Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists
Abstract
:1. Introduction
2. Cardenolides and Bufadienolides
3. Structure of the Sodium Pump
4. Function of the Sodium Pump
5. Plant-Derived Cardenolides
6. Sequestration of Cardenolides by Insects
7. Mammalian Endogenous Cardiotonic Steroids
8. Physiologic Role of Endogenous Glycosides
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, A.A.; Petschenka, G.; Bingham, R.A.; Weber, M.G.; Rasmann, S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol. 2012, 194, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Coppinger, R.P. The Effect of Experience and Novelty on Avian Feeding Behavior with Reference to the Evolution of Warning Coloration in Butterflies Part I: Reactions of Wild-Caught Adult Blue Jays to Novel Insects. Behaviour 1969, 35, 45–59. [Google Scholar] [CrossRef]
- Ritland, D.B.; Brower, L.P. The Viceroy butterfly is not a Batesian mimic. Nature 1991, 350, 497–498. [Google Scholar] [CrossRef]
- Brower, J.V.Z. Experimental Studies of Mimicry in Some North American Butterflies: Part, I. The Monarch, Danaus plexippus, and Viceroy, Limenitis archippus archippus. Evolution 1958, 12, 32–47. [Google Scholar] [CrossRef]
- Jaitovich, A.A.; Bertorello, A.M. Na+,K+-ATPase: An indispensable ion pumping-signaling mechanism across mammalian cell membranes. Semin. Nephrol. 2006, 26, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Lingrel, J.B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu. Rev. Physiol. 2010, 72, 395–412. [Google Scholar] [CrossRef]
- Kay, A.R.; Blaustein, M.P. Evolution of our understanding of cell volume regulation by the pump-leak mechanism. J. Gen. Physiol. 2019, Jgp-201812274. [Google Scholar] [CrossRef]
- Lichtstein, D.; Ilani, A.; Rosen, H.; Horesh, N.; Singh, S.V.; Buzaglo, N.; Hodes, A. Na+, K+-ATPase Signaling and Bipolar Disorder. Int. J. Mol. Sci. 2018, 19, 2314. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, F.K.; Dube, P.; Mohamed, A.; Tian, J.; Malhotra, D.; Haller, S.T.; Kennedy, D.J. Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na+/K+-ATPase. Int. J. Mol. Sci. 2018, 19, 2576. [Google Scholar] [CrossRef]
- Farley, R.A.; Eakle, K.A.; Scheiner-Bobis, G.; Wang, K. Expression of Functional Na+/K+-ATPase in Yeast. In The Sodium Pump; Bamberg, E., Schoner, W., Eds.; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Yatime, L.; Laursen, M.; Morth, J.P.; Esmann, M.; Nissen, P.; Fedosova, N.U. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. J. Struct. Biol. 2011, 174, 296–306. [Google Scholar] [CrossRef]
- McDonough, A.A.; Velotta, J.B.; Schwinger, R.H.; Philipson, K.D.; Farley, R.A. The cardiac sodium pump: Structure and function. Basic Res. Cardiol. 2002, 97 (Suppl. S1), I19–I24. [Google Scholar] [CrossRef] [PubMed]
- Lingrel, J.B. Na,K-ATPase: Isoform structure, function, and expression. J. Bioenerg. Biomembr. 1992, 24, 263–270. [Google Scholar]
- Emery, A.M.; Ready, P.D.; Billingsley, P.F.; Djamgoz, M.B. A single isoform of the Na+/K+-ATPase alpha-subunit in Diptera: Evidence from characterization of the first extracellular domain. Insect Mol. Biol. 1995, 4, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Djamgoz, M.B.; Ready, P.D.; Billingsley, P.F.; Emery, A.M. Insect Na+/K+-ATPase. J. Insect Physiol. 1998, 44, 197–210. [Google Scholar] [PubMed]
