Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visscher, P.K.; Seeley, T.D. Foraging Strategy of Honeybee Colonies in a Temperate Deciduous Forest. Ecology 1982, 63, 1790. [Google Scholar] [CrossRef]
- Hagler, J.R.; Mueller, S.; Teuber, L.R.; Machtley, S.A.; van Deynze, A. Foraging Range of Honey Bees, Apis mellifera, in Alfalfa Seed Production Fields. J. Insect Sci. 2011, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Steffan-Dewenter, I.; Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Boil. Sci. 2003, 270, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couvillon, M.J.; Pearce, F.C.R.; Accleton, C.; Fensome, K.A.; Quah, S.K.; Taylor, E.L.; Ratnieks, F.L. Honey bee foraging distance depends on month and forage type. Apidologie 2015, 46, 61–70. [Google Scholar] [CrossRef]
- Beekman, M.; Ratnieks, F.L.W. Long-range foraging by the honey-bee, Apis mellifera L. Funct. Ecol. 2000, 14, 490–496. [Google Scholar] [CrossRef]
- Waddington, K.D. Honey bee foraging profitability and round dance correlates. J. Comp. Physiol. A 1982, 148, 297–301. [Google Scholar] [CrossRef]
- Cook, S.M.; Awmack, C.S.; Murray, D.A.; Williams, I.H. Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol. Entomol. 2003, 28, 622–627. [Google Scholar] [CrossRef]
- Hendriksma, H.P.; Shafir, S. Honey bee foragers balance colony nutritional deficiencies. Behav. Ecol. Sociobiol. 2016, 70, 509–517. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Johnson, S.D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 2013, 28, 307–315. [Google Scholar] [CrossRef]
- Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Levin, D.A. Dispersal versus gene flow in plants. Ann. Mo. Bot. Gard. 1981, 68, 233. [Google Scholar] [CrossRef]
- Gillespie, M.A.; Gurr, G.M.; Wratten, S.D. Beyond nectar provision: The other resource requirements of parasitoid biological control agents. Entomol. Exp. Appl. 2016, 159, 207–221. [Google Scholar] [CrossRef]
- Heidel-Baker, T.T.; O’Neal, M.E.; Batzer, J.C.; Gleason, M.L. Attracting Beneficial Insects to Iowa Agricultural Crops through Floral Provisioning; Iowa State University: Ames, IA, USA, 2014. [Google Scholar]
- Ramsden, M.W.; Menéndez, R.; Leather, S.R.; Wäckers, F. Optimizing field margins for biocontrol services: The relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agric. Ecosyst. Environ. 2015, 199, 94–104. [Google Scholar] [CrossRef]
- Calderone, N.W. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009. PLoS ONE 2012, 7, e37235. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.E. Insect Pollination of Cultivated Crop Plants; Agricultural Research Service: Washington, DC, USA; US Department of Agriculture: Washington, DC, USA, 1976; Volume 496.
- Severson, D.W.; Parry, J.E. A Chronology of Pollen Collection by Honeybees. J. Apic. Res. 1981, 20, 97–103. [Google Scholar] [CrossRef]
- Erickson, E.H.; Berger, G.A.; Shannon, J.G.; Robins, J.M. Honey Bee Pollination Increases Soybean Yields in the Mississippi Delta Region of Arkansas and Missouri. J. Econ. Entomol. 1978, 71, 601–603. [Google Scholar] [CrossRef]
- Chiari, W.C.; Toledo, V.D.A.A.D.; Ruvolo-Takasusuki, M.C.C.; Oliveira, A.J.B.D.; Sakaguti, E.S.; Attencia, V.M.; Costa, F.M.; Mitsui, M.H. Pollination of soybean (Glycine max L. Merril) by honeybees (Apis mellifera L.). Braz. Arch. Biol. Technol. 2005, 48, 31–36. [Google Scholar] [CrossRef]
- Abrol, D.; Shankar, U. Pollination in oil crops: Recent advances and future strategies. In Technological Innovations in Major World Oil Crops; Springer: Berlin, Germany, 2012; Volume 2, pp. 221–267. [Google Scholar]
- Milfont, M.D.O.; Rocha, E.E.M.; Lima, A.O.N.; Freitas, B.M. Higher soybean production using honeybee and wild pollinators, a sustainable alternative to pesticides and autopollination. Environ. Chem. Lett. 2013, 11, 335–341. [Google Scholar] [CrossRef]
- Coy, R.; (Commercial Beekeeper, Jonesboro, AR, USA). Personal communications, 2016.
