Moringa and Graphite as Additives to Conventional Petroleum-Based Lubricants
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of the Presence of VO as Bio-Additive
3.2. Physicochemical Characterization of the Best Mixture
3.2.1. VO/Dodecane Blends before the Friction Experiments
3.2.2. Graphite/VO/Dodecane Blend after Friction Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hammes, G.; Mucelin, K.J.; da Costa Gonçalves, P.; Binder, C.; Binder, R.; Janssen, R.; Klein, A.N.; De Mello, J.D.B. Effect of hexagonal boron nitride and graphite on mechanical and scuffing resistance of self lubricating iron based composite. Wear 2017, 376, 1084–1090. [Google Scholar] [CrossRef]
- Singh, D.; Ranganathan, A.; Diddakuntla, G. Tribological analysis of putranjiva oil with effect of CuO as an additive. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Thampi, A.D.; Prasanth, M.A.; Anandu, A.P.; Sneha, E.; Sasidharan, B.; Rani, S. The effect of nanoparticle additives on the tribological properties of various lubricating oils–Review. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Senniangiri, N.; Manikandan, S.; Dhayanithi, G.; Hariharashayee, D.; Chelladurai, C.; Sunil, J. The lubricating properties of Graphene-NiO/Coconut oil hybrid nanofuids. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Cortes, V.; Sanchez, K.; Gonzalez, R.; Alcoutlabi, M.; Ortega, J.A. The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Jesbin, K.S.; Mahipal, D. Evaluation of tribological characteristics of natural garlic oil as an additive in rubber seed oil. IOP Conf Ser. Mater. Sci. Eng. 2021, 1114, 012052. [Google Scholar] [CrossRef]
- Rajaganapathy, C.; Vasudevan, D.; Murugapoopathi, S. Tribological and rheological properties of palm and brassica oil with inclusion of CuO and TiO2 additives. Mater. Today Proc. 2020, 37, 207–213. [Google Scholar] [CrossRef]
- Liew, Y.; Hsien, W. Utilization of Vegetable Oil as Bio-lubricant and Additive. In Towards Green Lubrication in Machining; Springer: Singapore, 2015; pp. 7–17. [Google Scholar] [CrossRef]
- Shafi, W.K.; Raina, A.; Ul Haq, M.I. Friction and wear characteristics of vegetable oils using nanoparticles for sustainable lubrication. Tribol Mater Surf. Interfaces 2018, 12, 27–43. [Google Scholar] [CrossRef]
- Crespo, A.; Morgado, N.; Mazuyer, D.; Cayer-Barrioz, J. Effect of Unsaturation on the Adsorption and the Mechanical Behavior of Fatty Acid Layers. Langmuir 2018, 34, 4560–4567. [Google Scholar] [CrossRef]
- Masripan, N.A.; Salim, M.A.; Omar, G.; Mansor, M.R.; Saad, A.M.; Hamid, N.A.; Syakir, M.I.; Dai, F. Vegetable oil as bio-lubricant and natural additive in lubrication: A review. Int. J. Nanoelectron. Mater. 2020, 13, 161–176. [Google Scholar]
- Ponomarenko, A.G.; Boiko, T.G.; Bicherov, A.A.; Bicherov, A.V.; Shiryaeva, T.A.; Kulemzin, D.V. Improving the lubricating properties of transmission oils by activating the processes of boundary films formation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1029, 012002. [Google Scholar] [CrossRef]
- Farfan-Cabrera, L.I.; Gallardo-Hernández, E.A.; Gómez-Guarneros, M.; Pérez-González, J.; Godínez-Salcedo, J.G. Alteration of lubricity of Jatropha oil used as bio-lubricant for engines due to thermal ageing. Renew Energy 2020, 149, 1197–1204. [Google Scholar] [CrossRef]
