Tungsten Disulfide Inorganic Nanotubes Functionalized by PTFE for Friction Application
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Preparation of WS2-INTs-PTFE Composites
2.2. Friction Tests
2.3. Characterizations
3. Results
3.1. Functionalization of WS2-INTs by PTFE
3.2. Friction and Wear Results
3.3. Chemical Analysis of Friction Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kalin, M.; Kogovšek, J.; Remškar, M. Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 2012, 280, 36–45. [Google Scholar] [CrossRef]
- Tomala, A.; Ripoll, M.R.; Gabler, C.; Remškar, M.; Kalin, M. Interactions between MoS2 nanotubes and conventional additives in model oils. Tribol. Int. 2017, 110, 140–150. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Wu, T.; Xie, Y. Effect of carbon nanotubes on friction and wear of a piston ring and cylinder liner system under dry and lubricated conditions. Friction 2017, 5, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Reinert, L.; Suárez, S.; Rosenkranz, A. Tribo-mechanisms of carbon nanotubes: Friction and wear behavior of CNT-reinforced nickel matrix composites and CNT-coated bulk nickel. Lubricants 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.R.; Pei, X.Q.; Wang, Q.H.; Wang, T.M.; Chen, S.B. The friction and wear properties of carbon nanotubes/graphite/carbon fabric reinforced phenolic polymer composites. Adv. Comp. Mater. 2015, 24, 147–159. [Google Scholar] [CrossRef]
- Roy, A.; Mu, L.; Shi, Y. Tribological properties of polyimide coating filled with carbon nanotube at elevated temperatures. Polym. Compos. 2020, 41, 2652–2661. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Ramnath, R.A.; Deepa, C. Friction and wear properties of carbon nanotube-reinforced polymer composites. In Tribology of Polymer Composites: Characterization, Properties, and Applications; Rangappa, S.M., Siengchin, S., Parameswaranpillai, J., Friedrich, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 12; pp. 223–240. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Bucholz, E.W.; Matsumoto, N.; Phillpot, S.R.; Sinnott, S.B.; Ohmae, N.; Martin, J.M. Friction properties of carbon nano-onions from experiment and computer simulations. Tribol. Lett. 2010, 37, 75. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, G.J.; Wu, C.W. Anti-friction, wear-proof and self-lubrication application of carbon nanotubes. Rev. Adv. Mater. Sci. 2014, 36, 74–87. [Google Scholar]
- Xu, J.; Chen, X.; Grützmacher, P.; Rosenkranz, A.; Li, J.; Jin, J.; Zhang, C.; Luo, J. Tribochemical behaviors of onion-like carbon films as high-performance solid lubricants with variable interfacial nanostructures. ACS Appl. Mater. Interfaces 2019, 11, 28. [Google Scholar] [CrossRef]
- Miyoshi, K.; Street, K.W., Jr.; Vander Wal, R.L.; Andrews, R.; Sayir, A. Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 2005, 19, 191–201. [Google Scholar] [CrossRef]
- Hayashi, T.; Terrones, M.; Scheu, C.; Kim, Y.A.; Rühle, M.; Nakajima, T.; Endo, M. NanoTeflons: Structure and EELS characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett. 2002, 2, 491–496. [Google Scholar] [CrossRef]
- Vander Wal, R.L.; Miyoshi, K.; Street, K.W.; Tomasek, A.J.; Peng, H.; Liu, Y.; Margrave, J.L.; Khabashesku, V.N. Friction properties of surface-fluorinated carbon nanotubes. Wear 2005, 259, 738–743. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, Y.; Wang, H. Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 2007, 25, 247–253. [Google Scholar] [CrossRef]