- Smith, T.; Catchot, A.L.; Harris, J.W.; Gore, J.; Krishnan, N.; Cook, D. Influence of cultural practices on soybean nectar production. In Proceedings of the Entomological Society of America Conference, Denver, CO, USA, 8 November 2017. [Google Scholar]
- Shuel, R.W. Some Factors Affecting Nectar Secretion in Red Clover. Plant. Physiol. 1952, 27, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Requier, F.; Odoux, J.-F.; Tamic, T.; Moreau, N.; Henry, M.; Decourtye, A.; Bretagnolle, V. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 2015, 25, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Brunet, J.L.; Alaux, C. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef] [PubMed]
- Sponsler, D.B.; Johnson, R.M. Honey bee success predicted by landscape composition in Ohio, USA. PeerJ 2015, 3, 838. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef]
- Blacquière, T.; Smagghe, G.; Van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE 2015, 10, e0136928. [Google Scholar] [CrossRef] [PubMed]
- Rortais, A.; Arnold, G.; Halm, M.-P.; Touffet-Briens, F. Modes of honeybees exposure to systemic insecticides: Estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 2005, 36, 71–83. [Google Scholar] [CrossRef]
- Dively, G.P.; Embrey, M.S.; Kamel, A.; Hawthorne, D.J.; Pettis, J.S. Correction: Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health. PLoS ONE 2015, 10, e0126043. [Google Scholar] [CrossRef]
- Laycock, I.; Lenthall, K.M.; Barratt, A.T.; Cresswell, J.E. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 2012, 21, 1937–1945. [Google Scholar] [CrossRef]
- Whitehorn, P.; O’Connor, S.; Wäckers, F.L.; Goulson, D.; O’Connor, S. Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science 2012, 336, 351–352. [Google Scholar] [CrossRef] [Green Version]
- Cumming, G.S.; Spiesman, B.J. Regional problems need integrated solutions: Pest management and conservation biology in agroecosystems. Boil. Conserv. 2006, 131, 533–543. [Google Scholar] [CrossRef]
- Chauzat, M.-P.; Faucon, J.-P.; Martel, A.-C.; Lachaize, J.; Cougoule, N.; Aubert, M. A Survey of Pesticide Residues in Pollen Loads Collected by Honey Bees in France. J. Econ. Entomol. 2006, 99, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.L.; Garrido-Bailon, E.; Del Nozal, J.B.; González-Porto, A.V.; Hernández, R.M.; Diego, J.C.; Jimenez, J.J.; Higes, M. Overview of Pesticide Residues in Stored Pollen and Their Potential Effect on Bee Colony (Apis mellifera) Losses in Spain. J. Econ. Entomol. 2010, 103, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed]
- Codling, G.; Al Naggar, Y.; Giesy, J.P.; Robertson, A.J. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere 2016, 144, 2321–2328. [Google Scholar] [CrossRef]
- Pasture, Fall Armyworm. In Insecticide Recommendations for Arkansas, MP-144; University of Arkansas Systems Division of Agriculture: Little Rock, AR, USA, 2018; Available online: https://www.uaex.edu/publications/pdf/mp144/mp144.pdf (accessed on 18 June 2018).
