; Mo, H.L.; Jiang, P.K. Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength. Polym. Adv. Technol. 2015, 26, 514–520. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhan, C.H.; You, Y.; Tong, L.F.; Wei, R.B.; Liu, X.B. Preparation and thermal conductivity of copper phthalocyanine grafted boron nitride nanosheets. Mater. Lett. 2018, 227, 33–36. [Google Scholar] [CrossRef]
- Han, W.F.; Chen, M.Y.; Song, W.; Ge, C.H.; Zhang, X.D. Construction of hexagonal boron nitride@polystyrene nanocomposite with high thermal conductivity for thermal management application. Ceram. Int. 2020, 46, 7595–7601. [Google Scholar] [CrossRef]
- Guan, J.W.; Ashrafi, B.; Martinez-Rubi, Y.; Jakubinek, M.B.; Rahmat, M.; Kim, K.S.; Simard, B. Epoxy resin nanocomposites with hydroxyl (OH) and amino (NH2) functionalized boron nitride nanotubes. Nanocomposites 2018, 4, 10–17. [Google Scholar] [CrossRef]
- Terao, T.; Bando, Y.; Mitome, M.; Zhi, C.; Tang, C.; Golberg, D. Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. J. Phys. Chem. C 2009, 113, 13605–13609. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Li, J.Q.; Leng, J.; Zhang, J. Extrusion-Based Additive Manufacturing Samples with Desirable Thermal Conductivities Prepared by Incorporating Hybrid Hexagonal Boron Nitride(h-BN) and Novel Process Strategy. Macromol. Mater. Eng. 2022, 307, 2100715. [Google Scholar] [CrossRef]
- Yang, N.; Ji, H.F.; Jiang, X.X.; Qu, X.W.; Zhang, X.J.; Zhang, Y.; Liu, B.Y. Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application. Nanomaterials 2020, 10, 1652. [Google Scholar] [CrossRef]
- Kim, S.M.; Hsu, A.; Park, M.H.; Chae, S.H.; Yun, S.J.; Lee, J.S.; Cho, D.H.; Fang, W.J.; Lee, C.; Palacios, T.; et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 2015, 6, 8662. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J.-B.; Song, B.; Wong, C.-P. Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Gao, X.; Wang, J.L.; He, W.; Silberschmidt, V.V.; Wang, S.X.; Tao, Z.H.; Xu, H. Properties and application of polyimide-based composites by blending surface functionalized boron nitride nanoplates. J. Appl. Polym. Sci. 2015, 132, 41889. [Google Scholar] [CrossRef]
- Ren, J.K.; Stagi, L.; Carbonaro, C.M.; Malfatti, L.; Casula, M.F.; Ricci, P.C.; Castillo, A.E.D.; Bonaccorso, F.; Calvillo, L.; Granozzi, G.; et al. Defect-assisted photoluminescence in hexagonal boron nitride nanosheets. 2D Mater. 2020, 7, 045023. [Google Scholar] [CrossRef]
- Burghaus, U. Surface chemistry of CO2—Adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum. Prog. Surf. Sci. 2014, 89, 161–217. [Google Scholar] [CrossRef]
- Soong, Y.C.; Chiu, C.W. Multilayered graphene/boron nitride/thermoplastic polyurethane composite films with high thermal conductivity, stretchability, and washability for adjustable-cooling smart clothes. J. Colloid Interface Sci. 2021, 599, 611–619. [Google Scholar] [CrossRef]
- Guo, F.H.; Zhao, J.; Li, F.X.; Kong, D.Y.; Guo, H.G.; Wang, X.; Hu, H.Q.; Zong, L.B.; Xu, J.T. Polar crystalline phases of PVDF induced by interaction with functionalized boron nitride nanosheets. CrystEngComm 2020, 22, 6207–6215. [Google Scholar] [CrossRef]
- Sainsbury, T.; Satti, A.; May, P.; Wang, Z.; McGovern, I.; Gun’ko, Y.K.; Coleman, J. Oxygen Radical Functionalization of Boron Nitride Nanosheets. J. Am. Chem. Soc. 2012, 134, 18758–18771. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Stagi, L.; Innocenzi, P. Hydroxylated boron nitride materials: From structures to functional applications. J. Mater. Sci. 2021, 56, 4053–4079. [Google Scholar] [CrossRef]
- Bhang, J.; Ma, H.; Yim, D.; Galli, G.; Seo, H. First-Principles Predictions of Out-of-Plane Group IV and V Dimers as High-Symmetry, High-Spin Defects in Hexagonal Boron Nitride. Acs Appl. Mater. Interfaces 2021, 13, 45768–45777. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.-Y.; Jung, H.-B.; Kim, M.-K.; Lim, J.-H.; Kim, J.-Y.; Ryu, J.; Jeong, D.-Y. Enhanced Energy Storage Performance of Polymer/Ceramic/Metal Composites by Increase of Thermal Conductivity and Coulomb-Blockade Effect. ACS Appl. Mater. Interfaces 2021, 13, 27343–27352. [Google Scholar] [CrossRef]
