Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = EMTP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8197 KB  
Article
Knowledge Graph-Enabled Prediction of the Elderly’s Activity Types at Metro Trip Destinations
by Jingqi Yang, Yang Zhang, Fei Song, Qifeng Tang, Tao Wang, Xiao Li, Pei Yin and Yi Zhang
Systems 2025, 13(10), 834; https://doi.org/10.3390/systems13100834 - 23 Sep 2025
Viewed by 146
Abstract
Providing age-friendly metro service substantially enhances the elderly’s mobility and well-being. Despite recent progress in user profiling and mobility prediction, the prediction of the elderly’s metro travel patterns remains limited. To fill this gap, this study proposes a framework integrating user profiling and [...] Read more.
Providing age-friendly metro service substantially enhances the elderly’s mobility and well-being. Despite recent progress in user profiling and mobility prediction, the prediction of the elderly’s metro travel patterns remains limited. To fill this gap, this study proposes a framework integrating user profiling and knowledge graph embedding to predict the elderly’s activity types at metro trip destinations, utilizing 180,143 smart card records and 885,072 points of interest (POI) records from Chongqing, China in 2019. First, an elderly metro travel profile (EMTP) tag system is developed to capture the elderly’s spatiotemporal metro travel behaviors and preferences. Subsequently, an elderly metro travel knowledge graph (EMTKG) is constructed to support semantic reasoning, transforming the activity types prediction problem into a knowledge graph completion problem. To solve the completion problem, the Temporal and Non-Temporal ComplEx (TNTComplEx) model is introduced to embed entities and relations into a complex vector space and distinguish between time-sensitive and time-insensitive behavioral patterns. Fact plausibility within the graph is evaluated by a scoring function. Numerical experiments validate that the proposed model outperforms the best-performing baselines by 13.37% higher Accuracy@1 and 52.40% faster training time per epoch, and ablation studies further confirm component effectiveness. This study provides an enlightening and scalable approach for enhancing age-friendly metro system service. Full article
(This article belongs to the Special Issue Data-Driven Urban Mobility Modeling)
Show Figures

Figure 1

13 pages, 859 KB  
Article
Study on the Influence of Grounding Resistance on Cable Fault Overvoltage
by Baotong Song, Sihan Wang, Changyuan Xiang, Xiaoyue Chen and Ju Tang
Energies 2025, 18(10), 2601; https://doi.org/10.3390/en18102601 - 17 May 2025
Viewed by 672
Abstract
The cable grounding connecting method and grounding resistance have a significant influence on the cable fault overvoltage. This paper considers a 500 kV long cable project in Beijing as the research object; a model was implemented in ATP-EMTP, and simulation results show how [...] Read more.
The cable grounding connecting method and grounding resistance have a significant influence on the cable fault overvoltage. This paper considers a 500 kV long cable project in Beijing as the research object; a model was implemented in ATP-EMTP, and simulation results show how grounding resistance and its connection method influence the cable fault overvoltage. When the grounding resistances are all set to the same value along the cable, as the grounding resistance increases, the frequency of overvoltage at the cable fault point also increases. When all grounding resistances along the cable are set to same value, if a connection method considering conduction impedance is adopted, the fault point frequency overvoltage also increases. If the grounding resistance at both ends of the cable are connected to the substation, the sequence impedance of the cable will decrease, resulting in a reduction in the fault point overvoltage. Additionally, this paper analyzes the influence of grounding material on the cable line sequence impedance. When the grounding resistance value is set to 5 Ω according to the national standard, the cable line fault overvoltage under single-phase grounding fault with load reduction is simulated and analyzed, and it is found that connecting the grounding devices at both ends of the cable to the substation can effectively suppress the overvoltage along the cable. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