- Stewart, S.D.; Lorenz, G.M.; Catchot, A.L.; Gore, J.; Cook, D.; Skinner, J.; Mueller, T.C.; Johnson, D.R.; Zawislak, J.; Barber, J. Potential Exposure of Pollinators to Neonicotinoid Insecticides from the Use of Insecticide Seed Treatments in the Mid-Southern United States. Environ. Sci. Technol. 2014, 48, 9762–9769. [Google Scholar] [CrossRef]
- Medici, S.K.; Castro, A.; Sarlo, E.G.; Marioli, J.M.; Eguaras, M.J. The concentration effect of selected acaricides present in beeswax foundation on the survival of Apis mellifera colonies. J. Apic. Res. 2012, 51, 164–168. [Google Scholar] [CrossRef]
- Korta, E.; Bakkali, A.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Kilchenmann, V.; Bogdanov, S. Study of Acaricide Stability in Honey. Characterization of Amitraz Degradation Products in Honey and Beeswax. J. Agric. Food Chem. 2001, 49, 5835–5842. [Google Scholar] [CrossRef]
- Bajuk, B.P.; Babnik, K.; Snoj, T.; Milčinski, L.; Ocepek, M.P.; Škof, M.; Jenčič, V.; Štajnbaher, D.; Kobal, S.; Filazi, A. Coumaphos residues in honey, bee brood, and beeswax after Varroa treatment. Apidologie 2017, 37, 57–598. [Google Scholar]
- Rissato, S.R.; Galhiane, M.S.; De Almeida, M.V.; Gerenutti, M.; Apon, B.M. Multiresidue determination of pesticides in honey samples by gas chromatography–mass spectrometry and application in environmental contamination. Food Chem. 2007, 101, 1719–1726. [Google Scholar] [CrossRef]
- Alburaki, M.; Chen, D.; Skinner, J.A.; Meikle, W.G.; Tarpy, D.R.; Adamczyk, J.; Stewart, S.D. Honey Bee Survival and Pathogen Prevalence: From the Perspective of Landscape and Exposure to Pesticides. Insects 2018, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Thompson, H.M.; Fryday, S.L.; Harkin, S.; Milner, S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 2014, 45, 545–553. [Google Scholar] [CrossRef]
- Johnson, R.M.; Dahlgren, L.; Siegfried, B.D.; Ellis, M.D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 2013, 8, e54092. [Google Scholar] [CrossRef] [PubMed]
- Pettis, J.S.; Lichtenberg, E.M.; Andree, M.; Stitzinger, J.; Rose, R. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE 2013, 8, e70182. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.C.; Chuang, Y.C.; Chen, Y.L.; Chang, L.H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 2008, 101, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Bryden, J.; Gill, R.J.; Mitton, R.A.A.; Raine, N.E.; Jansen, V.A.; Hodgson, D. Chronic sublethal stress causes bee colony failure. Ecol. Lett. 2013, 16, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Tosi, S.; Burgio, G.; Nieh, J.C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Rep. 2017, 7, 303. [Google Scholar] [CrossRef]
- Wu, J.Y.; Anelli, C.M.; Sheppard, W.S. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity. PLoS ONE 2011, 6, e14720. [Google Scholar] [CrossRef]
- Corta, E. Kinetics and mechanism of amitraz hydrolysis in aqueous media by HPLC and GC-MS. Talanta 1999, 48, 189–199. [Google Scholar] [CrossRef]
- Vita Bee Health. Apiguard Product Label. Valdosta, GA 31603. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/079671-00001-20141007.pdf (accessed on 18 June 2018).
- Véto-pharma, Inc. ApiLifeVar Product Label. Palaiseau, France 91120. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/073291-00001-20190521.pdf (accessed on 18 June 2018).
