Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Inhibitor
2.3. Corrosive Media
2.4. Weight Loss
2.5. Computational Details
3. Results and Discussion
3.1. Weight Loss Techniques
3.2. Effect of Immersion Time
3.3. Effect of Temperature
3.4. Adsorption Isotherm
3.5. Quantum Chemical Studies
3.6. Inhibition Mechanism
4. Conclusions
- EMTP is a promising corrosion inhibitor for mild steel in 1.0 M hydrochloric acid solution with the highest protection efficacy of 97% at 303 K.
- The weight loss findings implied that EMTP protects the metal surface corrosion through the creation of a protective layer at the surface mild steel–corrosive solution interface.
- The inhibitive efficacy increases with the increase of inhibitor concentration and decreases with increased temperature.
- The adsorption of tested inhibitor molecules in 1.0 M HCl follows the Langmuir adsorption isotherm model.
- The corrosion protection performance of tested inhibitor molecules has been further evaluated through theoretical computations. In conclusion, weight loss and computational calculations result are in good agreement.
- From free energy results, it can be concluded that the adsorption of tested inhibitor molecules on mild steel surfaces follow both physisorption and chemisorption mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, K.S.; Parameswaran, G. Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone. Corros. Sci. 2010, 52, 224–228. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saharan, H. Performance of Pfaffia paniculata extract towards corrosion mitigation of low-carbon steel in an acidic environment. Int. J. Ind. Chem. 2020, 11, 72. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bhardwaj, N. Surface adsorption and corrosion resistance performance of Acacia concinna pod extract: An efficient inhibitor for mild steel in acidic environment. Arab. J. Sci. Eng. 2020, 45, 131–141. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D. Corrosion resistance and surface protective performance of waste material of Eucalyptus globulus for low carbon steel. J. Bio-Tribo-Corros. 2020, 6, 48. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bhardwaj, N. Experimental and theoretical evaluation of acacia catechu extract as a natural, economical and effective corrosion inhibitor for mild steel in an acidic environment. J. Bio-Tribo-Corros. 2020, 6, 76. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Kamboj, D.; Kaya, S.; Dagdag, O.; Guo, L. Corrosion inhibition, surface adsorption and computational studies of Momordica charantia extract: A sustainable and green approach. SN Appl. Sci. 2021, 3, 25. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Yasakau, K.A.; Poznyak, S.K.; Ferreira, M.G. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros. Sci. 2005, 47, 3368–3383. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, Z.; Liao, S.; Wu, F. Substitutional adsorption isotherms and corrosion inhibitive properties of some oxadiazol-triazole derivative in acidic solution. Corros. Sci. 2010, 52, 3126–3132. [Google Scholar] [CrossRef]
- Wang, H.L.; Liu, R.B.; Xin, J. Inhibiting effects of some mercapto-triazole derivatives on the corrosion of mild steel in 1.0 M HCl medium. Corros. Sci. 2004, 46, 2455–2466. [Google Scholar] [CrossRef]
- Bentiss, F.; Lagrenee, M.; Traisnel, M.; Hornez, J.C. The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corros. Sci. 1999, 41, 789–803. [Google Scholar] [CrossRef]
- Sherif, E.M.; Park, S.M. Effects of 1, 4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions. Electrochim. Acta 2006, 51, 1313–1321. [Google Scholar] [CrossRef]
- Mu, G.N.P.; Zhao, T.; Liu, M.; Gu, T. Effect of metallic cations on corrosion inhibition of an anionic surfactant for mild steel. Corrosion 1996, 52, 853–856. [Google Scholar] [CrossRef]
