Morphological and Molecular Analysis of Australian Earwigs (Dermaptera) Points to Unique Species and Regional Endemism in the Anisolabididae Family
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, Identification, and Morphology
2.2. Barcoding
2.3. Phylogeny
3. Results
3.1. Sampling, Identification, and Morphology
3.2. Barcoding
3.3. Phylogeny
4. Discussion
4.1. The Utility of Barcoding for Earwigs
4.2. Distribution of Anisolabididae
4.3. Conflict between Morphological and Molecular Inferences
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Key to the Anisolabididae Morphospecies of the Southern Australian Grain Belt
- 1
- Forceps rounded, teeth may be present, lifting of penultimate ventral sternite reveals parameres lying within the body cavity, although they may be anteriorly recessed………………………………………………………………………………………………………………………………………..…....…..3
- 2
- Forceps straight, short, no true teeth but the medial surface may be slightly ridged, no parameres present……………………………………………………………………………………………………………………………………………………………….....15
- 3
- Patterned/banded on dorsal surface, mixture of red, yellow, brown; medial forceps tooth on inner margins of both forceps near base…………………………………………………………………………………………………………………………….………………....…Anisolabis sp. 1
- 4
- No patterning, uniform colour or otherwise continuous gradient from light brown to dark brown/black, forceps teeth may be present, if so are dorsoventrally oriented and protruding from the dorsal surface near the base………………………………………..……………………………………5
- 5
- From South Australia; body length including forceps generally lesser than 15 mm; forceps roughly as wide as long………………………………………………………………………………………………………………………..…………………………………......……7
- 6
- From Western Australia; body length including forceps generally greater than 15 mm; forceps longer than wide…………………………………………………………………………………………………………………...…………….……………….……………....13
- 7
- Forceps roughly as wide as long and curving upward, large dorsoventrally oriented teeth on dorsal surface near the base of the forceps, parameres roughly twice as long as wide…………………………………...……………....…………………………………………….Gonolabis nr. gilesi
- 8
- Forceps roughly as wide as long and not curving upward, no teeth, parameres roughly 1.5 times as long as wide………………………………………………………………………………………………...…………………………………………………………….…..9
- 9
- Apical angle of paramere sharp and clearly acute……………………………………………………………………………………….Gonolabis forcipata
- 10
- Apical angle of paramere rounded or with a slight bump which protrudes from the external margin.……………………………………………………………………………………………………..………………………………………………………11
- 11
- Angle of external paramere margin more or less straight but with concavity along the anterior edge of the angle……………………………………………………………………………………………………………………………………....……….Gonolabis sp. 2
- 12
- Angle of external paramere margin rounded, external apical margin with obtuse-angled bump which is proceeds straight down on the internal apical margin………….…………………………………………………………………………………………………………………………..Gonolabis sp. 3
- 13
- Lateral internal edges of forceps with an almost right-angled corner near the anterior end with a roughly parallel region, thoracic sternites as dark as dorsal surface in places; femur uniformly brown or with a proximal light patch, parameres much longer than wide with no curvature on outer edges and acuminate tip……………………………………………………………………………………………………………...Anisolabis sp. 2
- 14
- No parallel region near the base of the forceps, lateral internal edge smoothly curved (with small ridges), viewed from the side a triangular ridge is apparent near the posterior end of the forceps but this is not a pronounced tooth, parameres as long as wide and slightly pinched toward the tip forming a kind of snout……………………………………………………………………………..………..………………..Gonolabis sp. 1
- 15
- Patterned/banded on dorsal surface, especially the head; mixture of red, yellow, brown, red; lateral forceps tooth on inner margin near base…………………………………………………………………………………………………………………………………....…………...Anisolabis sp. 1
- 16
- No patterning; uniform colour or otherwise gradient from light to dark; small bumps on internal margins of forceps but no true teeth……………………………………………………………………………………………………………………………………………………..…………17
- 17
- From South Australia; body length including forceps generally lesser than 15 mm………………………………………………………………….....19
- 18
- From Western Australia; body length including forceps generally greater than 15 mm………………………………………………………….….....21
- 19
- Small dorsal bump near attachment of forceps, not a true tooth but distinct……………………………………………………….Gonolabis nr. gilesi
- 20
- No dorsal bump near attachment of forceps, not to be confused with the lateral ridge where the forceps slide under the ultimate tergite at the attachment site……………………………………………………………………………………………………………………………..Gonolabis forcipata
- 21
- Forceps clearly curved upwards near tip; setae on final sternite very long; small projections on posterior edge of final dorsal tergite that align with forceps attachments creating straight edge between forceps attachment; thoracic sternites as dark as dorsal surface in places; femur uniformly brown or with a proximal light patch………………………………………………………………………..……….…………...Gonolabis sp. 1
- 22
- Forceps more or less straight towards tip; final sternite glabrous or covered in moderate length setae; pronounced projections on posterior edge of final dorsal tergite that align with forceps creating concave edge between forceps attachment; thoracic sternites lighter than dorsal surface; femur as dark as dorsal surface near trochanter and lighter towards tibia………………………………………………….....Anisolabis sp. 2
References
- Popham, E.J. The geographical distribution of the Dermaptera (Insecta) with reference to continental drift. J. Nat. Hist. 2000, 34, 2007–2027. [Google Scholar] [CrossRef]
- Haas, F. Biodiversity of Dermaptera. In Insect Biodiversity and Society; Foottit, R.G., Adler, P.H., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2018; Volume 2, pp. 315–334. [Google Scholar]
- Steinmann, H. World Catalogue of Dermaptera; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Haas, F. Earwig Research Centre. Available online: http://www.earwigs-online.de/ (accessed on 15 February 2019).