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields. PLoS ONE 2012, 7, e29268. [Google Scholar] [CrossRef] [PubMed]
- Dively, G.P.; Kamel, A. Insecticide Residues in Pollen and Nectar of a Cucurbit Crop and Their Potential Exposure to Pollinators. J. Agric. Food Chem. 2012, 60, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Meikle, W.G.; Adamczyk, J.J.; Weiss, M.; Gregorc, A.; Johnson, D.R.; Stewart, S.D.; Zawislak, J.; Carroll, M.J.; Lorenz, G.M. Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the US. PLoS ONE 2016, 11, e0168603. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.A.D.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, C.; Steffan-Dewenter, I.; Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 2003, 6, 961–965. [Google Scholar] [CrossRef]
- Le Féon, V.; Schermann-Legionnet, A.; Delettre, Y.; Aviron, S.; Billeter, R.; Bugter, R.; Hendrickx, F.; Burel, F. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 2010, 137, 143–150. [Google Scholar] [CrossRef]
- Holzschuh, A.; Dormann, C.F.; Tscharntke, T.; Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia 2013, 172, 477–484. [Google Scholar] [CrossRef]
- Pilling, E.D.; Jepson, P.C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 1993, 39, 293–297. [Google Scholar] [CrossRef]
- Thompson, H.; Wilkins, S. Assessment of the synergy and repellency of pyrethroid/fungicide mixtures. Bull. Insectol. 2003, 56, 131–134. [Google Scholar]
- Haarmann, T.; Spivak, M.; Weaver, D.; Weaver, B.; Glenn, T. Effects of Fluvalinate and Coumaphos on Queen Honey Bees (Hymenoptera: Apidae) in Two Commercial Queen Rearing Operations. J. Econ. Entomol. 2002, 95, 28–35. [Google Scholar] [CrossRef]
- Di Prisco, G.; Cavaliere, V.; Annoscia, D.; Varricchio, P.; Caprio, E.; Nazzi, F.; Gargiulo, G.; Pennacchio, F. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. USA 2013, 110, 18466–18471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Schmehl, D.R.; Mullin, C.A.; Frazier, J.L. Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. PLoS ONE 2014, 9, e77547. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M. Honey Bee Toxicology. Annu. Rev. Entomol. 2015, 60, 415–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Novoa, E.; Eccles, L.; Calvete, Y.; Mcgowan, J.; Kelly, P.G.; Correa-Benítez, A. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 2010, 41, 443–450. [Google Scholar] [CrossRef]
- Chen, Y.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet effects on honeybee immunocompetence. Boil. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Vanengelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y.; et al. Colony Collapse Disorder: A Descriptive Study. PLoS ONE 2009, 4, e6481. [Google Scholar] [CrossRef]
Land Use | Total Acreage | % Acreage | |||
---|---|---|---|---|---|
2014 | 2015 | 2014 | 2015 | 2-Year Average | |
Soybean | 7489 | 5285 | 61.6 | 52.5 | 57.1 |
Rice | 1110 | 1088 | 9.1 | 10.8 | 10 |
Corn | 1005 | 849 | 8.3 | 8.4 | 8.4 |
Cotton | 443 | 317 | 3.6 | 3.2 | 3.4 |
Grain Sorghum | 92 | 91 | 0.8 | 0.9 | 0.9 |
Green Beans | 0 | 306 | 0 | 3 | 1.5 |
Total Crop Acreage | 10,139 | 7936 | 83.4 | 78.9 | 81.2 |
Fish Ponds | 396 | 396 | 3.9 | 3.9 | 3.9 |
Uncultivated Land | 1625 | 1731 | 12.7 | 17.2 | 15 |
Total Acreage | 12,160 | 10,063 | 100 | 100 | 100 |
