Effects of Dual Exposure to the Herbicides Atrazine and Paraquat on Adult Climbing Ability and Longevity in Drosophila melanogaster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drosophila Lines and Husbandry
2.2. Climbing Ability
2.3. Longevity
3. Results
3.1. Climbing Ability
3.2. Longevity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pace, M.L.; Carpenter, S.R.; Cole, J.J. With and without warning: Managing ecosystems in a changing world. Front. Ecol. Environ. 2015, 13, 460–467. [Google Scholar] [CrossRef]
- Crain, C.M.; Kroeker, K.; Halpern, B.S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 2008, 11, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.C.; Loewen, C.J.G.; Vinebrooke, R.D.; Chimimba, C.T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Chang. Biol. 2016, 22, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Folt, C.L.; Chen, C.Y.; Moore, M.V.; Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 1999, 44, 864–877. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef]
- Piggott, J.J.; Townsend, C.R.; Matthaei, C.D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 2015, 5, 1538–1547. [Google Scholar] [CrossRef]
- Baker, N.T.; Stone, W.W. Estimated Annual Agricultural Pesticide Use for Counties of the Conterminous United States, 2008–2012; Data Series; U.S. Geological Survey: Reston, VA, USA, 2015; p. 18. [Google Scholar]
- Belloni, V.; Dessì-Fulgheri, F.; Zaccaroni, M.; Di Consiglio, E.; De Angelis, G.; Testai, E.; Santochirico, M.; Alleva, E.; Santucci, D. Early exposure to low doses of atrazine affects behavior in juvenile and adult CD1 mice. Toxicology 2011, 279, 19–26. [Google Scholar] [CrossRef]
- Coban, A.; Filipov, N.M. Dopaminergic toxicity associated with oral exposure to the herbicide atrazine in juvenile male C57BL/6 mice. J. Neurochem. 2007, 100, 1177–1187. [Google Scholar] [CrossRef]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef] [Green Version]
- Hayes, T.B.; Anderson, L.L.; Beasley, V.R.; de Solla, S.R.; Iguchi, T.; Ingraham, H.; Kestemont, P.; Kniewald, J.; Kniewald, Z.; Langlois, V.S.; et al. Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes. J. Steroid Biochem. Mol. Biol. 2011, 127, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Dodson, S.I.; Merritt, C.M.; Shannahan, J.P.; Shults, C.M. Low exposure concentrations of atrazine increase male production in Daphnia pulicaria. Environ. Toxicol. Chem. 1999, 18, 1568–1573. [Google Scholar] [CrossRef]
- Figueira, F.H.; de Aguiar, L.M.; da Rosa, C.E. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster. Comp. Biochem. Physiol. Part C 2017, 191, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Marcus, S.R.; Fiumera, A.C. Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. J. Insect Physiol. 2016, 91, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Thornton, B.J.; Elthon, T.E.; Cerny, R.L.; Siegfried, B.D. Proteomic analysis of atrazine exposure in Drosophila melanogaster (Diptera: Drosophilidae). Chemosphere 2010, 81, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Jocque, H.; Sirot, L.K.; Fiumera, A.C. Effects of atrazine exposure on male reproductive performance in Drosophila melanogaster. J. Insect Physiol. 2015, 72, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Przedborski, S.; Ischiropoulos, H. Reactive oxygen and nitrogen species: Weapons of neuronal destruction in models of Parkinson’s disease. Antioxid. Redox Signal. 2005, 7, 685–693. [Google Scholar] [CrossRef]