- Steinmann, H. Das Tierreich. In Dermaptera. Catadermaptera I. Pygidicranidae; Schultz, F.E., Ed.; Walter de Gruyter: Berlin, Germany, 1986; Volume 102, pp. 1–336. [Google Scholar]
- Steinmann, H. Das Tierreich. In Dermaptera. Catadermaptera II; Schultz, F.E., Ed.; Walter de Gruyter: Berlin, Germany, 1989; Volume 105, pp. 1–504. [Google Scholar]
- Steinmann, H. Das Tierreich. In Dermaptera. Eudermaptera I; Schultz, F.E., Ed.; Walter de Gruyter: Berlin, Germany, 1990; Volume 106, pp. 1–558. [Google Scholar]
- Steinmann, H. Das Tierreich. In Dermaptera. Eudermaptera II; Schultz, F.E., Ed.; Walter de Gruyter: Berlin, Germany, 1993; Volume 108, pp. 1–711. [Google Scholar]
- Cassis, G. Dermaptera. In Zoological Catalogue of Australia: Archaeognatha, Zygentoma, Blattodea, Isoptera, Mantodea, Dermaptera, Phasmatodea, Embioptera, Zoraptera; Houston, W.W.K., Wells, A., Eds.; CSIRO Publishing: Clayton, Australia, 1998; Volume 23, pp. 279–346. [Google Scholar]
- Haas, F. The phylogeny of the Forficulina, a suborder of the Dermaptera. Syst. Entomol. 1995, 20, 85–98. [Google Scholar] [CrossRef]
- Haas, F. Earwigs of Australia. Available online: http://www.earwigs-online.de/AU/au.html (accessed on 15 February 2019).
- Rentz, D.C.F.; Kevan, D.K.M. Dermaptera (Earwigs). In The Insects of Australia: A Textbook for Students and Research Workers; Naumann, I.D., Carne, P.B., Lawrence, J.F., Nielsen, E.S., Spradbery, J.P., Taylor, R.W., Whitten, M.J., Littlejohn, M.J., Eds.; Melbourne University Press: Melbourne, Australia, 1991; Volume 1, pp. 360–368. [Google Scholar]
- Colgan, D.J.; Cassis, G.; Beacham, E. Setting the molecular phylogenetic framework for the Dermaptera. Insect Syst. Evol. 2003, 34, 65–79. [Google Scholar]
- Giles, E.T. The comparative external morphology and affinities of the Dermaptera. Trans. R. Entomol. Soc. Lond. 1963, 115, 95–164. [Google Scholar] [CrossRef]
- Giles, E.T. The relationship between the Hemimerina and the other Dermaptera: a case for reinstating the Hemimerina within the Dermaptera, based upon a numerical procedure. Trans. R. Entomol. Soc. Lond. 1974, 126, 189–206. [Google Scholar] [CrossRef]
- Jarvis, K.J.; Haas, F.; Whiting, M.F. Phylogeny of earwigs (Insecta: Dermaptera) based on molecular and morphological evidence: Reconsidering the classification of Dermaptera. Syst. Entomol. 2005, 30, 442–453. [Google Scholar] [CrossRef]
- Kocarek, P.; John, V.; Hulva, P. When the body hides the ancestry: Phylogeny of morphologically modified epizoic earwigs based on molecular evidence. PLoS ONE 2013, 8, e66900. [Google Scholar] [CrossRef]
- Naegle, M.A.; Mugleston, J.D.; Bybee, S.M.; Whiting, M.F. Reassessing the phylogenetic position of the epizoic earwigs (Insecta: Dermaptera). Mol. Phylogenet. Evol. 2016, 100, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Popham, E.J. The mutual affinities of the major earwig taxa (Insecta, Dermaptera). J. Zool. Syst. Evol. Res. 1985, 23, 199–214. [Google Scholar] [CrossRef]
- cesar Pty. Ltd. Database of Reports of Earwig Damage to Grain Crops 1996–2016. Unpublished data. 2018. [Google Scholar]
- Murray, D.A.H.; Clarke, M.B.; Ronning, D.A. Estimating invertebrate pest losses in six major Australian grain crops. Aust. J. Entomol. 2013, 52, 227–241. [Google Scholar] [CrossRef]
- Passlow, T. Insect pests of grain sorghum. Qld. Agric. J. 1973, 99, 620–628. [Google Scholar]
- Kocarek, P.; Dvorak, L.; Kirstova, M. Euborellia annulipes (Dermaptera: Anisolabididae), a new alien earwig in Central European greenhouses: potential pest or beneficial inhabitant? Appl. Entomol. Zool. 2015, 50, 201–206. [Google Scholar] [CrossRef]
- Mueller, T.F.; Blommers, L.H.M.; Mols, P.J.M. Earwig (Forficula auricularia) predation on the woolly apple aphid, Eriosoma lanigerum. Entomol. Exp. Appl. 1988, 47, 142–152. [Google Scholar] [CrossRef]