- Gobinda, K.; Pranab, G.; Brajendra, K.S. Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Bahari, A.; Lewis, R.; Slatter, T. Friction and wear response of vegetable oils and their blends with mineral engine oil in a reciprocating sliding contact at severe contact conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Fry, B.M.; Chui, M.Y.; Moody, G.; Wong, J.S.S. Interactions between organic friction modifier additives. Tribol Int. 2020, 151, 106438. [Google Scholar] [CrossRef]
- Pereira, O.; Martín-Alfonso, J.E.; Rodríguez, A.; Calleja, A.; Fernández-Valdivielso, A.; López de Lacalle, L.N. Sustainability analysis of lubricant oils for minimum quantity lubrication based on their tribo-rheological performance. J. Clean Prod. 2017, 164, 1419–1429. [Google Scholar] [CrossRef]
- Sharma, B.K.; Rashid, U.; Anwar, F.; Erhan, S.Z. Lubricant properties of Moringa oil using thermal and tribological techniques. J. Therm. Anal. Calorim. 2009, 96, 999–1008. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Aroua, M.K.; Mariod, A.A.; Foon, S.; Abdelrahman, M.A. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind. Crop. Prod. 2014, 61, 49–61. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Kotoka, F. Kinetics and thermodynamic studies on Moringa oleifera oil extraction for biodiesel production via transesterification. Biofuels 2019, 1–9. [Google Scholar] [CrossRef]
- Kerni, L.; Raina, A.; Haq, M.I.U. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear 2019, 426, 819–827. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Vacher, B.; Ohmae, N.; Martin, J.M.; Epicier, T. Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 2008, 30, 69–80. [Google Scholar] [CrossRef]
- Marcon, A.; Melkote, S.; Kalaitzidou, K.; Debra, D. An experimental evaluation of graphite nanoplatelet based lubricant in micro-milling. CIRP Ann. Manuf. Technol. 2010, 59, 141–144. [Google Scholar] [CrossRef]
- Kalhapure, A.S.; Mhaske, V.M.; Bajaj, S. Tribological Evaluation of Vegetable oils as a Multi-cylinder Engine lubricant. Int. Adv. Res. J. Sci. 2016, 3, 68–72. [Google Scholar] [CrossRef]
- Gupta, M.K.; Bijwe, J. Tribology International A complex interdependence of dispersant in nano-suspensions with varying amount of graphite particles on its stability and tribological performance. Tribol. Int. 2020, 142, 105968. [Google Scholar] [CrossRef]
- Bryant, P.J.; Gutshall, P.L.; Taylor, L.H. A study of mechanisms of graphite friction and wear. Wear 1964, 7, 118–126. [Google Scholar] [CrossRef]
- Spreadborough, J. The frictional behaviour of graphite. Wear 1962, 5, 18–30. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, Y.; Negi, P. A review on the characterization of bio based lubricants from vegetable oils and role of nanoparticles as additives. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Su, Y.; Gong, L.; Chen, D. An Investigation on Tribological Properties and Lubrication Mechanism of Graphite Nanoparticles as Vegetable Based Oil Additive. J. Nanomater. 2015. [CrossRef]
- Reeves, C.J.; Menezes, P.L.; Jen, T.; Lovell, M.R. The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribol. Int. 2015, 90, 123–134. [Google Scholar] [CrossRef]
- Fry, B.M.; Moody, G.; Spikes, H.; Wong, J.S.S. Effect of Surface Cleaning on Performance of Organic Friction Modifiers. Tribol. Trans. 2020, 63, 305–313. [Google Scholar] [CrossRef]
- Nomede-Martyr, N.; Philippe, B.; Philippe, T.; Georges, M.; Laurence, R. Tribological performances of graphite and hexagonal boron nitride particles in the presence of liquid. J. Tribol. 2021, 143, 1–29. [Google Scholar] [CrossRef]