17 pages, 4081 KB  
Article
Accuracy Performance of Open-Core Inductive Voltage Transformers at Higher Frequencies
by Josip Ivankić, Igor Žiger, Bruno Jurišić and Dubravko Franković
Energies 2025, 18(8), 2121; https://doi.org/10.3390/en18082121 - 20 Apr 2025
Cited by 1 | Viewed by 643
Abstract
The new revision of the main instrument transformer standard, IEC 61869-1:2023, premiered requirements for the performance of instrument transformers in terms of transfer accuracy at higher frequencies. Five accuracy class extensions were introduced to establish an explicit performance level. Each of the extension [...] Read more.
The new revision of the main instrument transformer standard, IEC 61869-1:2023, premiered requirements for the performance of instrument transformers in terms of transfer accuracy at higher frequencies. Five accuracy class extensions were introduced to establish an explicit performance level. Each of the extension levels has a distinct bandwidth and accuracy performance associated with it. While these requirements are mainly aimed at non-conventional instrument transformers, the hypothesis of this paper is that conventional high-voltage instrument transformers can have a performance conformant to the above-mentioned requirements. Specifically, the focus of this paper will be on open-core inductive voltage transformers, which inherently exhibit an improved frequency response in comparison to their conventional closed-core counterparts. The main aim of this paper is to present a relevant transformer model based on a lumped parameter equivalent diagram. This model considers the actual mutual coupling (both capacitive and inductive) of the transformer windings. The model is created in EMTP software, and the output yields a frequency response characteristic of the transformer. The model will be validated with test results obtained through measurements on actual 123 kV, 245 kV, and 420 kV inductive voltage transformers. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

18 pages, 2665 KB  
Article
Paramedics’ Behavior Patterns When Transferring Non-Mobile Patients from the Ground to a Stretcher
by Maïté Tanguay, Jason Bouffard, Jasmin Vallée-Marcotte and Philippe Corbeil
Healthcare 2025, 13(6), 611; https://doi.org/10.3390/healthcare13060611 - 12 Mar 2025
Viewed by 803
Abstract
Background/Objectives: Transferring non-mobile patients from the ground to a stretcher represents one of the riskiest tasks for musculoskeletal disorders among emergency medical technicians–paramedics (EMT-Ps), but there is little information available on how they perform in real-life work situations. Methods: This study aimed to [...] Read more.
Background/Objectives: Transferring non-mobile patients from the ground to a stretcher represents one of the riskiest tasks for musculoskeletal disorders among emergency medical technicians–paramedics (EMT-Ps), but there is little information available on how they perform in real-life work situations. Methods: This study aimed to describe EMT-Ps’ patterns of behavior observed from field data and highlight safe work operations. A secondary analysis was conducted on 27 videos collected during EMT-Ps’ responses to live calls. Contextual variables (workspace and external assistance), operations during the preparation subtask (move patient or interfering objects and adjust stretcher’s height and position), and movements and postures related to the transfer subtask were extracted from the videos. Results: The results demonstrate that despite stratification based on similar contextual factors (equipment and limited workspace), EMT-Ps’ behavior varied between interventions during the preparation and transfer subtasks. Several operations to adjust the patient–stretcher configuration before the lifting phase were carried out to facilitate patient transfer, but these were not always optimal from a safety perspective. Strategies such as fast loading (1 out of 4) and the use of external assistance (6 out of 15) were beneficial in certain circumstances. Conclusions: EMT-Ps demonstrated their ability to analyze the situation, organize accordingly, and adapt their behavior by applying these safety skills. Full article
Show Figures