- Lenfant, C.; Lyoussoufi, A.; Chen, X.; Faivre d’Arcier, F.; Sauphanor, B. Potentialités prédatrices de Forficula auricularia sur le psylle du poirier Cacopsylla pyri. Entomol. Exp. Appl. 1994, 73, 51–60. [Google Scholar] [CrossRef]
- Nicholas, A.H.; Spooner-Hart, R.N.; Vickers, R.A. Abundance and natural control of woolly-apple aphid Eriosoma lanigerum in an Australian apple orchard IPM program. BioControl 2005, 50, 271–291. [Google Scholar] [CrossRef]
- Maher, B.J.; Logan, D.P. European earwigs, Forficula auricularia, and predation of scale insects in organic and conventionally managed kiwifruit. N. Z. Plant Prot. 2007, 60, 249–253. [Google Scholar]
- He, X.Z.; Wang, Q.; Xu, J. European earwig as a potential biological control agent of apple leaf-curling midge. N. Z. Plant Prot. 2008, 61, 343–349. [Google Scholar]
- Dib, H.; Sauphanor, B.; Capowiez, Y. Report on the life history traits of the generalist predator Forficula auricularia (Dermaptera: Forficulidae) in organic apple orchards in southeastern France. Can. Entomol. 2017, 149, 56–72. [Google Scholar] [CrossRef]
- Romeu-Dalmau, C.; Pinol, J.; Espadaler, X. Friend or foe? The role of earwigs in a Mediterranean organic citrus orchard. Biol. Control 2012, 63, 143–149. [Google Scholar] [CrossRef]
- Situmorang, J.; Gabriel, B.P. Biology of two species of predatory earwigs Nala lividipes (Dufour) (Dermaptera: Labiduridae) and Euborellia annulata (Fabricius) (Dermaptera: Carcinophoridae). Philipp. Entomol. 1988, 7, 215–238. [Google Scholar]
- Price, J.F.; Shepard, M. Calosoma sayi and Labidura riparia predation on Noctuid prey in soybeans and locomotor activity. Environ. Entomol. 1978, 7, 653–656. [Google Scholar] [CrossRef]
- Horne, P.A.; Edward, C.L. Pheonology and food preferences of Labidura truncata Kirby (Dermaptera: Labiduridae) in Western Victoria. J. Aust. Entomol. Soc. 1995, 34, 101–104. [Google Scholar] [CrossRef]
- Giles, E.T.; Webb, G.C. The systematics and karyotype of Labidura truncata Kirby (Dermaptera: Labiduridae). Aust. J. Entomol. 1972, 11, 253–256. [Google Scholar] [CrossRef]
- Hoshiba, H.; Sakai, S.; Hoshiba, E. Karyotype and C-banding analysis of the common seaside earwig, Anisolabis maritima (Bonelli). Proc. Jpn. Acad. Ser. B 1984, 60, 235–237. [Google Scholar] [CrossRef]
- Mclean, M.; Horridge, G.A. Structural changes in the light- and dark-adapted eyes of the Australian earwig Labidura riparia truncata (Dermaptera). Tissue Cell 1977, 9, 653–666. [Google Scholar] [CrossRef]
- Moore, A.J.; Wilson, P. The evolution of sexually dimoprhic earwig forceps: social interactions among toothed earwigs, Vostox apicendentatus. Behav. Ecol. 1993, 4, 40–48. [Google Scholar] [CrossRef]
- Briceño, R.D.; Eberhard, W.G. The functional morphology of male cerci and associated characters in 13 species of tropical earwigs (Dermaptera: Forficulidae, Labiidae, Carcinophoridae, Pygidicranidae). Smithson. Contrib. Zool. 1995, 555, 1–63. [Google Scholar] [CrossRef]
- Radesäter, T.; Halldórsdóttir, H. Two male types of the common earwig: Male-male competition and mating success. Ethology 1993, 95, 89–96. [Google Scholar] [CrossRef]
- Tomkins, J.L.; Simmons, L.W. Dimorphisms and fluctuating asymmetry in the forceps of male earwigs. J. Evol. Biol. 1996, 9, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, Y. Pre- and postcopulatory sexual selection and the evolution of sexually dimorphic traits in earwigs (Dermaptera). Entomol. Sci. 2014, 17, 139–166. [Google Scholar] [CrossRef]
- Kamimura, Y.; Lee, C.-Y. Mating and genital coupling in the primitive earwig species Echinosoma denticulatum (Pygidicranidae): Implications for genital evolution in dermapteran phylogeny. Arthropod Syst. Phylogeny 2014, 72, 11–21. [Google Scholar]