- Emery, A.M.; Billingsley, P.F.; Ready, P.D.; Djamgoz, M.B. Insect Na+/K+-ATPase. J. Insect Physiol. 1998, 44, 197–210. [Google Scholar] [CrossRef]
- Dalla, S.; Swarts, H.G.; Koenderink, J.B.; Dobler, S. Amino acid substitutions of Na,K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals. Insect Biochem. Mol. Biol. 2013, 43, 1109–1115. [Google Scholar] [CrossRef]
- Dobler, S.; Dalla, S.; Wagschal, V.; Agrawal, A.A. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proc. Natl. Acad. Sci. USA 2012, 109, 13040–13045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, M.V.; Hilbers, F.; Poulsen, H. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front. Physiol. 2017, 8, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therien, A.G.; Pu, H.X.; Karlish, S.J.; Blostein, R. Molecular and functional studies of the gamma subunit of the sodium pump. J. Bioenerg. Biomembr. 2001, 33, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.J.; Catauro, M.; Rasmussen, H.H.; Apell, H.-J. Quantitative calculation of the role of the Na+,K+-ATPase in thermogenesis. Biochim. Biophys. Acta (BBA) Bioenerg. 2013, 1827, 1205–1212. [Google Scholar] [CrossRef]
- Wright, E.M.; Hirayama, B.A.; Loo, D.F. Active sugar transport in health and disease. J. Intern. Med. 2007, 261, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Clausen, T. Potassium and sodium transport and pH regulation. Can. J. Physiol. Pharmacol. 1992, 70, S219–S222. [Google Scholar] [CrossRef]
- Stein, W.D. Cell volume homeostasis: Ionic and nonionic mechanisms. The sodium pump in the emergence of animal cells. Int. Rev. Cytol. 2002, 215, 231–258. [Google Scholar]
- Green, H.J. Membrane excitability, weakness, and fatigue. Can. J. Appl. Physiol. 2004, 29, 291–307. [Google Scholar] [CrossRef]
- Haas, M.; Wang, H.; Tian, J.; Xie, Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem. 2002, 277, 18694–18702. [Google Scholar] [CrossRef]
- Yu, H.S.; Kim, S.H.; Park, H.G.; Kim, Y.S.; Ahn, Y.M. Activation of Akt signaling in rat brain by intracerebroventricular injection of ouabain: A rat model for mania. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 888–894. [Google Scholar] [CrossRef]
- Wu, J.; Akkuratov, E.E.; Bai, Y.; Gaskill, C.M.; Askari, A.; Liu, L. Cell signaling associated with Na+/K+-ATPase: Activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry 2013, 52, 9059–9067. [Google Scholar] [CrossRef]
- Sibarov, D.A.; Bolshakov, A.E.; Abushik, P.A.; Krivoi, I.I.; Antonov, S.M. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 2012, 343, 596–607. [Google Scholar] [CrossRef]
- Orellana, A.M.; Kinoshita, P.F.; Leite, J.A.; Kawamoto, E.M.; Scavone, C. Cardiotonic Steroids as Modulators of Neuroinflammation. Front. Endocrinol. 2016, 7, 10. [Google Scholar] [CrossRef]
- Eisner, T.; Wiemer, D.F.; Haynes, L.W.; Meinwald, J. Lucibufagins: Defensive steroids from the fireflies Photinus ignitus and P. marginellus (Coleoptera: Lampyridae). Proc. Natl. Acad. Sci. USA 1978, 75, 905–908. [Google Scholar] [CrossRef]
- Kopp, B.; Krenn, L.; Draxler, M.; Hoyer, A.; Terkola, R.; Vallaster, P.; Robien, W. Bufadienolides from Urginea maritima from Egypt. Phytochemistry 1996, 42, 513–522. [Google Scholar] [CrossRef]