- Al-Baghdadi, S.B.; Noori, F.T.; Ahmed, W.K.; Al-Amiery, A.A. Thiadiazole as a potential corrosion inhibitor for mild steel in 1 M HCl. J. Adv. Electrochem. 2016, 18, 67–69. [Google Scholar]
- Jawad, Q.A.; Zinad, D.S.; Dawood Salim, R.; Al-Amiery, A.A.; Sumer Gaaz, T.; Takriff, M.S.; Kadhum, A.A.H. Synthesis, characterization, and corrosion inhibition potential of novel thiosemicarbazone on mild steel in sulfuric acid environment. Coatings 2019, 9, 729. [Google Scholar] [CrossRef] [Green Version]
- Al-Amiery, A.A.; Ahmed, M.H.; Abdullah, T.A.; Gaaz, T.S.; Kadhum, A.A. Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid. Results Phys. 2018, 9, 978–981. [Google Scholar] [CrossRef]
- Hussein, H.T.; Kadhim, A.; Al-Amiery, A.A.; Kadhum, A.A.; Mohamad, A.B. Enhancement of the wear resistance and microhardness of aluminum alloy by Nd: YaG laser treatment. Sci. World J. 2014, 2014, 842062. [Google Scholar] [CrossRef]
- Issa, A.Y.; Rida, K.S.; Salam, A.Q.; Al-Amiery, A.A. Acetamidocoumarin as a based eco-friendly corrosion inhibitor. Int. J. ChemTech Res. 2016, 9, 39–47. [Google Scholar]
- Salim, R.D.; Jawad, Q.A.; Ridah, K.S.; Shaker, L.M.; Al-Amiery, A.A.; Kadhum, A.A.; Takriff, M.S. Corrosion inhibition of thiadiazole derivative for mild steel in hydrochloric acid solution. Int. J. Corros. Scale Inhib. 2020, 9, 550–561. [Google Scholar]
- Al-Amiery, A.A.; Shaker, L.M.; Kadhum, A.A.; Takriff, M.S. Corrosion Inhibition of Mild Steel in Strong Acid Environment by 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzenesulfonamide. Tribol. Ind. 2020, 42, 89–101. [Google Scholar] [CrossRef]
- Musa, A.Y.; Mohamad, A.B.; Al-Amiery, A.A.; Tien, L.T. Galvanic corrosion of aluminum alloy (Al2024) and copper in 1.0 M hydrochloric acid solution. Korean J. Chem. Eng. 2012, 29, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Kadhim, A.; Al-Amiery, A.A.; Alazawi, R.; Al-Ghezi, M.K.; Abass, R.H. Corrosion inhibitors. A review. Int. J. Corros. Scale Inhib. 2021, 10, 54–67. [Google Scholar]
- Abu-Hashem, A.A. Synthesis and antimicrobial activity of new 1, 2, 4-triazole, 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole, thiopyrane, thiazolidinone, and azepine derivatives. J. Heterocycl. Chem. 2021, 58, 74–92. [Google Scholar] [CrossRef]
- ASTM G-31-72. Standard Recommended Practice for the Laboratory Immersion Corrosion Testing of Metals; ASTM: Philaldelphia, PA, USA, 1990; p. 401. [Google Scholar]
- Al-Amiery, A.A.; Shaker, L.M. Corrosion inhibition of mild steel using novel pyridine derivative in 1 M hydrochloric acid. Koroze A Ochr. Mater. 2020, 64, 59–64. [Google Scholar] [CrossRef]
- Alamiery, A.; Mahmoudi, E.; Allami, T. Corrosion inhibition of low-carbon steel in hydrochloric acid envi-ronment using a Schiff base derived from pyrrole: Gravimetric and computational studies. Int. J. Corros. Scale Inhib 2021, 10, 749–765. [Google Scholar]
- Alamiery, A.A. Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies. Mater. Sci. Energy Technol. 2021, 4, 263–273. [Google Scholar] [CrossRef]
- Koopmans, T. Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1933, 1, 104–113. [Google Scholar] [CrossRef]
- Salim, R.D.; Betti, N.; Hanoon, M.; Al-Amiery, A.A. 2-(2, 4-Dimethoxybenzylidene)-N-Phenylhydrazinecarbothioamide as an Efficient Corrosion Inhibitor for Mild Steel in Acidic Environment. Prog. Color Colorants Coat. 2022, 15, 45–52. [Google Scholar]
- Shaker, L.M.; Al-Adili, A.; Al-Amiery, A.A.; Takriff, M.S. The inhibition of mild steel corrosion in 0.5 M H2SO4 solution by N-phenethylhydrazinecarbothioamide (N-PHC). In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1795, p. 012009. [Google Scholar]
- Alamiery, A.; Mohamad, A.; Kadhum, A.; Takriff, M. The synergistic role of azomethine group and triazole ring at improving the anti-corrosive performance of 2-amino-4-phenylthiazole. South Afr. J. Chem. Eng. 2021, 38, 41–53. [Google Scholar] [CrossRef]