- Brindle, A. A revision of the subfamily Labidurinae (Dermaptera, Labiduridae). Ann. Mag. Nat. Hist. 1966, 9, 239–269. [Google Scholar] [CrossRef]
- Hebert, P.D.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed]
- Will, K.W.; Rubinoff, D. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 2004, 20, 47–55. [Google Scholar] [CrossRef]
- DeSalle, R.; Egan, M.G.; Siddall, M. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1905–1916. [Google Scholar] [CrossRef] [PubMed]
- Rubinoff, D.; Holland, B.S. Between two extremes: Mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 2005, 54, 952–961. [Google Scholar] [CrossRef] [PubMed]
- DeSalle, R. Species discovery versus species identification in DNA barcoding efforts: Response to Rubinoff. Conserv. Biol. 2006, 20, 1545–1547. [Google Scholar] [CrossRef]
- Rubinoff, D.; Cameron, S.; Will, K. A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J. Hered. 2006, 97, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.P.; Paulay, G. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biol. 2005, 3, e422. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.C.; Sperling, F.A.H. Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Syst. Entomol. 2008, 33, 613–634. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, L.; Wang, Z.; Lo, N.; Che, Y. Exploring the diversity of Asian Cryptocercus (Blattodea: Cryptocercidae): Species delimitation based on chromosome numbers, morphology and molecular analysis. Invertebr. Syst. 2018, 32, 69. [Google Scholar] [CrossRef]
- Medrano, S.; Krug, P.J.; Gosliner, T.M.; Kumar, A.B. Systematics of Polybranchia Pease, 1860 (Mollusca: Gastropoda: Sacoglossa) based on molecular and morphological data. Zool. J. Linn. Soc. 2018, 1–40. [Google Scholar] [CrossRef]
- Ohira, H.; Kaneko, S.; Faulks, L.; Tsutsumi, T. Unexpected species diversity within Japanese Mundochthonius pseudoscorpions (Pseudoscorpiones: Chthoniidae) and the necessity for improved species diagnosis revealed by molecular and morphological examination. Invertebr. Syst. 2018, 32, 259–277. [Google Scholar] [CrossRef]
- Skarzynski, D.; Piwnik, A.; Porco, D. Integrating morphology and DNA barcodes for species delimitation within the species complex Xenylla maritima (Collembola: Hypogastruridae). Arthropod Syst. Phylogeny 2018, 76, 31–43. [Google Scholar]
- Brower, A.V.Z. A new mimetic species of Heliconius (Lepidotera: Nymphalidae), from southeastern Colombia, revealed by cladistic analysis of mitochondrial DNA sequences. Zool. J. Linn. Soc. 1996, 116, 317–332. [Google Scholar] [CrossRef]
- Lamb, R.J.; Wellington, W.G. Techniques for studying the behavior and ecology of the European earwig, Forficula Auricularia (Dermaptera: Forficulidae). Can. Entomol. 1974, 106, 881–888. [Google Scholar] [CrossRef]
- Wirth, T.; Le Guellec, R.; Vancassel, M.; Veuille, M. Molecular and reproductive characterisation of sibling species in the European earwig (Forficula auricularia). Evolution 1998, 52, 260–265. [Google Scholar] [PubMed]
- Quarrell, S.R.; Arabi, J.; Suwalski, A.; Veuille, M.; Wirth, T.; Allen, G.R. The invasion biology of the invasive earwig, Forficula auricularia, in Australasian ecosystems. Biol. Invasions 2017, 20, 1553–1565. [Google Scholar] [CrossRef]
- Srivastava, G.K. On the higher classification of Anisolabididae (Insecta: Dermaptera) with a check-list of genera and species. Rec. Zool. Surv. India 1999, 97, 73–100. [Google Scholar]
- Tomkins, J.L.; Simmons, L.W. Patterns of fluctuating asymmetry in earwig forceps: No evidence for reliable signalling. Proc. R. Soc. B Biol. Sci. 1995, 259, 89–96. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open source platform for biological image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Huemer, P.; Mutanen, M.; Sefc, K.M.; Hebert, P.D.N. Testing DNA barcode performance in 1000 species of European Lepidoptera: Large geographic distances have small genetic impacts. PLoS ONE 2014, 9, e115774. [Google Scholar] [CrossRef] [PubMed]