- Hutchinson, D.A.; Mori, A.; Savitzky, A.H.; Burghardt, G.M.; Wu, X.; Meinwald, J.; Schroeder, F.C. Dietary sequestration of defensive steroids in nuchal glands of the Asian snake Rhabdophis tigrinus. Proc. Natl. Acad. Sci. USA 2007, 104, 2265–2270. [Google Scholar] [CrossRef]
- Skou, J.C. The identification of the sodium pump. Biosci. Rep. 2004, 24, 436–451. [Google Scholar] [CrossRef]
- Hansen, O.; Skou, J.C. A study on the influence of the concentration of Mg2+, Pi, K+, Na+, and Tris on (Mg2+ + Pi)-supported g-strophanthin binding to (Na+ = K+)-activated ATPase from ox brain. Biochim. Biophys. Acta 1973, 311, 51–66. [Google Scholar] [CrossRef]
- Nelson, C.J.; Seiber, J.N.; Brower, L.P. Seasonal and intraplant variation of cardenolide content in the California milkweed, Asclepias eriocarpa, and implications for plant defense. J. Chem. Ecol. 1981, 7, 981–1010. [Google Scholar] [CrossRef]
- Fürstenwerth, H. Comment on: Endogenous Ouabain and Related Genes in the Translation from Hypertension to Renal Diseases. Int. J. Mol. Sci. 2018, 19, 1948. [Google Scholar] [CrossRef]
- Hollman, A. Plants and cardiac glycosides. Br. Heart J. 1985, 54, 258–261. [Google Scholar] [CrossRef]
- Gustine, D.L.; Moyer, B.G. Crownvetch (Coronilla varia L.). In Legumes and Oilseed Crops; Springer: Berlin/Heidelberg, Germany, 1990; pp. 341–354. [Google Scholar]
- Zalucki, M.P.; Brower, L.P.; Alonso, M.A. Detrimental effects of latex and cardiac glycosides on survival and growth of first-instar monarch butterfly larvae Danaus plexippus feeding on the sandhill milkweed, Asclepias humistrata. Ecol. Entomol. 2001, 26, 212–224. [Google Scholar] [CrossRef]
- Rothschild, M.; Von Euw, J.; Reichstein, T. Cardiac glycosides in the oleander aphid, Aphis nerii. J. Insect Physiol. 1970, 16, 1141–1145. [Google Scholar] [CrossRef]
- Duffey, S.S.; Scudder, G.G. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera. J. Insect Physiol. 1972, 18, 63–78. [Google Scholar] [CrossRef]
- Ziskind, B.; Halioua, B. Contribution of Ancient Egypt to cardiovascular medicine. Arch. Mal. Coeur Vaiss. 2004, 97, 370–374. [Google Scholar]
- Wade, O.L. Digoxin 1785–1985. I. Two hundred years of digitalis. J. Clin. Hosp. Pharm. 1986, 11, 3–9. [Google Scholar]
- Kamboj, A.; Rathour, A.; Kaur, M. Bufadienolides and their medicinal utility: A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 20–27. [Google Scholar]
- Butler, J.; Anand, I.S.; Kuskowski, M.A.; Rector, T.; Carson, P.; Cohn, J.N.; Val-HeFT Investigators. Digoxin use and heart failure outcomes: Results from the Valsartan Heart Failure Trial (Val-HeFT). Congest. Heart Fail. 2010, 16, 191–195. [Google Scholar] [CrossRef]
- Holzinger, F.; Wink, M. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+,K+-ATPase. J. Chem. Ecol. 1996, 22, 1921–1937. [Google Scholar] [CrossRef]
- Petschenka, G.; Pick, C.; Wagschal, V.; Dobler, S. Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species. Proc. Biol. Sci. 2013, 280, 20123089. [Google Scholar] [CrossRef]
- Duffey, S.S.; Scudder, G.G.E. Cardiac glycosides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). I. The uptake and distribution of natural cardenolides in the body. Can. J. Zool. 1974, 52, 283–290. [Google Scholar] [CrossRef]