- Al-Amiery, A.; Shaker, L.M.; Kadhum, A.A.; Takriff, M.S. Synthesis, characterization and gravimetric studies of novel triazole-based compound. Int. J. Low-Carbon Technol. 2020, 15, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Al-Taweel, S.S.; Al-Janabi, K.W.; Luaibi, H.M.; Al-Amiery, A.A.; Gaaz, T.S. Evaluation and characterization of the symbiotic effect of benzylidene derivative with titanium dioxide nanoparticles on the inhibition of the chemical corrosion of mild steel. Int. J. Corros. Scale Inhib. 2019, 8, 1149–1169. [Google Scholar]
- Nahlé, A.; Salim, R.; El Hajjaji, F.; Aouad, M.R.; Messali, M.; Ech-Chihbi, E.; Hammouti, B.; Taleb, M. Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Adv. 2021, 11, 4147–4162. [Google Scholar]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; Martínez-Cruz, I.K.; Ángeles-Beltrán, D.; Negrón-Silva, G.E.; Palomar-Pardavé, M.; Romero, L.L.; Pérez-Martínez, D.; Navarrete-López, A.M. Adsorption and corrosion inhibition behaviour of new theophylline–triazole-based derivatives for steel in acidic medium. R. Soc. Open Sci. 2019, 6, 181738. [Google Scholar] [CrossRef]
- Merimi, I.; Benkaddour, R.; Lgaz, H.; Rezki, N.; Messali, M.; Jeffali, F.; Oudda, H.; Hammouti, B. Insights into corrosion inhibition behavior of a triazole derivative for mild steel in hydrochloric acid solution. Mater. Today Proc. 2019, 13, 1008–1022. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, M.J.; Yang, F.C.; Gao, C.W. Study of a triazole derivative as corrosion inhibitor for mild steel in phosphoric acid solution. Int. J. Corros. 2012, 2012, 573964. [Google Scholar] [CrossRef]
- Bentiss, F.; Bouanis, M.; Mernari, B.; Traisnel, M.; Vezin, H.; Lagrenee, M. Understanding the adsorption of 4H-1, 2, 4-triazole derivatives on mild steel surface in molar hydrochloric acid. Appl. Surf. Sci. 2007, 253, 3696–3704. [Google Scholar] [CrossRef]
- El Mehdi, B.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrenee, M. Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution. Mater. Chem. Phys. 2003, 77, 489–496. [Google Scholar] [CrossRef]
- Hassan, H.H.; Abdelghani, E.; Amin, M.A. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polariz. EIS Studies. Electrochim. Acta 2007, 52, 6359–6366. [Google Scholar] [CrossRef]
- Ramesh, S.; Rajeswari, S. Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives. Electrochim. Acta 2004, 49, 811–820. [Google Scholar] [CrossRef]
- Qiu, L.G.; Xie, A.J.; Shen, Y.H. A novel triazole-based cationic gemini surfactant: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid. Mater. Chem. Phys. 2005, 91, 269–273. [Google Scholar] [CrossRef]
- Mert, B.D.; Mert, M.E.; Kardaş, G.; Yazıcı, B. Experimental and theoretical investigation of 3-amino-1, 2, 4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium. Corros. Sci. 2011, 53, 4265–4272. [Google Scholar] [CrossRef]
- Salman, T.A.; Al-Amiery, A.A.; Shaker, L.M.; Kadhum, A.A.; Takriff, M.S. A study on the inhibition of mild steel corrosion in hydrochloric acid environment by 4-methyl-2-(pyridin-3-yl) thiazole-5-carbohydrazide. Int. J. Corros. Scale Inhib. 2019, 8, 1035–1059. [Google Scholar]
- Habeeb, H.J.; Luaibi, H.M.; Abdullah, T.A.; Dakhil, R.M.; Kadhum, A.A.; Al-Amiery, A.A. Case study on thermal impact of novel corrosion inhibitor on mild steel. Case Stud. Therm. Eng. 2018, 12, 64–68. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Sharma, H.K. 4-Amino-3-butyl-5-mercapto-1, 2, 4-triazole: A new corrosion inhibitor for mild steel in sulphuric acid. Mater. Chem. Phys. 2003, 78, 18–21. [Google Scholar] [CrossRef]
- Poornima, T.; Nayak, J.; Shetty, A.N. Corrosion inhibition of the annealed 18 Ni 250 grade maraging steel in 0.67 m phosphoric acid by 3, 4-dimethoxybenzaldehydethiosemicarbazone. Chem. Sci. J. 2012, 69, 1–13. [Google Scholar]