- Čandek, K.; Kuntner, M. DNA barcoding gap: Reliable species identification over morphological and geographical scales. Mol. Ecol. Resour. 2015, 15, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetic Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.S.; Metzger, A.; Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 1991, 10, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Geller, J.; Meyer, C.; Parker, M.; Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 2013, 13, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Song, H.; Buhay, J.E.; Whiting, M.F.; Crandall, K.A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 2008, 105, 13486–13491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System. Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Pons, J. DNA-based identification of preys from non-destructive, total DNA extractions of predators using arthropod universal primers. Mol. Ecol. Notes 2006, 6, 623–626. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamimura, Y. In search of the origin of twin penises: Molecular phylogeny of earwigs (Dermaptera: Forficulina) based on mitochondrial and nuclear ribosomal RNA genes. Ann. Entomol. Soc. Am. 2004, 97, 903–912. [Google Scholar] [CrossRef]
- Clark, K.; Karsch-Mizrahi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef]
- Buckman, R.S.; Mound, L.A.; Whiting, M.F. Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Syst. Entomol. 2013, 38, 123–133. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Stamatakis, A. Using RAxML to infer phylogenies. Curr. Protoc. Bioinforma. 2015, 51, 6–14. [Google Scholar]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods); Sainaur Associates: Sunderland, MA, USA, 2003. [Google Scholar]
- Thomson, R.C.; Shaffer, H.B. Sparse supermatrices for phylogenetic inference: Taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst. Biol. 2010, 59, 42–58. [Google Scholar] [CrossRef]
- Aberer, A.J.; Krompass, D.; Stamatakis, A. Pruning rogue taxa improves phylogenetic accuracy: An efficient algorithm and webservice. Syst. Biol. 2013, 62, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Kim, M.I.; Kim, M.J.; Kim, I. Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae), and phylogeny of Polyneoptera. PLoS ONE 2012, 7, e42056. [Google Scholar] [CrossRef]
- Shimodaira, H.; Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999, 16, 1114–1116. [Google Scholar] [CrossRef]
- Heled, J.; Drummond, A.J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 2010, 27, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.R.; Drummond, A.J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017, 17, 42. [Google Scholar] [CrossRef]
- Barido-Sottani, J.; Bošková, V.; du Plessis, L.; Kühnert, D.; Magnus, C.; Mitov, V.; Müller, N.F.; Pečerska, J.; Rasmussen, D.A.; Zhang, C.; et al. Taming the BEAST—A community teaching material resource for BEAST 2. Syst. Biol. 2018, 67, 170–174. [Google Scholar] [CrossRef]
- Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 2008, 253, 769–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Yu, G.; Smith, D.; Zhu, H.; Guan, Y.; Lam, T.T.-Y. ggtree: An R package fpr visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Kamimura, Y.; Lee, C.-Y. Genital morphology and mating behaviour of Allostethus (Dermaptera), an earwig genus of enigmatic phylogenetic position. Arthropod Syst. Phylogeny 2014, 72, 331–343. [Google Scholar]
- Kamimura, Y.; Nishikawa, M.; Lee, C.-Y. The earwig fauna (Insecta: Dermaptera) of Penang Island, Malaysia, with descriptions of two new species. ZooTaxa 2016, 4084, 233–257. [Google Scholar] [CrossRef] [PubMed]