- Duffey, S.S.; Blum, M.S.; Isman, M.B.; Scudder, G.G. Cardiac glycosides: A physical system for their sequestration by the milkweed bug. J. Insect Physiol. 1978, 24, 639–645. [Google Scholar] [CrossRef]
- Van Oycke, S.; Braekman, J.C.; Daloze, D.; Pasteels, J.M. Cardenolide biosynthesis in chrysomelid beetles. Experientia 1987, 43, 460–462. [Google Scholar] [CrossRef]
- Daloze, D.; Pasteels, J.M. Production of cardiac glycosides by Chrysomelid beetles and larvae. J. Chem. Ecol. 1979, 5, 63–77. [Google Scholar] [CrossRef]
- Urquhart, F.A.; Urquhart, N.R. Overwintering areas and migratory routes of the Monarch butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) in North America, with special reference to the Western population. Can. Entomol. 1977, 109, 1583–1589. [Google Scholar] [CrossRef]
- Urquhart, F.A.; Urquhart, N.R. Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico. Can. J. Zool. 1978, 56, 1759–1764. [Google Scholar] [CrossRef]
- Slayback, D.A.; Brower, L.P.; Isabel Ramírez, M.; Fink, L.S. Establishing the presence and absence of overwintering colonies of the Monarch butterfly in Mexico by the Use of Small Aircraft. Am. Entomol. 2007, 53, 28–40. [Google Scholar] [CrossRef]
- Brower, L.P.; Taylor, O.R.; Williams, E.H.; Slayback, D.A.; Zubieta, R.R.; Isabel Ramírez, M. Decline of monarch butterflies overwintering in Mexico: Is the migratory phenomenon at risk? Insect Conserv. Divers. 2002, 5, 95–100. [Google Scholar] [CrossRef]
- Hamlyn, J.M.; Blaustein, M.P.; Bova, S.; DuCharme, D.W.; Harris, D.W.; Mandel, F.; Mathews, W.R.; Ludens, J.H. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA 1991, 88, 6259–6263. [Google Scholar] [CrossRef]
- Ludens, J.H.; Clark, M.A.; DuCharme, D.W.; Harris, D.W.; Lutzke, B.S.; Mandel, F.; Mathews, W.R.; Sutter, D.M.; Hamlyn, J.M. Purification of an endogenous digitalis like factor from human plasma for structural analysis. Hypertension 1991, 17, 923–929. [Google Scholar] [CrossRef]
- Mathews, W.R.; DuCharme, D.W.; Hamlyn, J.M.; Harris, D.W.; Mandel, F.; Clark, M.A.; Ludens, J.H. Mass spectral characterization of an endogenous digitalis like factor from human plasma. Hypertension 1991, 17, 930–935. [Google Scholar] [CrossRef]
- Qazzaz, H.M.; Valdes, R., Jr. Simultaneous isolation of endogenous digoxin-like immunoreactive factor, ouabain-like factor, and deglycosylated congeners from mammalian tissues. Arch. Biochem. Biophys. 1996, 328, 193–200. [Google Scholar] [CrossRef]
- Weinberg, U.; Dolev, S.; Werber, M.M.; Shapiro, M.S.; Shilo, L.; Shenkman, L. Identification and preliminary characterization of two human digitalis-like substances that are structurally related to digoxin and ouabain. Biochem. Biophys. Res. Commun. 1992, 188, 1024–1029. [Google Scholar] [CrossRef]
- Bagrov, A.Y.; Fedorova, O.V.; Austin-Lane, J.L.; Dmitrieva, R.I.; Anderson, D.E. Endogenous marinobufagenin-like immunoreactive factor and Na+/K+-ATPase inhibition during voluntary hypoventilation. Hypertension 1995, 26, 781–788. [Google Scholar] [CrossRef]
- Lichtstein, D.; Kachalsky, S.; Deutsch, J. Identification of a ouabain-like compound in toad skin and plasma as a bufodienolide derivative. Life Sci. 1986, 38, 1261–1270. [Google Scholar] [CrossRef]