- Bonilla-Ramirez, L.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: Implication in autosomal recessive juvenile Parkinsonism. Gene 2013, 512, 355–363. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Bowling, K.; Funderburk, C.; Lawal, H.; Inamdar, A.; Wang, Z.; O’Donnell, J.M. Interaction of genetic and environmental factors in a Drosophila Parkinsonism model. J. Neurosci. 2007, 27, 2457–2467. [Google Scholar] [CrossRef]
- Weber, A.L.; Khan, G.F.; Magwire, M.M.; Tabor, C.L.; Mackay, T.F.C.; Anholt, R.R.H. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS ONE 2012, 7, e34745. [Google Scholar] [CrossRef]
- Shukla, A.K.; Pragya, P.; Chaouhan, H.S.; Tiwari, A.K.; Patel, D.K.; Abdin, M.Z.; Chowdhuri, D.K. Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. PLoS ONE 2014, 9, e98886. [Google Scholar] [CrossRef]
- Jimenez-Del-Rio, M.; Guzman-Martinez, C.; Velez-Pardo, C. The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochem. Res. 2010, 35, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.D.; Lydy, M.J. Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ. Toxicol. Chem. 2002, 21, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Jumarie, C.; Aras, P.; Boily, M. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere 2017, 168, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Koprivnikar, J. Interactions of environmental stressors impact survival and development of parasitized larval amphibians. Ecol. Appl. 2010, 20, 2263–2272. [Google Scholar] [CrossRef]
- De Mattos, I.M.; Soares, A.E.E.; Tarpy, D.R. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera. Ecotoxicology 2018, 27, 32–44. [Google Scholar] [CrossRef]
- Thiruchelvam, M.; Brockel, B.J.; Richfield, E.K.; Baggs, R.B.; Cory-Slechta, D.A. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: Environmental risk factors for Parkinson’s disease? Brain Res. 2000, 873, 225–234. [Google Scholar] [CrossRef]
- McGraw, L.A.; Fiumera, A.C.; Ramakrishnan, M.; Madhavarapu, S.; Clark, A.G.; Wolfner, M.F. Larval rearing environment affects several post-copulatory traits in Drosophila melanogaster. Biol. Lett. 2007, 3, 607–610. [Google Scholar] [CrossRef]
- Xie, M. Characterizing the Genetic Basis of Susceptibility to Atrazine Exposure in Male Drosophila Melanogaster. Ph.D. Thesis, State University of New York at Binghamton, Binghamton, NY, USA, 2015. [Google Scholar]
- Lovejoy, P.C.; Foley, K.E.; Conti, M.M.; Meadows, S.M.; Bishop, C.; Fiumera, A.C. The genetic basis of susceptibility to low dose paraquat and variation between the sexes in D. Melanogaster, under revision.
- Gargano, J.; Martin, I.; Bhandari, P.; Grotewiel, M. Rapid iterative negative geotaxis (RING): A new method for assessing age-related locomotor decline in Drosophila. Exp. Gerontol. 2005, 40, 386–395. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An Companion to Applied Regression, Second Edition 2011. Available online: https://cran.r-project.org/web/packages/car/index.html (accessed on 10 July 2017).
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Therneau, T.M. A Package for Survival Analysis in S. Available online: http://CRAN.R-project.org/package=survival (accessed on 10 July 2017).
- Patel, S.; Singh, V.; Kumar, A.; Gupta, Y.K.; Singh, M.P. Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb-and paraquat-induced Parkinson’s disease phenotype in mouse: Mechanism of neurodegeneration. Brain Res. 2006, 1081, 9–18. [Google Scholar] [CrossRef]
- Crombie, T.A.; Tang, L.; Choe, K.P.; Julian, D. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans. J. Exp. Biol. 2016, 219, 2201–2211. [Google Scholar] [CrossRef]
- Belden, J.B.; Lydy, M.J. Impact of atrazine on organophosphate insecticide toxicity. Environ. Toxicol. Chem. 2000, 19, 2266–2274. [Google Scholar] [CrossRef]