- Yeo, D.; Puniamoorthy, J.; Ngiam, R.W.J.; Meier, R. Towards holomorphology in entomology: Rapid and cost-effective adult-larva matching using NGS barcodes. Syst. Entomol. 2018, 43, 678–691. [Google Scholar] [CrossRef]
- Wilson, J.J.; Rougerie, R.; Schonfeld, J.; Janzen, D.H.; Hallwachs, W.; Hajibabaei, M.; Kitching, I.J.; Haxaire, J.; Hebert, P.D.N. When species matches are unavailable are DNA barcodes correctly assigned to higher taxa? An assessment using sphingid moths. BMC Ecol. 2011, 11, 18. [Google Scholar] [CrossRef]
- Goldberg, J.; Trewick, S.A. Exploring phylogeographic congruence in an island system. Insects 2011, 2, 369–399. [Google Scholar] [CrossRef]
- Kwong, S.; Srivathsan, A.; Meier, R. An update on DNA barcoding: Low species coverage and numerous unidentified sequences. Cladistics 2012, 28, 639–644. [Google Scholar] [CrossRef]
- Kvist, S. Barcoding in the dark?: A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol. Phylogenet. Evol. 2013, 69, 39–45. [Google Scholar] [CrossRef]
- Packer, L.; Monckton, S.K.; Onuferko, T.M.; Ferrari, R.R. Validating taxonomic identifications in entomological research. Insect Conserv. Divers. 2018, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Krebs, J.R.; Wilson, J.D.; Bradbury, R.B.; Siriwardena, G.M. The second silent spring? Nature 1999, 400, 611–612. [Google Scholar] [CrossRef]
- Robinson, R.A.; Sutherland, W.J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 2002, 39, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L.; Jonsen, I. Effect of habitat patch on and diversity of insects in an agricultural landscape. Am. Nat. 2008, 1, 197–205. [Google Scholar]
- Duelli, P.; Obrist, M.K.; Schmatz, D.R. Biodiversity evaluation in agricultural landscapes: Above-ground insects. Agric. Ecosyst. Environ. 1999, 74, 33–64. [Google Scholar] [CrossRef]
- Hendrickx, F.; Maelfait, J.P.; Van Wingerden, W.; Schweiger, O.; Speelmans, M.; Aviron, S.; Augenstein, I.; Billeter, R.; Bailey, D.; Bukacek, R.; et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 2007, 44, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Harvey, M.S. Short-range endemism among the Australian fauna: Some examples from non-marine environments. Invertebr. Syst. 2002, 16, 555–570. [Google Scholar] [CrossRef]
- Gordon, C.K. State of the Australian Grains Industry 2016; GrainGrowers Limited: Sydney, Australia, 2016. [Google Scholar]
- Hoffmann, A.A.; Weeks, A.R.; Nash, M.A.; Mangano, G.P.; Umina, P.A. The changing status of invertebrate pests and the future of pest management in the Australian grains industry. Aust. J. Exp. Agric. 2008, 48, 1481–1493. [Google Scholar] [CrossRef]
- Kamimura, Y.; Nishikawa, M.; Lee, C.-Y. A new earwig of the genus Echinosoma from Penang Island, Peninsular Malaysia, with notes on the taxonomic and nomenclatural problems of the genus Cranopygia (Insecta, Dermaptera, Pygidicranidae. ZooKeys 2016, 636, 51–65. [Google Scholar] [CrossRef]
- Kamimura, Y. Possible removal of rival sperm by the elongated genitalia of the earwig, Euborellia plebeja. Zoolog. Sci. 2000, 17, 667–672. [Google Scholar] [CrossRef]
- Kamimura, Y. Effects of repeated mating and polyandry on the fecundity, fertility and maternal behaviour of female earwigs, Euborellia plebeja. Anim. Behav. 2003, 65, 205–214. [Google Scholar] [CrossRef]
- Kamimura, Y. Last-male paternity of Euborellia plebeja, an earwig with elongated genitalia and sperm-removal behavior. J. Ethol. 2005, 23, 35–41. [Google Scholar] [CrossRef]
- Kamimura, Y. Promiscuity and elongated sperm storage organs work cooperatively as a cryptic female choice mechanism in an earwig. Anim. Behav. 2013, 85, 377–383. [Google Scholar] [CrossRef]
- van Lieshout, E.; Elgar, M.A. Longer exaggerated male genitalia confer defensive sperm-competitive benefits in an earwig. Evol. Ecol. 2011, 25, 351–362. [Google Scholar] [CrossRef]