Year | Pesticide | Class * | Number of Acres of Each Crop Treated by Pesticide Listed | Total Acres Treated | Percentage Surveyed Landscape Treated | |||||
---|---|---|---|---|---|---|---|---|---|---|
Soybean | Corn | Rice | Grain Sorghum | Cotton | Green Bean | |||||
2014 | Thiamethoxam | i-neo | 3677 | 789 | 669 | 92 | 264 | 0 | 5491 | 45.2 |
Imidacloprid | i-neo | 884 | 81 | 0 | 0 | 203 | 0 | 1168 | 9.6 | |
Clothianidin | i-neo | 1054 | 81 | 0 | 0 | 11 | 0 | 1146 | 9.4 | |
Dimethoate | I-op | 54 | 0 | 0 | 0 | 0 | 0 | 54 | 0.4 | |
Cypermethrin | I-py | 33 | 0 | 0 | 0 | 61 | 0 | 94 | 0.8 | |
Lambda-Cyhalothrin | i-pyr | 685 | 0 | 347 | 0 | 192 | 0 | 1224 | 10.1 | |
Bifenthrin | i-pyr | 319 | 81 | 0 | 0 | 11 | 0 | 411 | 3.4 | |
Chlorantraniliprole | i-ry | 319 | 50 | 0 | 0 | 72 | 0 | 441 | 3.6 | |
Flonicamid | i-u | 175 | 0 | 0 | 0 | 10 | 0 | 185 | 1.5 | |
Novaluron | igr | 285 | 81 | 0 | 0 | 11 | 0 | 377 | 3.1 | |
Fludioxonil | f | 3637 | 868 | 669 | 92 | 192 | 0 | 5458 | 44.9 | |
Mefenoxam | f | 3637 | 868 | 669 | 92 | 192 | 0 | 5458 | 44.9 | |
Azoxystrobin | f | 1608 | 0 | 347 | 0 | 323 | 0 | 2278 | 18.7 | |
Prothioconizole | f | 1567 | 509 | 62 | 0 | 0 | 0 | 2138 | 17.6 | |
Trifloxystrobin | f | 1567 | 509 | 62 | 0 | 0 | 0 | 2138 | 17.6 | |
Metalaxyl | f | 564 | 0 | 0 | 0 | 131 | 0 | 695 | 5.7 | |
Tebuconazole | f | 564 | 0 | 0 | 0 | 131 | 0 | 695 | 5.7 | |
Tiabendazole | f | 519 | 0 | 0 | 0 | 0 | 0 | 519 | 4.3 | |
Pyraclostrobin | f | 479 | 0 | 0 | 0 | 0 | 0 | 479 | 3.9 | |
Propiconazole | f | 0 | 0 | 292 | 0 | 0 | 0 | 292 | 2.4 | |
2015 | Thiamethoxam | i - neo | 2965 | 0 | 344 | 0 | 317 | 225 | 3851 | 38.3 |
Clothianidin | i - neo | 0 | 849 | 0 | 0 | 317 | 0 | 1166 | 11.6 | |
Acephate | i - op | 0 | 0 | 0 | 0 | 317 | 0 | 317 | 3.2 | |
Chlorpyrifos | i - op | 0 | 0 | 0 | 91 | 0 | 0 | 91 | 0.9 | |
Bifenthrin | i - pyr | 0 | 0 | 0 | 0 | 317 | 0 | 317 | 3.2 | |
Lambda-Cyhalothrin | i - pyr | 199 | 0 | 0 | 0 | 0 | 0 | 199 | 2 | |
Chlorantraniliprole | i - ry | 768 | 0 | 0 | 0 | 317 | 93 | 1178 | 11.7 | |
Flubendiamide | i - ry | 256 | 0 | 0 | 0 | 0 | 0 | 256 | 2.5 | |
Novaluron | igr | 0 | 0 | 0 | 0 | 317 | 0 | 317 | 3.2 | |
Fludioxonil | f | 2197 | 0 | 0 | 0 | 0 | 132 | 2329 | 23.1 | |
Mefenoxam | f | 2197 | 0 | 0 | 0 | 0 | 132 | 2329 | 23.1 | |
Azoxystrobin | f | 877 | 312 | 745 | 0 | 0 | 306 | 2240 | 22.3 | |
Propiconazole | f | 0 | 312 | 344 | 0 | 0 | 0 | 656 | 6.5 |
Land Use | Total Acreage | % Acreage |
---|---|---|
Woodland | 7489 | 54.0 |
Grass/Pasture | 1110 | 42.5 |
Fish Ponds | 1005 | 3.5 |
Wheat | 443 | 1.2 |
Total Acreage | 8043 | 100 |
Compound | Class * | Level of Detection (ppb) | Beeswax Foundation | Package Bees |
---|---|---|---|---|
coumaphos | a | 5 | 323.5 | 59 |
fluvalinate | a | 1 | 273 | 136.5 |
chlorpyriphos | i | 1 | 2.6 | 0 |
hexythiazox | igr | 30 | trace | 0 |
vinclozolin | f | 1 | trace | 0 |
atrazine | h | 6 | 0 | 96.9 |
Pesticide | Class * | Level of Detection (ppb) | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low-Ag | High-Ag | High-Ag | ||||||||
New Wax | Honey | Pollen | New Wax | Honey | Pollen | New Wax | Bees | |||
Coumaphos | a | 5 | 158.85 (95.38) | 0 | 0 | 103.75 (73.08) | 0 | 0 | 0 | 0 |
Coumaphos Oxon *** | a | 5 | 1.28 (2.55) | 0 | 0 | trace | 0 | 0 | 0 | 0 |
Fluvalinate | a | 1 | 128.53 (61.1) | 0 | 0 | 63 (73.52) | 0 | 0 | 0 | 0 |
Amitraz | a | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DMA ** | a | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 297.5 (595) |