Figure 1

17 pages, 7042 KB  
Article
Overvoltage Simulation Analysis and Suppression of Breaking in a 35 kV Shunt Reactor
by Jing Chen, Xiaoyue Chen, Siying Feng, Xinmeng Liu and Qin Liu
Energies 2025, 18(5), 1274; https://doi.org/10.3390/en18051274 - 5 Mar 2025
Viewed by 831
Abstract
When a 35 kV distribution network has the problem of insufficient reactive power, the input of a shunt reactor is a common compensation method. Vacuum circuit breakers are widely used in 35 kV distribution networks because of their superior arc extinguishing performance and [...] Read more.
When a 35 kV distribution network has the problem of insufficient reactive power, the input of a shunt reactor is a common compensation method. Vacuum circuit breakers are widely used in 35 kV distribution networks because of their superior arc extinguishing performance and convenient maintenance. However, in recent years, accidents involving vacuum circuit breakers breaking shunt reactors have occurred more frequently in China, such as high-frequency phase-to-phase short circuits, inter-turn burning losses, bus outlet short circuits, etc., which can cause serious damage and pose a greater threat to the safety of the power system. This paper focuses on the switching overvoltage generated by the vacuum circuit breaker cutting off the shunt reactor. Firstly, the mechanism of overvoltage generation is analyzed theoretically. It is concluded that the equivalent chopping current of the other two phases caused by the continuous reignition of the first open phase is the root cause of the high-amplitude interphase overvoltage. Based on the MODELS custom programming module in EMTP/ATP, according to the process of breaking and reigniting the circuit breaker, this paper uses Fortran language to compile the program and establishes a model of a vacuum circuit breaker, including power frequency current interception, high-frequency current, zero-crossing, breaking, and arc reignition modules. The vacuum circuit breaker is simulated for hundreds of continuous reignitions in milliseconds. Finally, a simulation study on the overvoltage suppression measures of a 35 kV shunt reactor is carried out. The comprehensive comparison of various suppression measures provides a reference for the reasonable selection of actual engineering conditions. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

18 pages, 3934 KB  
Article
Influence of Wideband Cable Model for Electric Vehicle Inverter–Motor Connections: A Comparative Analysis
by Easir Arafat and Mona Ghassemi
Machines 2025, 13(3), 189; https://doi.org/10.3390/machines13030189 - 27 Feb 2025
Cited by 2 | Viewed by 901
Abstract
Electric vehicles (EVs) rely on robust inverter-to-motor connections to ensure high-efficiency operation under the challenging conditions imposed by wide-bandgap (WBG) semiconductors. High switching frequencies and steep voltage rise times in WBG inverters lead to repetitive transient overvoltages, causing insulation degradation and premature motor [...] Read more.
Electric vehicles (EVs) rely on robust inverter-to-motor connections to ensure high-efficiency operation under the challenging conditions imposed by wide-bandgap (WBG) semiconductors. High switching frequencies and steep voltage rise times in WBG inverters lead to repetitive transient overvoltages, causing insulation degradation and premature motor winding failure. This study proposes a wideband (WB) model of EV cables, developed in EMTP-RV, to improve transient voltage prediction accuracy compared to the traditional constant parameter (CP) model. Using a commercially available EV-dedicated cable, the WB model incorporates frequency-dependent parasitic effects calculated through the vector fitting technique. The motor design is supported by COMSOL Multiphysics and MATLAB 2023 simulations, leveraging the multi-conductor transmission line (MCTL) model for validation. Using practical data from the Toyota Prius 2010 model, including cable length, motor specifications, and power ratings, transient overvoltages generated by high-frequency inverters are studied. The proposed model demonstrates improved alignment with real-world scenarios, providing valuable insights into optimizing insulation systems for EV applications. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

22 pages, 7012 KB  
Article
Voltage Distribution on Transformer Windings Subjected to Lightning Strike Using State-Space Method
by İlker Arı and Mehmet Salih Mamiş
Appl. Sci. 2025, 15(3), 1569; https://doi.org/10.3390/app15031569 - 4 Feb 2025
Cited by 3 | Viewed by 1663
Abstract
Transient analysis in power systems is essential for identifying deficiencies in the system, as well as for the protection and design of equipment. Transients can arise from natural events or network operations; in either case, they have the potential to cause significant damage [...] Read more.
Transient analysis in power systems is essential for identifying deficiencies in the system, as well as for the protection and design of equipment. Transients can arise from natural events or network operations; in either case, they have the potential to cause significant damage to transmission lines, protection devices, generators, or transformers. This study examines a 20 kA, 1.2/50 µs lightning strike on a distributed-parameter transmission line connected to a power transformer. The voltage distributions across the winding sections on the neutral grounded high-voltage side of a disc-structured power transformer were obtained using the state-space method. An equivalent circuit for the state-space model was also developed in the Alternative Transients Program–Electromagnetic Transients Program (ATP-EMTP), and the results from both methods were compared. Both approaches revealed that the voltage waveforms in the transformer’s winding sections were consistent, with the voltage distribution decreasing linearly. Additionally, the voltage–current waves reached the transformer with a specific delay, depending on the characteristics of the transmission line and the location of the lightning strike. The impact of an increase in the grounding resistance value on the high-voltage side of the transformer on voltage distribution and peak voltage levels was examined. The proposed method effectively captures the voltage–current behavior of the transmission line and transformer windings during transient conditions. It is concluded that the state-space method serves as a viable alternative for transient analysis in power systems and can enhance the design of protection equipment and winding insulation studies. Full article
Show Figures