- Abdallah, M.; Helal, E.A.; Fouda, A.S. Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution. Corros. Sci. 2006, 48, 1639–1654. [Google Scholar] [CrossRef]
- Salman, T.A.; Jawad, Q.A.; Hussain, M.A.; Al-Amiery, A.A.; Mohamed, L.; Kadhum, A.A.; Takriff, M.S. Novel ecofriendly corrosion inhibition of mild steel in strong acid environment: Adsorption studies and thermal effects. Int. J. Corros. Scale Inhib. 2019, 8, 1123–1137. [Google Scholar]
- Alamiery, A.A. Effect of Temperature on the Corrosion Inhibition of 4-ethyl-1-(4-oxo-4-phenylbutanoyl). Lett. Appl. NanoBioScience 2022, 11, 3502–3508. [Google Scholar]
- Alamiery, A. Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1, 3, 4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations. Mater. Sci. Energy Technol. 2021, 4, 398–406. [Google Scholar] [CrossRef]
- Alamiery, A.A.; Wan Isahak, W.N.; Takriff, M.S. Inhibition of Mild Steel Corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide: Gravimetrical, Adsorption and Theoretical Studies. Lubricants 2021, 9, 93. [Google Scholar] [CrossRef]
- Jamil, D.M.; Al-Okbi, A.K.; Hanon, M.M.; Rida, K.S.; Alkaim, A.F.; Al-Amiery, A.A.; Kadhim, A.; Kadhum, A.A. Carbethoxythiazole corrosion inhibitor: As an experimentally model and DFT theory. J. Eng. Appl. Sci. 2018, 13, 3952–3959. [Google Scholar]
- Musa, A.Y.; Ahmoda, W.; Al-Amiery, A.A.; Kadhum, A.A.; Mohamad, A.B. Quantum chemical calculation for the inhibitory effect of compounds. J. Struct. Chem. 2013, 54, 301–308. [Google Scholar] [CrossRef]
- Al-Baghdadi, S.; Gaaz, T.S.; Al-Adili, A.; Al-Amiery, A.A.; Takriff, M.S. Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation. Int. J. Low-Carbon Technol. 2021, 16, 181–188. [Google Scholar] [CrossRef]
- Al-Amiery, A.; Salman, T.A.; Alazawi, K.F.; Shaker, L.M.; Kadhum, A.A.; Takriff, M.S. Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. Int. J. Low-Carbon Technol. 2020, 15, 202–209. [Google Scholar] [CrossRef]
- Salman, T.A.; Al-Azawi, K.F.; Mohammed, I.M.; Al-Baghdadi, S.B.; Al-Amiery, A.A.; Gaaz, T.S.; Kadhum, A.A. Experimental studies on inhibition of mild steel corrosion by novel synthesized inhibitor complemented with quantum chemical calculations. Results Phys. 2018, 10, 291–296. [Google Scholar] [CrossRef]
- Zinad, D.S.; Jawad, Q.A.; Hussain, M.A.; Mahal, A.; Mohamed, L.; Al-Amiery, A.A. Adsorption, temperature and corrosion inhibition studies of a coumarin derivatives corrosion inhibitor for mild steel in acidic medium: Gravimetric and theoretical investigations. Int. J. Corros. Scale Inhib. 2020, 9, 134–151. [Google Scholar]
- Zinad, D.S.; Hanoon, M.; Salim, R.D.; Ibrahim, S.I.; Al-Amiery, A.A.; Takriff, M.S.; Kadhum, A.A. A new synthesized coumarin-derived Schiff base as a corrosion inhibitor of mild steel surface in HCl medium: Gravimetric and DFT studies. Int. J. Corros. Scale Inhib. 2020, 9, 228–243. [Google Scholar]
- Yamin, J.A.; Sheet, E.A.; Al-Amiery, A. Statistical analysis and optimization of the corrosion inhibition efficiency of a locally made corrosion inhibitor under different operating variables using RSM. Int. J. Corros. Scale Inhib. 2020, 9, 502–518. [Google Scholar]
- Salman, T.A.; Zinad, D.S.; Jaber, S.H.; Al-Ghezi, M.; Mahal, A.; Takriff, M.S.; Al-Amiery, A.A. Effect of 1, 3, 4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study. J. Bio-Tribo-Corros. 2019, 5, 11. [Google Scholar] [CrossRef]
- Al-Baghdadi, S.B.; Al-Amiery, A.A.; Kadhum, A.A.; Takriff, M.S. Computational Calculations, Gravimetrical, and Surface Morphological Investigations of Corrosion Inhibition Effect of Triazole Derivative on Mild Steel in HCl. J. Comput. Theor. Nanosci. 2020, 17, 2897–2904. [Google Scholar] [CrossRef]