- Wang, Y.; An, X.; Shen, W.; Chen, L.; Jiang, J.; Wang, Q.; Cai, L. Individual and combined toxic effects of herbicide atrazine and three insecticides on the earthworm, Eisenia fetida. Ecotoxicology 2016, 25, 991–999. [Google Scholar] [CrossRef]
- Bratic, A.; Larsson, N.G. The role of mitochondria in aging. J. Clin. Investig. 2013, 123, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harshman, L.G.; Haberer, B.A. Oxidative stress resistance: A robust correlated response to selection in extended longevity lines of Drosophila melanogaster? J. Gerontol. Ser. A 2000, 55, B415–B417. [Google Scholar] [CrossRef] [PubMed]
- Landis, G.N.; Abdueva, D.; Skvortsov, D.; Yang, J.; Rabin, B.E.; Carrick, J.; Tavaré, S.; Tower, J. Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2004, 101, 7663–7668. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Alonso-Alvarez, C. Oxidative stress as a life-history constraint: The role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 2010, 24, 984–996. [Google Scholar] [CrossRef]
- Sohal, R.S.; Orr, W.C. The redox stress hypothesis of aging. Free Radic. Biol. Med. 2012, 52, 539–555. [Google Scholar] [CrossRef] [Green Version]
- Bardullas, U.; Giordano, M.; Rodríguez, V.M. Chronic atrazine exposure causes disruption of the spontaneous locomotor activity and alters the striatal dopaminergic system of the male Sprague–Dawley rat. Neurotoxicol. Teratol. 2011, 33, 263–272. [Google Scholar] [CrossRef]
- Fahim, M.A.; Shehab, S.; Nemmar, A.; Adem, A.; Dhanasekaran, S.; Hasan, M.Y. Daily subacute paraquat exposure decreases muscle function and substantia nigra dopamine level. Physiol. Res. 2013, 62, 313. [Google Scholar]
- Karuppagounder, S.S.; Ahuja, M.; Buabeid, M.; Parameshwaran, K.; Abdel-Rehman, E.; Suppiramaniam, V.; Dhanasekaran, M. Investigate the chronic neurotoxic effects of diquat. Neurochem. Res. 2012, 37, 1102–1111. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Limón-Pacheco, J.H.; Mendoza-Trejo, M.S.; González-Gallardo, A.; Hernández-Plata, I.; Giordano, M. Repeated exposure to the herbicide atrazine alters locomotor activity and the nigrostriatal dopaminergic system of the albino rat. NeuroToxicology 2013, 34, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Walters, J.L.; Lansdell, T.A.; Lookingland, K.J.; Baker, L.E. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 2015, 289, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Filipov, N.M.; Stewart, M.A.; Carr, R.L.; Sistrunk, S.C. Dopaminergic toxicity of the herbicide atrazine in rat striatal slices. Toxicology 2007, 232, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Dodd, C.A.; Xiao, S.; Krishna, S.; Ye, X.; Filipov, N.M. Gestational and lactational exposure to atrazine via the drinking water causes specific behavioral deficits and selectively alters monoaminergic systems in C57BL/6 mouse dams, juvenile and adult offspring. Toxicol. Sci. 2014, 141, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, J.; Cheng, C.M.; Sun, J.L.; Li, Z.; Wu, Y.L. Paraquat induces selective dopaminergic nigrostriatal degeneration in aging C57BL/6 mice. Chin. Med. J. 2005, 118, 1357–1361. [Google Scholar]
- Somayajulu-Niţu, M.; Sandhu, J.K.; Cohen, J.; Sikorska, M.; Sridhar, T.; Matei, A.; Borowy-Borowski, H.; Pandey, S. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci. 2009, 10, 88. [Google Scholar] [CrossRef]
- Jacquet, M.; Tilquin, M.; Ravanel, P.; Boyer, S. Increase in tolerance of Aedes aegypti larvae (Diptera: Culicidae) to the insecticide temephos after exposure to atrazine. Afr. Entomol. 2015, 23, 110–119. [Google Scholar] [CrossRef]
- Poupardin, R.; Reynaud, S.; Strode, C.; Ranson, H.; Vontas, J.; David, J.P. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: Impact on larval tolerance to chemical insecticides. Insect Biochem. Mol. Biol. 2008, 38, 540–551. [Google Scholar] [CrossRef]