Figure 1

23 pages, 7672 KB  
Article
Assessment of Insulation Coordination and Overvoltage for Utility Girds Integrated with Solar Farms
by Mansoor Soomro, Riaz Abbasi, Mazhar Baloch, Sohaib Tahir Chauhdary and Mokhi Maan Siddiqui
Energies 2024, 17(21), 5487; https://doi.org/10.3390/en17215487 - 2 Nov 2024
Viewed by 2918
Abstract
Due to the economic and environmental concerns associated with fossil fuels, many government and private organizations are progressively shifting towards the integration of solar farms with Utility Grids. However, these systems are facing insulation failure issues due to internal and external transient overvoltage’s, [...] Read more.
Due to the economic and environmental concerns associated with fossil fuels, many government and private organizations are progressively shifting towards the integration of solar farms with Utility Grids. However, these systems are facing insulation failure issues due to internal and external transient overvoltage’s, in which their shape, magnitude, and duration are unpredictable, and consequently, the insulation stress also becomes unpredictable. To ensure the safety and integrity of the system against any transient overvoltage event, it is important to carry out an insulation coordination analysis. The primary goal of this research work is to achieve this optimization in an economically viable manner, ensuring both operational stability and cost-effectiveness in the design of electrical equipment like surge Arresters. The research work presented in the literature does not fully evaluate all International Electrotechnical Commission (IEC) overvoltage classes as specified in the insulation coordination standards for Utility Grids integrated with solar farms. Therefore, this research paper investigates the impact of various transient and switching overvoltage conditions, as defined in the IEC 60071.4 Insulation Coordination Standard at the Solar and Utility Grid Electrical power system using PSCAD 4.6/EMTP Software. Five distinct simulation scenarios were developed to assess the systems’ resilience against insulation stress events. The proposed system was also examined with and without the application of a lightning surge arrester. Full article
Show Figures

Figure 1

25 pages, 5071 KB  
Article
Multi-Stage ANN Model for Optimizing the Configuration of External Lightning Protection and Grounding Systems
by Rohana Rohana, Surya Hardi, Nasaruddin Nasaruddin, Yuwaldi Away and Andri Novandri
Energies 2024, 17(18), 4673; https://doi.org/10.3390/en17184673 - 20 Sep 2024
Cited by 4 | Viewed by 1548
Abstract
This paper proposes an Artificial Neural Network (ANN) model using a Multi-Stage method to optimize the configuration of an External Lightning Protection System (ELPS) and grounding system. ELPS is a system designed to protect an area from damage caused by lightning strikes. Meanwhile, [...] Read more.
This paper proposes an Artificial Neural Network (ANN) model using a Multi-Stage method to optimize the configuration of an External Lightning Protection System (ELPS) and grounding system. ELPS is a system designed to protect an area from damage caused by lightning strikes. Meanwhile, the grounding system functions to direct excess electric current from lightning strikes into the ground. This study identifies the optimal protection system configuration, reducing the need for excessive components. The ELPS configuration includes the number of protection pole units and the height of the protection poles. In contrast, the grounding system configuration consists of the number of electrode units and the length of the electrodes. This study focuses on the protection system configuration at a Photovoltaic Power Station, where the area is highly vulnerable to lightning strikes. Several aspects need to be considered in determining the appropriate configuration, such as average thunderstorm days per year, ELPS efficiency, total area of photovoltaic module, area to be protected, soil resistivity, electrode spacing factor, and the total required electrode resistance. The proposed multi-stage ANN model consists of three processing stages, each responsible for handling a portion of the overall system tasks. The first stage is responsible for determining the protection pole configuration. In the second stage, the Lightning Protection Level (LPL) classification is performed. Then, in the third stage, the process of determining the grounding configuration is handled. The analysis results show that the Multi-Stage ANN model can effectively determine the configuration with a low error rate: MAE of 0.265, RMSE of 0.314, and MPE of 9.533%. This model can also explain data variation well, as indicated by the high R2 value of 0.961. The comparison results conducted with ATP/EMTP software show that the configuration produced by ANN results in fewer protection pole units but with greater height. Meanwhile, ANN produces a configuration with shorter electrode lengths but fewer units in the grounding system. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Power System)
Show Figures