- Yoshika, M.; Komiyama, Y.; Konishi, M.; Akizawa, T.; Kobayashi, T.; Date, M.; Kobatake, S.; Masuda, M.; Masaki, H.; Takahashi, H. Novel digitalis-like factor, marinobufotoxin, isolated from cultured Y-1 cells, and its hypertensive effect in rats. Hypertension 2007, 49, 209–214. [Google Scholar] [CrossRef]
- Wei, J.S.; Cheng, H.C.; Tsai, K.J.; Liu, D.H.; Lee, H.H.; Chiu, D.T.; Liu, T.Z. Purification and characterization of endogenous digoxin-like immunoreactive factors in chicken blood. Life Sci. 1996, 59, 1617–1629. [Google Scholar] [CrossRef]
- Dvela, M.; Rosen, H.; Ben-Ami, H.C.; Lichtstein, D. Endogenous ouabain regulates cell viability. Am. J. Physiol. Cell. Physiol. 2012, 302, C442–C452. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, A.; Elmatzoglou, I.; Souvatzoglou, A. Circulating endogenous digitalis-like factor(s) (EDLF) in man is derived from the adrenals and its secretion is ACTH-dependent. J. Endocrinol. Investig. 2003, 26, 668–674. [Google Scholar] [CrossRef]
- El-Masri, M.A.; Clark, B.J.; Qazzaz, H.M.; Valdes, R., Jr. Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Clin. Chem. 2002, 48, 1720–1730. [Google Scholar]
- El-Mallakh, R.S.; Miller, J.; Valdes, R., Jr.; Cassis, T.B.; Li, R. Digoxin-like immunoreactive factor in human cerebrospinal fluid. J. Neuropsychiatry Clin. Neurosci. 2007, 19, 91. [Google Scholar] [CrossRef]
- Murrell, J.R.; Randall, J.D.; Rosoff, J.; Zhao, J.L.; Jensen, R.V.; Gullans, S.R.; Haupert, G.T., Jr. Endogenous ouabain: Upregulation of steroidogenic genes in hypertensive hypothalamus but not adrenal. Circulation 2005, 112, 1301–1308. [Google Scholar] [CrossRef]
- Dvela-Levitt, M.; Ben-Ami, H.C.; Rosen, H.; Ornoy, A.; Hochner-Celnikier, D.; Granat, M.; Lichtstein, D. Reduction in maternal circulating ouabain impairs offspring growth and kidney development. J. Am. Soc. Nephrol. 2015, 26, 1103–1114. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Ma, A.Q.; Zhang, L.; Yang, D.Y. Intracellular electrolyte changes and levels of endogenous digoxin-like substance within the plasma in patients with congestive heart failure. Int. J. Cardiol. 1990, 27, 47–53. [Google Scholar] [CrossRef]
- Knight, E.L.; Fish, L.C.; Kiely, D.K.; Marcantonio, E.R.; Davis, K.M.; Minaker, K.L. Atrial natriuretic peptide and the development of congestive heart failure in the oldest old: A seven-year prospective study. J. Am. Geriatr. Soc. 1999, 47, 407–411. [Google Scholar] [CrossRef]
- Masugi, F.; Ogihara, T.; Hasegawa, T.; Tomii, A.; Nagano, M.; Higashimori, K.; Kumahara, K.; Terano, Y. Circulating factor with ouabain-like immunoreactivity in patients with primary aldosteronism. Biochem. Biophys. Res. Commun. 1986, 135, 41–45. [Google Scholar] [CrossRef]
- Devynck, M.A.; Pernollet, M.G.; Meyer, P. Endogenous digitalis-like compounds in essential and experimental hypertension. Int. J. Rad. Appl. Instrum. B 1987, 14, 341–352. [Google Scholar] [CrossRef]
- Bagrov, A.Y.; Fedorova, O.V.; Maslova, M.N.; Roukoyatkina, N.I.; Ukhanova, M.V.; Zhabko, E.P. Endogenous plasma Na,K-ATPase inhibitory activity and digoxin like immunoreactivity after acute myocardial infarction. Cardiovasc. Res. 1991, 25, 371–377. [Google Scholar] [CrossRef]