- Chapman, T.; Liddle, L.F.; Kalb, J.M.; Wolfner, M.F.; Partridge, L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 1995, 373, 241–244. [Google Scholar] [CrossRef]
- Kuijper, B.; Stewart, A.D.; Rice, W.R. The cost of mating rises nonlinearly with copulation frequency in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 2006, 19, 1795–1802. [Google Scholar] [CrossRef]
- Nandy, B.; Gupta, V.; Sen, S.; Udaykumar, N.; Samant, M.A.; Ali, S.Z.; Prasad, N.G. Evolution of mate-harm, longevity and behaviour in male fruit flies subjected to different levels of interlocus conflict. BMC Evol. Biol. 2013, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Ravi Ram, K.; Wolfner, M.F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Comp. Biol. 2007, 47, 427–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, T.; Takahisa, M.; Smith, H.K.; Partridge, L. Interactions of mating, egg production and death rates in females of the Mediterranean fruitfly, Ceratitis capitata. Proc. R. Soc. Lond. Ser. B 1998, 265, 1879–1894. [Google Scholar] [CrossRef] [PubMed]
Treatment | Food | Adult Exposure † |
---|---|---|
1 | Control Food | 1% sucrose |
2 | Control Food | 200 µM paraquat in 1% sucrose |
3 | Control Food | 5 mM paraquat in 1% sucrose |
4 | 2 ppM Atrazine Food | 1% sucrose |
5 | 2 ppM Atrazine Food | 200 µM paraquat in 1% sucrose |
6 | 2 ppM Atrazine Food | 5 mM paraquat in 1% sucrose |
Grouping | Factor † | d.f. | Sum of Squares | F-Value | p-Value § |
---|---|---|---|---|---|
200 µM PQ | Atz | 1 | 0.05 | 0.012 | 0.912 |
200 µM PQ | 1 | 45.47 | 10.5098 | 0.0013 | |
Atz: 200 µM PQ | 1 | 5.34 | 1.2344 | 0.267 | |
Residuals | 609 | 2634.93 | - | - | |
5 mM PQ | Atz | 1 | 3.99 | 0.924 | 0.337 |
5 mM PQ | 1 | 56.38 | 13.046 | <0.001 | |
Atz: 5 mM PQ | 1 | 0.01 | 0.0014 | 0.970 | |
Residuals | 593 | 2562.78 | - | - |
Grouping | Factor † | d.f. | Sum of Squares | F-Value | p-Value § |
---|---|---|---|---|---|
200 µM PQ | Atz | 1 | 7.44 | 1.753 | 0.186 |
200 µM PQ | 1 | 46.90 | 11.055 | <0.001 | |
Atz: 200 µM PQ | 1 | 12.30 | 2.898 | 0.089 | |
Residuals | 637 | 2702.34 | - | - | |
5 mM PQ | Atz | 1 | 2.2 | 0.560 | 0.455 |
5 mM PQ | 1 | 193.3 | 49.270 | <0.001 | |
Atz: 5 mM PQ | 1 | 5.3 | 1.351 | 0.246 | |
Residuals | 639 | 2507.0 | - | - |
Grouping | Term † | Hazard Ratio ‡ | p-Value § |
---|---|---|---|
200 µM PQ | Atz | 0.685 | <0.001 |
200 µM PQ | 0.838 | 0.071 | |
Atz: 200 µM PQ | 1.507 | 0.0056 | |
Block | - | <0.001 | |
5 mM PQ | Atz | 0.709 | 0.0013 |
5 mM PQ | 0.839 | 0.067 | |
Atz: 5 mM PQ | 1.822 | <0.001 | |
Block | - | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovejoy, P.C.; Fiumera, A.C. Effects of Dual Exposure to the Herbicides Atrazine and Paraquat on Adult Climbing Ability and Longevity in Drosophila melanogaster. Insects 2019, 10, 398. https://doi.org/10.3390/insects10110398
Lovejoy PC, Fiumera AC. Effects of Dual Exposure to the Herbicides Atrazine and Paraquat on Adult Climbing Ability and Longevity in Drosophila melanogaster. Insects. 2019; 10(11):398. https://doi.org/10.3390/insects10110398
Chicago/Turabian StyleLovejoy, Pamela C., and Anthony C. Fiumera. 2019. "Effects of Dual Exposure to the Herbicides Atrazine and Paraquat on Adult Climbing Ability and Longevity in Drosophila melanogaster" Insects 10, no. 11: 398. https://doi.org/10.3390/insects10110398
APA StyleLovejoy, P. C., & Fiumera, A. C. (2019). Effects of Dual Exposure to the Herbicides Atrazine and Paraquat on Adult Climbing Ability and Longevity in Drosophila melanogaster. Insects, 10(11), 398. https://doi.org/10.3390/insects10110398