- Hanoon, M.M.; Gbashi, Z.A.; Al-Amiery, A.A.; Kadhim, A.; Kadhum, A.A.; Takriff, M.S. Study of Corrosion Behavior of N'-acetyl-4-pyrrol-1-ylbenzohydrazide for Low-Carbon Steel in the Acid Environment: Experimental, Adsorption Mechanism, Surface Investigation, and DFT Studies. Prog. Color Colorants Coat. 2022, 15, 133–141. [Google Scholar]
- Hanoon, M.M.; Resen, A.M.; Al-Amiery, A.A.; Kadhum, A.A.; Takriff, M.S. Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of 2-((6-Methyl-2-Ketoquinolin-3-yl) Methylene) Hydrazinecarbothioamide for Mild Steel in 1 M HCl. Prog. Color Colorants Coat. 2022, 15, 11–23. [Google Scholar]
Carbon | Manganese | Silicon | Aluminum | Sulfur | Phosphorus | Iron |
---|---|---|---|---|---|---|
0.210 | 0.050 | 0.380 | 0.010 | 0.050 | 0.090 | balance |
Inhibitor | IE% | Ref. |
---|---|---|
EMTP | 97 | Current inhibitor |
ethyl 2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate | 95.3 | [33] |
2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetohydrazide | 95 | [33] |
7-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6–dione | 91.7 | [34] |
7-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione | 86.9 | [34] |
7-((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione | 94.0 | [34] |
7-((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione | 91.8 | [34] |
7-((1-(4-iodobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione | 90.9 | [34] |
5-methyl-4-((3-nitrobenzylidene) amino) -2,4-dihydro- 3H-1,2,4-triazole-3-thione | 89.74 | [35] |
3-phenyl-4-amino-5-mercapto-1,2,4-triazole | 97 | [36] |
2[5-(2-Pyridyl)-1,2,4-triazol-3-yl phenol | 96.8 | [37] |
3,5-Bis(4-methyltiophenyl)-4H-1,2,4-triazole | 93.5 | [37] |
3,5-Bis(4-pyridyl)-4H-1,2,4-triazole | 89.1 | [37] |
3,5-Diphenyl-4H-1,2,4-triazole | 82.8 | [38] |
3,5-Di(m-tolyl)-4-amino-1,2,4-triazole | 24 | [39] |
5-Amino-1,2,4-triazole | 90 | [39] |
5-Amino-3-mercapto-1,2,4-triazole | 82 | [39] |
5-Amino-3-methyl thio-1,2,4-triazole | 82 | [39] |
1-Amino-3-methyl thio-1,2,4-triazole | 63 | [40] |
3-Benzylidene amino-1,2,4-triazole phosphonate | 56.9 | [40] |
3-p-Nitro-benzylidene amino-1,2,4-triazole phosphonate | 69.23 | [40] |
3-Salicylialidene amino-1,2,4-triazole phosphonate | 43.2 | [40] |
3,5-Bis(methylene octadecyldimethylammonium chloride)-1,2,4-triazole | 98.3 | [41] |
3-Amino-1,2,4-triazole-5-thiol | 97.8 | [42] |
0.00 | 6 | 59.83 | 56.87 |
100 | 45.65 | 123.68 | |
200 | 43.23 | 117.67 | |
300 | 44.74 | 113.88 | |
400 | 46.73 | 112.84 | |
500 | 48.05 | 111.85 | |
1000 | 48.91 | 110.17 |
Quantum Characteristics | EMTP |
---|---|
−8.251 | |
−5.186 | |
3.065 | |
Dipole moment (μ) (D) | 2.800 |
Global hardness (η) | 1.530 |
Global softness (σ) | 0.660 |
Electronegativity (χ) | 6.500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkadir Aziz, I.A.; Annon, I.A.; Abdulkareem, M.H.; Hanoon, M.M.; Alkaabi, M.H.; Shaker, L.M.; Alamiery, A.A.; Wan Isahak, W.N.R.; Takriff, M.S. Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies. Lubricants 2021, 9, 122. https://doi.org/10.3390/lubricants9120122
Alkadir Aziz IA, Annon IA, Abdulkareem MH, Hanoon MM, Alkaabi MH, Shaker LM, Alamiery AA, Wan Isahak WNR, Takriff MS. Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies. Lubricants. 2021; 9(12):122. https://doi.org/10.3390/lubricants9120122
Chicago/Turabian StyleAlkadir Aziz, Israa Abd, Iman Adnan Annon, Makarim H. Abdulkareem, Mahdi M. Hanoon, Mohammed H. Alkaabi, Lina M. Shaker, Ahmed A. Alamiery, Wan Nor Roslam Wan Isahak, and Mohd S. Takriff. 2021. "Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies" Lubricants 9, no. 12: 122. https://doi.org/10.3390/lubricants9120122
APA StyleAlkadir Aziz, I. A., Annon, I. A., Abdulkareem, M. H., Hanoon, M. M., Alkaabi, M. H., Shaker, L. M., Alamiery, A. A., Wan Isahak, W. N. R., & Takriff, M. S. (2021). Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies. Lubricants, 9(12), 122. https://doi.org/10.3390/lubricants9120122