- Zhang, X.; Luster, B.; Church, A.; Muratore, C.; Voevodin, A.A.; Kohli, P.; Aouadi, S.; Talapatra, S. Carbon nanotube−MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 2009, 1, 735–739. [Google Scholar] [CrossRef]
- Church, A.H.; Zhang, X.F.; Sirota, B.; Kohli, P.; Aouadi, S.M.; Talapatra, S. Carbon nanotube-based adaptive solid lubricant composites. Adv. Sci. Lett. 2012, 5, 188–191. [Google Scholar] [CrossRef]
- Rapoport, L.; Fleischer, N.; Tenne, R. Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Chem. 2005, 15, 1782–1788. [Google Scholar] [CrossRef]
- Huang, H.D.; Tu, J.P.; Zou, T.Z.; Zhang, L.L.; He, D.N. Friction and wear properties of IF–MoS2 as additive in paraffin oil. Tribol. Lett. 2005, 20, 247–250. [Google Scholar] [CrossRef]
- Kalin, M.; Zalaznik, M.; Novak, S. Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear 2015, 332–333, 855–862. [Google Scholar] [CrossRef]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar] [CrossRef]
- Joly-Pottuz, L.; Martin, J.M.; Dassenoy, F.; Belin, M.; Montagnac, G.; Reynard, B.; Fleischer, N. Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 2006, 99, 023524. [Google Scholar] [CrossRef]
- Ratoi, M.; Niste, V.B.; Walker, J.; Zekonyte, J. Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribol. Lett. 2013, 52, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Moshkovich, A.; Perfiliev, V.; Lapsker, I.; Fleischer, N.; Tenne, R.; Rapoport, L. Friction of fullerene-like WS2 nanoparticles: Effect of agglomeration. Tribol. Lett. 2006, 24, 225–228. [Google Scholar] [CrossRef]
- Jazaa, Y.; Lan, T.; Padalkar, S.; Sundararajan, S. The effect of agglomeration reduction on the tribological behavior of WS2 and MoS2 nanoparticle additives in the boundary lubrication regime. Lubricants 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wu, D.; Shi, H.; Fu, X.; Hu, Z.; Wang, X.; Yan, F. Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol. Int. 2007, 40, 863–868. [Google Scholar] [CrossRef]
- Zhang, R.; Qiao, D.; Liu, X.; Guo, Z.; Cai, M.; Shi, L. A facile and effective method to improve the dispersibility of WS2 nanosheets in PAO8 for the tribological performances. Tribol. Int. 2018, 118, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Shahar, C.; Zbaida, D.; Rapoport, L.; Cohen, H.; Bendikov, T.; Tannous, J.; Dassenoy, F.; Tenne, R. Surface functionalization of WS2 fullerene-like nanoparticles. Langmuir 2010, 26, 4409–4414. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhang, Y.; Yang, G.; Ma, J.; Zhang, S.; Yu, L.; Zhang, P. Tribological properties of tungsten disulfide nanoparticles surface-capped by oleylamine and maleic anhydride dodecyl ester as additive in diisooctylsebacate. Ind. Eng. Chem. Res. 2017, 56, 1365–1375. [Google Scholar] [CrossRef]
- Wu, J.F.; Zhai, W.S.; Jie, G.F. Preparation and tribological properties of WS2 nanoparticles modified by trioctylamine. J. Eng. Tribol. 2009, 223, 695–703. [Google Scholar] [CrossRef]
- Levin, T.; Sade, H.; Binyamini, R.B.; Pour, M.; Nachman, I.; Lellouche, J.P. Tungsten disulfide-based nanocomposites for photothermal therapy. Beilstein J. Nanotech. 2019, 10, 811–822. [Google Scholar] [CrossRef]
- Shneider, M.; Rapoport, L.; Moshkovich, A.; Dodiuk, H.; Kenig, S.; Tenne, R.; Zak, A. Tribological performance of the epoxy-based composite reinforced by WS2 fullerene-like nanoparticles and nanotubes. Phys. Status Solidi A 2013, 210, 2298–2306. [Google Scholar] [CrossRef]