- Balzan, S.; Neglia, D.; Ghione, S.; D’Urso, G.; Baldacchino, M.C.; Montali, U.; L’Abbate, A. Increased circulating levels of ouabain-like factor in patients with asymptomatic left ventricular dysfunction. Eur. J. Heart Fail. 2001, 3, 165–171. [Google Scholar] [CrossRef] [Green Version]
- El-Mallakh, R.S.; Stoddard, M.; Jortani, S.A.; El-Masri, M.A.; Sephton, S.; Valdes, R., Jr. Aberrant regulation of endogenous ouabain-like factor in bipolar subjects. Psychiatry Res. 2010, 178, 116–120. [Google Scholar] [CrossRef]
- Bauer, N.; Müller-Ehmsen, J.; Krämer, U.; Hambarchian, N.; Zobel, C.; Schwinger, R.H.; Neu, H.; Kirch, U.; Grünbaum, E.G.; Schoner, W. Ouabain-like compound changes rapidly on physical exercise in humans and dogs: Effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension 2005, 45, 1024–1028. [Google Scholar] [CrossRef]
- Vakkuri, O.; Arnason, S.S.; Pouta, A.; Vuolteenaho, O.; Leppäluoto, J. Radioimmunoassay of plasma ouabain in healthy and pregnant individuals. J. Endocrinol. 2000, 165, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Graves, S.W. The possible role of digitalis-like factors in pregnancy-induced hypertension. Hypertension 1987, 10, I84–I86. [Google Scholar] [CrossRef]
- Lopatin, D.A.; Ailamazian, E.K.; Dmitrieva, R.I.; Shpen, V.M.; Fedorova, O.V.; Doris, P.A.; Bagrov, A.Y. Circulating bufodienolide and cardenolide sodium pump inhibitors in preeclampsia. J. Hypertens. 1999, 17, 1179–1187. [Google Scholar] [CrossRef]
- Paci, A.; Marrone, O.; Lenzi, S.; Prontera, C.; Nicolini, G.; Ciabatti, G.; Ghione, S.; Bonsignore, G. Endogenous digitalis like factors in obstructive sleep apnea. Hypertens. Res. 2000, 23, S87–S91. [Google Scholar] [CrossRef]
- Grider, G.; El-Mallakh, R.S.; Huff, M.O.; Buss, T.J.R.; Miller, J.; Valdes, R., Jr. Endogenous digoxin-like immunoreactive factor (DLIF) serum concentrations are decreased in manic bipolar patients compared to normal controls. J. Affect. Disord. 1999, 54, 261–267. [Google Scholar] [CrossRef]
- Ghysel-Burton, J.; Godfraind, T. Stimulation and inhibition of the sodium pump by cardioactive steroids in relation to their binding sites and their inotropic effects on guinea-pig isolated atria. Br. J. Pharmacol. 1979, 66, 175–184. [Google Scholar] [CrossRef]
- Hougen, T.J.; Spicer, N.; Smith, T.W. Stimulation of monovalent active transport by low concentrations of cardiac glycosides: Role of catecholamines. J. Clin. Investig. 1981, 68, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wymore, R.S.; Wang, Y.; Gaudette, G.R.; Krukenkamp, I.B.; Cohen, I.S.; Mathias, R.T. Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J. Gen. Physiol. 2002, 119, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.N.; Podberesky, D.J.; Heidrich, J.; Blaustein, M.P. Nanomolar ouabain augments caffeine-evoked contractions in rat arteries. Am. J. Physiol. 1993, 265, C1443–C1448. [Google Scholar] [CrossRef]
- Holthouser, K.; Mandal, A.; Merchant, M.L.; Schelling, J.R.; Delamere, N.A.; Valdes, R., Jr.; Tyagi, S.C.; Lederer, E.D.; Khundmiri, S.J. Ouabain stimulates Na-K-ATPase through sodium hydrogen exchanger-1 (NHE-1) dependent mechanism in human kidney proximal tubule cells. Am. J. Physiol. Ren. Physiol. 2010, 299, F77–F90. [Google Scholar] [CrossRef] [PubMed]