- de los Reyes, C.A.; Hernández, K.; Martínez-Jiménez, C.; Walz Mitra, K.L.; Ginestra, C.; Smith McWilliams, A.D.; Pasquali, M.; Martí, A.A. Tunable Alkylation of White Graphene (Hexagonal Boron Nitride) Using Reductive Conditions. J. Phys. Chem. C 2019, 123, 19725–19733. [Google Scholar] [CrossRef]
- Ren, L.L.; Zeng, X.L.; Sun, R.; Xu, J.B.; Wong, C.P. Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J. 2019, 370, 166–175. [Google Scholar] [CrossRef]
- Yazdan, A.; Wang, J.Z.; Nan, C.W.; Li, L.L. Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes. J. Electron. Mater. 2020, 49, 2100–2109. [Google Scholar] [CrossRef]
- Terao, T.; Zhi, C.; Bando, Y.; Mitome, M.; Tang, C.; Golberg, D. Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. J. Phys. Chem. C 2010, 114, 4340–4344. [Google Scholar] [CrossRef]
- Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites. J. Phys. Chem. C 2012, 116, 13629–13639. [Google Scholar] [CrossRef]
- Jiang, Y.; Yilmaz, N.E.D.; Barker, K.P.; Baek, J.; Xia, Y.; Zheng, X.L. Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization. ACS Appl. Mater. Interfaces 2021, 13, 28908–28915. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.F.; Li, Y.; Gao, C.; Tian, X.J.; Wu, N.; Geng, Z.S.; Che, S.; Yang, F.; Li, Y.F. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B Eng. 2021, 224, 109168. [Google Scholar] [CrossRef]
- Xu, C.Y.; Miao, M.; Jiang, X.F.; Wang, X.B. Thermal conductive composites reinforced via advanced boron nitride nanomaterials. Compos. Commun. 2018, 10, 103–109. [Google Scholar] [CrossRef]
- Xu, C.K.; Wei, C.M.; Li, Q.H.; Li, Z.H.; Zhang, Z.X.; Ren, J.W. Robust Biomimetic Nacreous Aramid Nanofiber Composite Films with Ultrahigh Thermal Conductivity by Introducing Graphene Oxide and Edge-Hydroxylated Boron Nitride Nanosheet. Nanomaterials 2021, 11, 2544. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Huang, Z.; Hu, Q.; Zhang, Y.; Wang, F.; Wang, H.; Shu, Y. Proportional Optimization Model of Multiscale Spherical BN for Enhancing Thermal Conductivity. ACS Appl. Electron. Mater. 2022, 4, 4659–4667. [Google Scholar] [CrossRef]
- Li, C.N.; Cao, X.W.; Tong, Y.Z.; Yang, Z.T.; Gao, D.L.; Ru, Y.; He, G.J. Hybrid Filler with Nanoparticles Grown in Situ on the Surface for the Modification of Thermal Conductive and Insulating Silicone Rubber. ACS Appl. Polym. Mater. 2022, 4, 7152–7161. [Google Scholar] [CrossRef]
- Christensen, G.; Lou, D.; Hong, H.P.; Peterson, G.P. Improved thermal conductivity of fluids and composites using boron nitride (BN) nanoparticles through hydrogen bonding. Thermochim. Acta 2021, 700, 178927. [Google Scholar] [CrossRef]
- Wei, Q.G.; Yang, D. Formation of Thermally Conductive Network Accompanied by Reduction of Interface Resistance for Thermal Conductivity Enhancement of Silicone Rubber. ACS Appl. Electron. Mater. 2022, 4, 3503–3511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shi, N.; Liu, M.; Han, S.; Yan, J. Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride. Lubricants 2023, 11, 198. https://doi.org/10.3390/lubricants11050198
Wang Y, Shi N, Liu M, Han S, Yan J. Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride. Lubricants. 2023; 11(5):198. https://doi.org/10.3390/lubricants11050198
Chicago/Turabian StyleWang, Yumeng, Ning Shi, Min Liu, Sheng Han, and Jincan Yan. 2023. "Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride" Lubricants 11, no. 5: 198. https://doi.org/10.3390/lubricants11050198
APA StyleWang, Y., Shi, N., Liu, M., Han, S., & Yan, J. (2023). Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride. Lubricants, 11(5), 198. https://doi.org/10.3390/lubricants11050198