- Eberhard, W.G. Male-female conflict and genitalia: Failure to confirm predictions in insects and spiders. Biol. Rev. Camb. Philos. Soc. 2004, 79, 121–186. [Google Scholar] [CrossRef] [PubMed]
- Arnqvist, G.; Rowe, L. Correlated evolution of male and female morphologies in water striders. Evolution 2002, 56, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Losos, J.B. Uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim. Behav. 1999, 58, 1319–1324. [Google Scholar] [CrossRef]
- Song, H.; Bucheli, S.R. Comparison of phylogenetic signal between male genitalia and non-genital characters in insect systematics. Cladistics 2010, 26, 23–35. [Google Scholar] [CrossRef]
PC1 | PC2 | PC3 | |
---|---|---|---|
Component Loadings | |||
Basal width of forceps | 0.370 | −0.587 | 0.593 |
Forceps asymmetry index | 0.733 | 0.017 | 0.026 |
Paramere length-width ratio | 0.417 | 0.757 | 0.163 |
Forceps length-width ratio | −0.389 | 0.285 | 0.788 |
Eigenvalues | |||
Standard deviation | 1.292 | 1.051 | 1.003 |
Variance explained | 0.417 | 0.276 | 0.252 |
Cumulative variance explained | 0.417 | 0.693 | 0.945 |
N | Forficula auricularia | Labidura truncata | Nala lividipes | Anisolabis sp. 1 | Anisolabis sp. 2 | Gonolabis forcipata | Gonolabis nr. gilesi | Gonolabis sp. 1 | Gonolabis sp. 2 | Gonolabis sp. 3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Forficula auricularia | 39 | 0.009 (0.003) | 0.015 | 0.016 | 0.015 | 0.016 | 0.016 | 0.015 | 0.015 | 0.015 | 0.015 |
Labidura truncata | 33 | 0.222 | 0.007 (0.002) | 0.014 | 0.014 | 0.015 | 0.015 | 0.015 | 0.014 | 0.014 | 0.015 |
Nala lividipes | 26 | 0.227 | 0.181 | 0.005 (0.001) | 0.014 | 0.015 | 0.015 | 0.015 | 0.014 | 0.015 | 0.016 |
Anisolabis sp. 1 | 17 | 0.220 | 0.178 | 0.194 | 0.008 (0.002) | 0.012 | 0.013 | 0.013 | 0.012 | 0.013 | 0.013 |
Anisolabis sp. 2 | 5 | 0.228 | 0.200 | 0.200 | 0.105 | 0.001 (0.001) | 0.013 | 0.013 | 0.012 | 0.013 | 0.015 |
Gonolabis forcipata | 8 | 0.226 | 0.209 | 0.199 | 0.145 | 0.154 | 0.017 (0.003) | 0.014 | 0.013 | 0.014 | 0.015 |
Gonolabis nr. gilesi | 3 | 0.222 | 0.198 | 0.202 | 0.136 | 0.139 | 0.179 | 0.002 (0.001) | 0.011 | 0.013 | 0.014 |
Gonolabis sp. 1 | 12 | 0.216 | 0.189 | 0.196 | 0.117 | 0.121 | 0.151 | 0.104 | 0.040 (0.007) | 0.011 | 0.014 |
Gonolabis sp. 2 | 4 | 0.217 | 0.196 | 0.214 | 0.151 | 0.154 | 0.178 | 0.151 | 0.115 | 0.013 (0.002) | 0.013 |
Gonolabis sp. 3 | 2 | 0.238 | 0.199 | 0.221 | 0.139 | 0.162 | 0.182 | 0.195 | 0.169 | 0.166 | 0.000 (0.000) |
N | Anisolabis sp. 1 | Anisolabis sp. 2 | Gonolabis forcipata | Gonolabis nr. gilesi | Gonolabis sp. 1 | Gonolabis sp. 2 | Gonolabis sp. 3 | |
---|---|---|---|---|---|---|---|---|
Anisolabis sp. 1 | 11 | 0.016 (0.004) | 0.019 | 0.022 | 0.021 | 0.020 | 0.023 | 0.022 |
Anisolabis sp. 2 | 5 | 0.186 | 0.001 (0.001) | 0.022 | 0.020 | 0.020 | 0.022 | 0.023 |
Gonolabis forcipata | 8 | 0.249 | 0.267 | 0.020 (0.005) | 0.022 | 0.022 | 0.023 | 0.024 |
Gonolabis nr. gilesi | 3 | 0.230 | 0.214 | 0.254 | 0.001 (0.001) | 0.014 | 0.021 | 0.022 |
Gonolabis sp. 1 | 16 | 0.221 | 0.194 | 0.268 | 0.106 | 0.054 (0.012) | 0.020 | 0.021 |
Gonolabis sp. 2 | 5 | 0.282 | 0.258 | 0.305 | 0.221 | 0.217 | 0.019 (0.004) | 0.023 |
Gonolabis sp. 3 | 2 | 0.234 | 0.262 | 0.315 | 0.265 | 0.252 | 0.294 | 0.004 (0.003) |
Individual | Morphospecies | Family | cox1 | cob | 28S | tuba1 |
---|---|---|---|---|---|---|
167 | Anisolabis sp. 1 | Anisolabididae | MK399508 | MK399441 | MK399637 | - |
173 | Anisolabididae | MK399511 | MK399442 | MK399638 | - | |
253 | Anisolabididae | MK399540 | MK399447 | MK399643 | - | |
254 | Anisolabididae | MK399541 | MK399448 | MK399644 | MK399671 | |
269 | Anisolabididae | MK399545 | MK399449 | - | MK399672 | |
298 | Anisolabididae | MK399554 | - | - | MK399675 | |
301 | Anisolabididae | MK399558 | MK399453 | - | - | |
306 | Anisolabididae | MK399562 | MK399454 | - | - | |