- Naffakh, M.; Diez-Pascual, A.M. Thermoplastic polymer nanocomposites based on inorganic fullerene-like nanoparticles and inorganic nanotubes. Inorganics 2014, 2, 291–312. [Google Scholar] [CrossRef] [Green Version]
- Naffakh, M.; Dıez-Pascual, A.M.; Remskar, M.; Marco, C. New inorganic nanotube polymer nanocomposites: Improved thermal, mechanical and tribological properties in isotactic polypropylene incorporating INT-MoS2. J. Mater. Chem. 2012, 22, 17002–17010. [Google Scholar] [CrossRef] [Green Version]
- Flom, D.G.; Porile, N.T. Effects of temperature and high-speed sliding on the friction of ’Teflon’ on ’Teflon’. Nature 1955, 175, 682. [Google Scholar] [CrossRef]
- Biswas, S.K.; Vijayan, K. Friction and wear of PTFE—A review. Wear 1992, 158, 193–211. [Google Scholar] [CrossRef]
- Rafailov, P.M.; Thomsen, C.; Gartsman, K.; Kaplan-Ashiri, I.; Tenne, R. Orientation dependence of the polarizability of an individual WS2 nanotube by resonant Raman spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 205436. [Google Scholar] [CrossRef] [Green Version]
- Laikhtman, A.; Makrinich, G.; Sezen, M.; Yildizhan, M.M.; Martinez, J.I.; Dinescu, D.; Prodana, M.; Enachescu, M.; Alonso, J.A.; Zak, A. Hydrogen chemical configuration and thermal stability in hydrogen plasma exposed tungsten disulfide nanoparticles. J. Phys. Chem. C 2017, 121, 11747–11756. [Google Scholar] [CrossRef] [PubMed]
- Schmälzlin, E.; Moralejo, B.; Rutowska, M.; Monreal, I.A.; Sandin, C.; Tarcea, N.; Popp, J.; Roth, M. Raman imaging with a fiber-coupled multichannel spectrograph. Sensors 2014, 14, 21968–21980. [Google Scholar] [CrossRef] [Green Version]
W 4f (33 eV) % | S 2p (162 eV) % | S 2p (162 eV) % | C 1s (292 eV) % | F 1s (689 eV) % | |
---|---|---|---|---|---|
WS2-INTs | 4.7 | 9.8 | 1.5 | 0 | 0 |
WS2-INTs— 1.4*PTFE | 2.6 | 4.1 | 0.0 | 19.5 | 52.0 |
WS2-INTs— 5.6*PTFE | 1.1 | 0.6 | 0.0 | 23.2 | 62.3 |
Material | Friction Coefficient n = 300 Cycles | Size of Wear Spot (μm) |
---|---|---|
PAO4 | 0.33 ± 0.02 | 114 ± 18 |
PAO4 + 1% WS2-INTs | 0.19 ± 0.01 | 90 ± 4 |
PAO4 + 1% WS2-INTs—1.4*PTFE * | 0.12 ± 0.02 | 77 ± 3 |
PAO4 + 1% WS2-INTs—5.6*PTFE | 0.14 ± 0.03 | 85 ± 10 |
Element | wt.% | Std. Dev. | at.% |
---|---|---|---|
Fe | 89.0 | 0.3 | 72.4 |
C | 6.7 | 0.1 | 25.3 |
W | 3.3 | 0.2 | 0.8 |
S | 0.8 | 0.0 | 1.1 |
Si | 0.2 | 0.0 | 0.4 |
Total | 100 | 100 |
Element | wt.% | Std. Dev. | at.% |
---|---|---|---|
Fe | 62.6 | 0.1 | 48.1 |
Cr | 17.7 | 0.0 | 13.7 |
C | 7.6 | 0.1 | 27.3 |
Ni | 6.7 | 0.0 | 4.7 |
W | 2.1 | 0.1 | 0.4 |
O | 1.6 | 0.0 | 4.1 |
Mo | 0.8 | 0.1 | 0.4 |
S | 0.6 | 0.0 | 0.8 |
Si | 0.4 | 0.0 | 0.5 |
Total | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, T.; Harel, Y.; Lellouche, J.-P.; Moshkovich, A.; Lapsker, I.; Laikhtman, A.; Rapoport, L. Tungsten Disulfide Inorganic Nanotubes Functionalized by PTFE for Friction Application. Lubricants 2021, 9, 78. https://doi.org/10.3390/lubricants9080078
Levin T, Harel Y, Lellouche J-P, Moshkovich A, Lapsker I, Laikhtman A, Rapoport L. Tungsten Disulfide Inorganic Nanotubes Functionalized by PTFE for Friction Application. Lubricants. 2021; 9(8):78. https://doi.org/10.3390/lubricants9080078
Chicago/Turabian StyleLevin, Tzuriel, Yifat Harel, Jean-Paul Lellouche, Alexey Moshkovich, Igor Lapsker, Alex Laikhtman, and Lev Rapoport. 2021. "Tungsten Disulfide Inorganic Nanotubes Functionalized by PTFE for Friction Application" Lubricants 9, no. 8: 78. https://doi.org/10.3390/lubricants9080078