Figure 1

27 pages, 2218 KB  
Article
Analysis of Power System Electromagnetic Transients Using the Finite Element Technique
by Ivica Jurić-Grgić, Dino Lovrić and Ivan Krolo
Energies 2024, 17(11), 2517; https://doi.org/10.3390/en17112517 - 23 May 2024
Viewed by 1303
Abstract
In this paper, a numerical model for the analysis of electromagnetic transients in a power system, based on the finite element technique, was developed. The simplicity of the finite element technique is manifested in the fact that the problem of solving any mathematically [...] Read more.
In this paper, a numerical model for the analysis of electromagnetic transients in a power system, based on the finite element technique, was developed. The simplicity of the finite element technique is manifested in the fact that the problem of solving any mathematically described phenomena in an area is reduced to solving those same phenomena in a small part of that area, i.e., finite elements. Based on appropriate mathematical models, numerical models of the synchronous generator and other parts of the power system have been developed. System of differential equations of each power system element have been included in the numerical model in such a way that we employ numerical integration of the differential equations using the generalized trapezoidal rule (ϑ-method) and reduce it to a system of algebraic equations in each time step. In a practical sense, this method enables a very simple solution to the problem of a real power system, i.e., a system with many generators, transformers, transmission lines and other elements. The accuracy of the developed numerical model for the analysis of electromagnetic transients in a power system has been confirmed by comparing the calculated results with the results obtained using the EMTP software (version 3.3) package. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