344 | Anisolabididae | MK399584 | MK399464 | MK399652 | - | |
347 | Anisolabididae | MK399587 | MK399465 | MK399653 | - | |
348 | Anisolabididae | MK399588 | MK399466 | MK399654 | - | |
153 | Anisolabis sp. 2 | Anisolabididae | MK399502 | MK399435 | - | MK399665 |
155 | Anisolabididae | MK399504 | MK399437 | - | MK399667 | |
160 | Anisolabididae | MK399505 | MK399438 | MK399635 | - | |
161 | Anisolabididae | MK399506 | MK399439 | MK399636 | MK399668 | |
288 | Gonolabis forcipata | Anisolabididae | MK399548 | MK399452 | - | MK399674 |
324 | Anisolabididae | MK399574 | MK399458 | - | MK399678 | |
326 | Anisolabididae | MK399575 | MK399459 | MK399649 | MK399679 | |
327 | Anisolabididae | MK399576 | MK399460 | MK399650 | - | |
331 | Anisolabididae | MK399578 | MK399462 | - | - | |
333 | Anisolabididae | MK399579 | MK399463 | - | MK399681 | |
308 | Gonolabis nr. gilesi | Anisolabididae | MK399564 | MK399456 | MK399647 | MK399677 |
309 | Anisolabididae | MK399565 | MK399457 | MK399648 | - | |
484 | Anisolabididae | MK399610 | MK399471 | MK399658 | - | |
146 | Gonolabis sp. 1 | Anisolabididae | MK399500 | MK399433 | MK399632 | - |
152 | Anisolabididae | MK399501 | MK399434 | MK399633 | - | |
384 | Anisolabididae | MK399598 | MK399467 | MK399655 | MK399682 | |
385 | Anisolabididae | MK399599 | MK399468 | MK399656 | MK399683 | |
386 | Anisolabididae | MK399600 | MK399469 | MK399657 | - | |
533 | Anisolabididae | MK399613 | MK399473 | MK399659 | MK399684 | |
535 | Anisolabididae | MK399614 | MK399475 | MK399660 | - | |
536 | Anisolabididae | MK399615 | MK399476 | MK399661 | MK399685 | |
539 | Anisolabididae | MK399618 | MK399479 | MK399664 | MK399688 | |
232 | Gonolabis sp. 2 | Anisolabididae | MK399531 | MK399443 | MK399639 | - |
236 | Anisolabididae | MK399532 | MK399444 | MK399640 | MK399669 | |
239 | Anisolabididae | MK399533 | MK399445 | MK399641 | - | |
274 | Anisolabididae | MK399546 | MK399450 | - | - | |
251 | Gonolabis sp. 3 | Anisolabididae | MK399539 | MK399446 | MK399642 | MK399670 |
276 | Anisolabididae | MK399547 | MK399451 | MK399645 | MK399673 | |
C_fletch | Challia fletcheri | Pygidicranidae | NC_018538 | - | - | |
L_ripar | Labidura riparia | Labiduridae | KX069089 | - | AB119553 | KX069030 |
N_tenui | Nala tenuicornis | Labiduridae | KX069090 | - | - | KX069055 |
N_livid | Nala lividipes | Labiduridae | KX069069 | - | - | KX069048 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuart, O.P.; Binns, M.; Umina, P.A.; Holloway, J.; Severtson, D.; Nash, M.; Heddle, T.; van Helden, M.; Hoffmann, A.A. Morphological and Molecular Analysis of Australian Earwigs (Dermaptera) Points to Unique Species and Regional Endemism in the Anisolabididae Family. Insects 2019, 10, 72. https://doi.org/10.3390/insects10030072
Stuart OP, Binns M, Umina PA, Holloway J, Severtson D, Nash M, Heddle T, van Helden M, Hoffmann AA. Morphological and Molecular Analysis of Australian Earwigs (Dermaptera) Points to Unique Species and Regional Endemism in the Anisolabididae Family. Insects. 2019; 10(3):72. https://doi.org/10.3390/insects10030072
Chicago/Turabian StyleStuart, Oliver P., Matthew Binns, Paul A. Umina, Joanne Holloway, Dustin Severtson, Michael Nash, Thomas Heddle, Maarten van Helden, and Ary A. Hoffmann. 2019. "Morphological and Molecular Analysis of Australian Earwigs (Dermaptera) Points to Unique Species and Regional Endemism in the Anisolabididae Family" Insects 10, no. 3: 72. https://doi.org/10.3390/insects10030072
APA StyleStuart, O. P., Binns, M., Umina, P. A., Holloway, J., Severtson, D., Nash, M., Heddle, T., van Helden, M., & Hoffmann, A. A. (2019). Morphological and Molecular Analysis of Australian Earwigs (Dermaptera) Points to Unique Species and Regional Endemism in the Anisolabididae Family. Insects, 10(3), 72. https://doi.org/10.3390/insects10030072