- Khundmiri, S.J.; Salyer, S.A.; Farmer, B.; Qipshidze-Kelm, N.; Murray, R.D.; Clark, B.J.; Xie, Z.; Pressley, T.A.; Lederer, E.D. Structural determinants for the ouabain-stimulated increase in Na–K ATPase activity. Biochim. Biophys. Acta 2014, 1843, 1089–1102. [Google Scholar] [CrossRef] [Green Version]
- Baker, P.F.; Willis, J.S. Inhibition of the sodium pump in squid giant axons by cardiac glycosides; dependence on extracellular ions and metabolism. J. Physiol. 1972, 224, 463–475. [Google Scholar] [CrossRef]
- Huang, X.; Lei, Z.; El-Mallakh, R.S. Lithium normalizes elevated intracellular sodium. Bipolar Disord. 2007, 9, 298–300. [Google Scholar] [CrossRef]
- Harwood, S.; Yaqoob, M.M. Ouabain-induced cell signaling. Front. Biosci. 2005, 10, 2011–2017. [Google Scholar] [CrossRef]
- Xie, Z.; Xie, J. The Na/K-ATPase-mediated signal transduction as a target for new drug development. Front. Biosci. 2005, 10, 3100–3109. [Google Scholar] [CrossRef]
- Aizman, O.; Uhlén, P.; Lal, M.; Brismar, H.; Aperia, A. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc. Natl. Acad. Sci. USA 2001, 98, 13420–13424. [Google Scholar] [CrossRef] [Green Version]
- Weigand, K.M.; Laursen, M.; Swarts, H.G.; Engwerda, A.H.; Prüfert, C.; Sandrock, J.; Nissen, P.; Fedosova, N.U.; Russel, F.G.; Koenderink, J.B. Na+,K+-ATPase isoform selectivity for digitalis-like compounds is determined by two amino acids in the first extracellular loop. Chem. Res. Toxicol. 2014, 27, 2082–2092. [Google Scholar] [CrossRef]
- Chou, W.H.; Liu, K.L.; Shih, Y.L.; Chuang, Y.Y.; Chou, J.; Lu, H.F.; Jair, H.W.; Lee, M.Z.; Au, M.K.; Chung, J.G. Ouabain Induces Apoptotic Cell Death Through Caspase- and Mitochondria-dependent Pathways in Human Osteosarcoma U-2 OS Cells. Anticancer Res. 2018, 38, 169–178. [Google Scholar]
- Xiao, A.Y.; Wei, L.; Xia, S.; Rothman, S.; Yu, S.P. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J. Neurosci. 2002, 22, 1350–1362. [Google Scholar] [CrossRef]
- Kolmakova, E.V.; Haller, S.T.; Kennedy, D.J.; Isachkina, A.N.; Budny, G.V.; Frolova, E.V.; Piecha, G.; Nikitina, E.R.; Malhotra, D.; Fedorova, O.V.; et al. Endogenous cardiotonic steroids in chronic renal failure. Nephrol. Dial. Transplant. 2011, 26, 2912–2919. [Google Scholar] [CrossRef] [Green Version]
- Manunta, P.; Messaggio, E.; Casamassima, N.; Gatti, G.; Carpini, S.D.; Zagato, L.; Hamlyn, J.M. Endogenous ouabain in renal Na+ handling and related diseases. Biochim. Biophys. Acta 2010, 1802, 1214–1218. [Google Scholar] [CrossRef]
- Valdes, R., Jr.; Hagberg, J.M.; Vaughan, T.E.; Lau, B.W.C.; Seals, D.R.; Ehsani, A.A. Endogenous digoxin-like immunoreactivity in blood is increased during prolonged strenuous exercise. Life Sci. 1988, 42, 103–110. [Google Scholar] [CrossRef]
- Shelly, D.A.; He, S.; Moseley, A.; Weber, C.; Stegemeyer, M.; Lynch, R.M.; Lingrel, J.; Paul, R.J. Na+ pump alpha 2-isoform specifically couples to contractility in vascular smooth muscle: Evidence from gene-targeted neonatal mice. Am. J. Physiol. Cell. Physiol. 2004, 286, C813–C820. [Google Scholar] [CrossRef]
- Gao, Y.; Roberts, M.B.; Hamlyn, J.M.; El-Mallakh, R.S. Sleep fragmentation and OLF level in sodium pump alpha-2 knockout mice. In Proceedings of the annual meeting of the International Society of Bipolar Disorders, Washington, DC, USA, 4–6 May 2017. [Google Scholar]