- Hardy, W.B.; Doubleday, I. Boundary Lubrication. The Paraffin Series. Proc. R. Soc. A Math. Phys. Eng. Sci. 1922, 100, 550–574. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.A.; Reddyhoff, T.; Gallegos, C.; Spikes, H.A. Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribol. Int. 2014, 69, 110–117. [Google Scholar] [CrossRef]
- Choi, U.S.; Ahn, B.G.; Kwon, O.K.; Chun, Y.J. Tribological behavior of some antiwear additives in vegetable oils. Tribol. Int. 1997, 30, 677–683. [Google Scholar] [CrossRef]
- Fox, N.J.; Stachowiak, G.W. Vegetable oil-based lubricants-A review of oxidation. Tribol. Int. 2007, 40, 1035–1046. [Google Scholar] [CrossRef]
- Jain, A.K.; Suhane, A. Review Article “Research Approach & Prospects of Non Edible Vegetable Oil as a Potential Resource for Biolubricant—A Review”. Adv. Eng. Appl. Sci. Int. J. 2012, 1, 23–32. [Google Scholar]
- Hernández-Martínez, M.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Rapid characterization and identification of fatty acids in margarines using horizontal attenuate total reflectance Fourier transform infrared spectroscopy (HATR-FTIR). Eur. Food Res. Technol. 2010, 231, 321–329. [Google Scholar] [CrossRef]
- Guillén, M.D.; Cabo, N. Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. JAOCS J. Am. Oil Chem. Soc. 1997, 74, 1281–1286. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J.; Paradkar, M.M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 2005, 93, 25–32. [Google Scholar] [CrossRef]
- Vecchio, S.; Campanella, L.; Nuccilli, A.; Tomassetti, M. Kinetic study of thermal breakdown of triglycerides contained in extra-virgin olive oil. J. Therm. Anal. Calorim. 2008, 91, 51–56. [Google Scholar] [CrossRef]
- Garcia, C.C.; Franco, P.I.B.M.; Zuppa, T.O.; Filho, N.R.A.; Leles, M.I.G. Thermal stability studies of some cerrado plant oils. J. Therm. Anal. Calorim. 2007, 87, 645–648. [Google Scholar] [CrossRef]
- Santos, J.C.O.; Santos, I.M.G.; Conceição, M.M.; Porto, S.L.; Trindade, M.F.S.; Souza, A.G.; Prasad, S.; Fernandes, V.; Araújo, A. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 2004, 75, 419–428. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fatty Acid Methyl Ester | % Mole Fraction | |
---|---|---|
Palmitic | C16:0 | 6.09 |
Palmitoleic | C16:0 | 1.94 |
Stearic | C18:0 | 3.77 |
Oleic | C18:1 | 75.33 |
Linoleic | C18:2 | 0.90 |
Linolenic | C18:3 | 0.29 |
Arachidic | C20:0 | 2.47 |
Behenic | C22:0 | 5.67 |
Lignoceric | C24:0 | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomède-Martyr, N.; Bilas, P.; Bercion, Y.; Thomas, P. Moringa and Graphite as Additives to Conventional Petroleum-Based Lubricants. Lubricants 2021, 9, 65. https://doi.org/10.3390/lubricants9070065
Nomède-Martyr N, Bilas P, Bercion Y, Thomas P. Moringa and Graphite as Additives to Conventional Petroleum-Based Lubricants. Lubricants. 2021; 9(7):65. https://doi.org/10.3390/lubricants9070065
Chicago/Turabian StyleNomède-Martyr, Nadiège, Philippe Bilas, Yves Bercion, and Philippe Thomas. 2021. "Moringa and Graphite as Additives to Conventional Petroleum-Based Lubricants" Lubricants 9, no. 7: 65. https://doi.org/10.3390/lubricants9070065
APA StyleNomède-Martyr, N., Bilas, P., Bercion, Y., & Thomas, P. (2021). Moringa and Graphite as Additives to Conventional Petroleum-Based Lubricants. Lubricants, 9(7), 65. https://doi.org/10.3390/lubricants9070065