18 pages, 5272 KB  
Article
Analysis of Ferroresonance Mitigation Effectiveness in Auxiliary Power Systems of High-Voltage Substations
by Rafał Tarko, Wiesław Nowak, Jakub Gajdzica and Stanislaw Czapp
Energies 2024, 17(10), 2423; https://doi.org/10.3390/en17102423 - 18 May 2024
Cited by 3 | Viewed by 1972
Abstract
Ferroresonance in power networks is a dangerous phenomenon, which may result in overcurrents and overvoltages, causing damage to power equipment and the faulty operation of protection systems. For this reason, the possibility of the occurrence of ferroresonance has to be identified, and adequate [...] Read more.
Ferroresonance in power networks is a dangerous phenomenon, which may result in overcurrents and overvoltages, causing damage to power equipment and the faulty operation of protection systems. For this reason, the possibility of the occurrence of ferroresonance has to be identified, and adequate methods need to be incorporated to eliminate or reduce its effects. The aim of this paper is to evaluate the effectiveness of ferroresonance damping in auxiliary power systems of high-voltage substations by selected damping devices. Laboratory experiments, the results of which created bases for the development of models of selected damping devices, are presented. These models were used to simulate the effectiveness of ferroresonance damping in an auxiliary power system of a 220/110 kV substation in the EMTP-ATP program. The analyses showed that control systems with different algorithms of operation are used in damping devices. This knowledge is important when selecting parameters and settings of the applied damping devices for a given network and the disturbances in it. The presented research results have proved the effectiveness of commercially available damping devices, provided their parameters are correctly coordinated with the settings of the power system protection. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 9713 KB  
Article
Ground Fault in Medium-Voltage Power Networks with an Isolated Neutral Point: Spectral and Wavelet Analysis of Selected Cases in an Example Industrial Network Modeled in the ATP-EMTP Package
by Krzysztof Kuliński and Adam Heyduk
Energies 2024, 17(7), 1532; https://doi.org/10.3390/en17071532 - 22 Mar 2024
Cited by 4 | Viewed by 2225
Abstract
The paper presents some case spectral analysis of zero-sequence voltages and currents in an example industrial power distribution network. The network layout is based on typical power delivery networks in underground coal mines. Ground fault simulations have been made using an ATP/EMTP program. [...] Read more.
The paper presents some case spectral analysis of zero-sequence voltages and currents in an example industrial power distribution network. The network layout is based on typical power delivery networks in underground coal mines. Ground fault simulations have been made using an ATP/EMTP program. Due to the high environmental risks, the reliability of the protection relay operation related to their selectivity plays an important role. This paper tries to find the reasons for nonselective operation and unnecessary tripping in extensive mine cable networks, particularly with large power sources of higher-order harmonics. It was found that in transient states—due to the decaying oscillations occurring in complex RLC circuits—the results of short time measurements of the criterion values for ground fault protective relays can be overestimated (particularly for small values of ground resistance) and lead to nonselective tripping of a healthy cable line. Therefore, it might be advisable to increase the integration time used for measuring rms values. Also, if there is a significant level of higher harmonics in the industrial network generated by high-power converters, it should be noted that the higher harmonics of the ground fault current and currents measured by ground fault protection relays assume much higher values, which may also cause nonselective tripping. In this case, it may be advisable to use higher harmonic filters in the measuring circuits and to select a sufficiently high sampling frequency in the digital protective relays. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Power System)
Show Figures

Figure 1

27 pages, 20053 KB  
Article
Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats
by Feras Alasali, Awni Itradat, Salah Abu Ghalyon, Mohammad Abudayyeh, Naser El-Naily, Ali M. Hayajneh and Anas AlMajali
Smart Cities 2024, 7(1), 51-77; https://doi.org/10.3390/smartcities7010003 - 22 Dec 2023
Cited by 16 | Viewed by 3354
Abstract
In recent years, the integration of Distributed Energy Resources (DERs) and communication networks has presented significant challenges to power system control and protection, primarily as a result of the emergence of smart grids and cyber threats. As the use of grid-connected solar Photovoltaic [...] Read more.
In recent years, the integration of Distributed Energy Resources (DERs) and communication networks has presented significant challenges to power system control and protection, primarily as a result of the emergence of smart grids and cyber threats. As the use of grid-connected solar Photovoltaic (PV) systems continues to increase with the use of intelligent PV inverters, the susceptibility of these systems to cyber attacks and their potential impact on grid stability emerges as a critical concern based on the inverter control models. This study explores the cyber-threat consequences of selectively targeting the components of PV systems, with a special focus on the inverter and Overcurrent Protection Relay (OCR). This research also evaluates the interconnectedness between these two components under different cyber-attack scenarios. A three-phase radial Electromagnetic Transients Program (EMTP) is employed for grid modeling and transient analysis under different cyber attacks. The findings of our analysis highlight the complex relationship between vulnerabilities in inverters and relays, emphasizing the consequential consequences of affecting one of the components on the other. In addition, this work aims to evaluate the impact of cyber attacks on the overall performance and stability of grid-connected PV systems. For example, in the attack on the PV inverters, the OCR failed to identify and eliminate the fault during a pulse signal attack with a short duration of 0.1 s. This resulted in considerable harmonic distortion and substantial power losses as a result of the protection system’s failure to recognize and respond to the irregular attack signal. Our study provides significant contributions to the understanding of cybersecurity in grid-connected solar PV systems. It highlights the importance of implementing improved protective measures and resilience techniques in response to the changing energy environment towards smart grids. Full article
Show Figures