- Brar, K.S.; Gao, Y.; El-Mallakh, R.S. Are endogenous cardenolides controlled by Atrial Natriuretic Peptide? Med. Hypotheses 2016, 92, 21–25. [Google Scholar] [CrossRef]
- Bloise, E.; Braca, A.; De Tommasi, N.; Belisario, M.A. Pro-apoptotic and cytostatic activity of naturally occurring cardenolides. Cancer Chemother. Pharmacol. 2009, 64, 793. [Google Scholar] [CrossRef]
- Rascón-Valenzuela, L.A.; Velázquez, C.; Garibay-Escobar, A.; Vilegas, W.; Medina-Juárez, L.A.; Gámez-Meza, N.; Robles-Zepeda, R.E. Apoptotic activities of cardenolide glycosides from Asclepias subulata. J. Ethnopharmacol. 2016, 193, 303–311. [Google Scholar] [CrossRef]
- Chen, J.Q.; Contreras, R.G.; Wang, R.; Fernandez, S.V.; Shoshani, L.; Russo, I.H.; Cereijido, M.; Russo, J. Sodium/potassium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: A new paradigm for development of anti-breast cancer drugs? Breast Cancer Res. Treat. 2006, 96, 1–15. [Google Scholar] [CrossRef]
- Clifford, R.J.; Kaplan, J.H. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells. PLoS ONE 2013, 8, e84306. [Google Scholar] [CrossRef]
Condition | Plasma Cardenolide Level | Fold Increase (Unless Noted to Be Reduction) | References |
---|---|---|---|
Congestive heart failure | CG: 23.3 ± 2.2 pg/mL | [72,73] | |
CHF: 273.7 ± 35.5 pg/ mL | 11.8× | ||
Essential Hypertension | CG: 76.3 ± 9.3 nM | [74,75] | |
HTN: 234.8 ± 48.7 nM | 3.0× | ||
Myocardial Infarction | CG: 0.04 ± 0.12 ng/mL | [62,76] | |
MI: 1.65 ± 0.5 ng/mL | 41.2× | ||
Supraventricular Tachycardia | CG: 29.4 ± 20.6 pM OE | [77] | |
SVT: 35 + 18 pM OE | 1.2× | ||
Exercise | Pre: 2.5 ± 0.5 nmol/L | [78,79] | |
Post: 86 ± 27.2 nmol/L | 34.4× | ||
Pregnancy | T 1: 16.3 ± 4.0 pmol/L | 1.8× | [80] |
T 2: 18.8 ± 4.3 pmolL | 2.0× | ||
T 3: 24.3 ± 4.0 pmol/L | 2.6× | ||
Pregnancy induced Hypertension | T3: 195 pg DE/mL | [81] | |
PIH: 315 pg DE/mL | 1.6× | ||
Pre-eclampsia | CG: 0.297 ± 0.037 nmol/L | [82] | |
PEL: 0.697 ± 0.16 nmolL | 2.3× | ||
Chronic Kidney Disease | CG: 24.7 ± 3.2 pg/mL | [75] | |
CKD: 98.7 ± 17.4 pg/mL | 4.0× | ||
Renal Cell Development in utero | Experimental model | 80% reduction | [71] |
Primary Hyperaldosteronism | CG: 1.06 ± 0.86 pM-OE/mL | [74] | |
PHA: 2.59 ± 1.39 pM-OE/mL | 2.4× | ||
Obstructive Sleep Apnea | CG: 110 ± 25 pM-OE/L | [83] | |
OSA: 244 ± 51 pM-OE/L | 2.2× | ||
Bipolar Illness | Reduced levels | 0.5 reduction | [84] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Mallakh, R.S.; Brar, K.S.; Yeruva, R.R. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. Insects 2019, 10, 102. https://doi.org/10.3390/insects10040102
El-Mallakh RS, Brar KS, Yeruva RR. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. Insects. 2019; 10(4):102. https://doi.org/10.3390/insects10040102
Chicago/Turabian StyleEl-Mallakh, Rif S., Kanwarjeet S. Brar, and Rajashekar Reddy Yeruva. 2019. "Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists" Insects 10, no. 4: 102. https://doi.org/10.3390/insects10040102
APA StyleEl-Mallakh, R. S., Brar, K. S., & Yeruva, R. R. (2019). Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. Insects, 10(4), 102. https://doi.org/10.3390/insects10040102