Figure 1

20 pages, 4431 KB  
Article
Including Shield Wires in the Analysis of Transient Processes Occurring in HVAC Transmission Lines
by Andriy Chaban, Andrzej Popenda, Andrzej Szafraniec and Vitaliy Levoniuk
Energies 2023, 16(23), 7870; https://doi.org/10.3390/en16237870 - 1 Dec 2023
Cited by 1 | Viewed by 1290
Abstract
The article presents an analysis of electromagnetic transient processes in long ultra-high voltage transmission lines, taking into account shield wires. It was shown that EMTP and Matlab/Simulink software are currently widely used in the study of transient processes in power lines. The EMTP [...] Read more.
The article presents an analysis of electromagnetic transient processes in long ultra-high voltage transmission lines, taking into account shield wires. It was shown that EMTP and Matlab/Simulink software are currently widely used in the study of transient processes in power lines. The EMTP software package uses the finite element method when integrating the equation that mathematically models the distributed parameter transmission line. The Matlab/Simulink software uses the d’Alembert method. In both cases, it is not known how the boundary conditions for the partial differential equation that mathematically models the transmission line are determined. The power line is analyzed as a distributed parameter system, described by a second-order partial differential equation. The advantage of the proposed method of calculating the boundary conditions for the abovementioned equation is the use of boundary conditions of the second and third types of Neumann and Poincaré, which allowed us to take into account the mutual influence of shield wires and phase conductors of the line in one power system. On this basis, the methodology for obtaining time domain graphs, spatial distributions, and traveling wave distributions of voltages and currents for phase conductors and line shielding wires is presented. The results of a computer simulation of transient processes when switching on the power line, taking into account controlled phase commutation and under single-phase earth fault conditions, are presented. All calculation results of transient processes presented in the article were obtained exclusively using numerical methods. Full article
(This article belongs to the Special Issue Advanced Engineering and Medical Technologies in Energy Exploitation)
Show Figures

Figure 1

15 pages, 4540 KB  
Article
Research on Lightning Overvoltage Protection of Line-Adjacent Pipelines Based on Solid-State Decoupling
by Wei Liu, Yuanchao Hu, Haipeng Tian, Zhipeng Jiang, Xiaole Su, Jie Xiong, Wei Su and Yi Wang
Appl. Sci. 2023, 13(22), 12529; https://doi.org/10.3390/app132212529 - 20 Nov 2023
Viewed by 1840
Abstract
Existing transmission lines and pipelines are frequently crossed and erected in parallel, meaning that if lightning strikes a wire and causes insulator flashovers, the resulting lightning current will spread through the grounding of the tower where the flashover insulator is located. This dispersion [...] Read more.
Existing transmission lines and pipelines are frequently crossed and erected in parallel, meaning that if lightning strikes a wire and causes insulator flashovers, the resulting lightning current will spread through the grounding of the tower where the flashover insulator is located. This dispersion of current can lead to overvoltage effects on nearby pipelines. This study performs simulation calculations to analyze the overvoltage experienced by pipelines due to the dispersion of grounding current from the tower. Furthermore, this paper proposes a method for protecting the pipeline from such an overvoltage. Firstly, the lightning transient calculation model of a transmission line tower is constructed using the electromagnetic transient software ATP-EMTP 5.5. The model calculates the effects of lightning peak currents and soil resistivity on the distribution characteristics of lightning current in the tower, specifically in the area where the flashover insulator is located. Subsequently, a calculation model of the tower grounding grid–natural gas pipeline is developed, taking into account the distribution characteristics of lightning current in the tower. This model analyzes the impact of lightning peak currents, soil resistivity, and pipeline spacing on pipeline overvoltage. Finally, the effectiveness of the solid-state decoupler in mitigating lightning overvoltage in the pipeline is verified. The results demonstrate a positive correlation between the lightning current entering the tower grounding grid through the flashover insulator and the lightning current distribution characteristics. The solid-state decoupling device proves to be effective in reducing the voltage of the pipeline insulation layer, and the simulation results provide the optimal laying length of the bare copper wire. Full article
Show Figures

Figure 1

Back to TopTop