DMPF ** | a | 10 | 0 | 0 | 0 | 0 | 13.05 (15.66) | 0.38 (0.25) | 769.75 (373.05) | trace |
Thymol | a | 50 | trace | 0 | 0 | 0 | 0 | 0 | 0 | 747.5 (1495) |
Bifenthrin | i | 2 | 37 (30.2) | 0 | 4.98 (9.95) | 3.75 (4.37) | 0 | 2.05 (4.1) | 14.3 (3.03) | 0 |
Chlorpyrifos | i | 1 | 0.68 (1.35) | 0 | 0 | 0.55 (1.1) | 0 | 0 | 0 | 0 |
Cyhalothrin | i | 1 | 0.55 (1.1) | 0 | 3.78 (0.79) | 0 | 0 | 2.48 (2.94) | 0 | 0 |
Dimethoate | i | 50 | 0.25 (0.5) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Flubendiamide | i | 25 | 0 | 48.7 (68.87) | 0 | 0 | 0 | 0 | 0 | 0 |
Methyl Parathion | i | 2 | 0.25 (0.5) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hexythiazox | igr | 30 | 0.25 (0.5) | 0 | 0 | 0.5 (0.58) | 0 | 0 | 0 | 0 |
Azoxystrobin | f | 2 | 1.13 (2.25) | 0 | 30.25 (36.07) | 2.13 (4.25) | 0 | 0 | 0 | 0 |
Carbendazim | f | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 (0.29) | 0 |
Chlorothalonil | f | 30 | 0 | 0 | 0 | 0.5 (0.58) | 0 | 0 | 0 | 0 |
Metalaxyl | f | 2 | 1.55 (3.1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Trifloxystrobin | f | 1 | 0.5 (0.58) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Vinclozolin | f | 1 | 0 | 0 | 0 | 0.25 (0.5) | 0 | 0 | 0 | 0 |
Atrazine | h | 6 | 2.35 (4.7) | 0 | 0 | 0 | 0 | 0 | 0.25 (0.29) | 0 |
Metolachlor | h | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 241.25 (311.42) | 0 |
Metribuzin | h | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 10.9 (5.01) | 0 |
Pendimethalin | h | 6 | 8.8 (16.94) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tribufos | d | 2 | 0 | 0 | 3.9 (7.8) | 0 | 0 | 0 | 8.48 (16.95) | 0 |
Compound | LOD | Compound | LOD | Compound | LOD |
---|---|---|---|---|---|
1-Naphthol | 10 | Dinotefuran | 2 | Parathion methyl | 2 |
3-Hydroxycarbofuran | 10 | Diphenamid | 20 | Permethrin total | 10 |
4,4 dibromobenzophenone | 4 | Endosulfan I | 2 | Phenothrin | 10 |
4-Hydroxychlorothalonil | 50 | Endosulfan II | 2 | Phorate | 50 |
Acephate | 50 | Endosulfan sulfate | 2 | Phosalone | 10 |
Acetamiprid | 2 | Endrin | 10 | Phosmet | 10 |
Acetochlor | 50 | Epoxiconazole | 1 | Piperonyl butoxide | 50 |
Alachlor | 10 | Esfenvalerate | 2 | Pirimiphos methyl | 20 |
Aldicarb | 4 | Ethion | 10 | Prallethrin | 4 |
Aldicarb sulfone | 2 | Ethofumesate | 10 | Profenofos | 10 |
Aldicarb sulfoxide | 20 | Etoxazole | 1 | Pronamide | 1 |
Aldrin | 10 | Etridiazole | 50 | Propachlor | 10 |
Allethrin | 10 | Famoxadone | 20 | Propanil | 10 |
Amicarbazone | 30 | Fenamidone | 10 | Propargite | 10 |
Azinphos methyl | 6 | Fenbuconazole | 10 | Propazine | 20 |
Bendiocarb | 10 | Fenhexamid | 6 | Propetamphos | 4 |
Benoxacor | 20 | Fenoxaprop-ethyl | 20 | Propham | 20 |
BHC alpha | 4 | Fenpropathrin | 10 | Propiconazole | 20 |
Bifenazate | 20 | Fenpyroximate | 5 | Pymetrozine | 20 |
Boscalid | 4 | Fenthion | 10 | Pyraclostrobin | 15 |
Bromuconazole | 20 | Fipronil | 10 | Pyrethrins | 50 |
Buprofezin | 20 | Flonicamid | 8 | Pyridaben | 10 |
Captan | 10 | Fludioxonil | 20 | Pyrimethanil | 20 |
Carbaryl | 30 | Fluoxastrobin | 4 | Pyriproxyfen | 10 |
Carbofuran | 10 | Fluridone | 10 | Quinoxyfen | 10 |
Carboxin | 4 | Flutolanil | 4 | Quintozene (PCNB) | 1 |
Carfentrazone ethyl | 1 | Heptachlor epoxide | 10 | Resmethrin total | 5 |
Chlorfenopyr | 1 | Heptachlor | 4 | Sethoxydim | 2 |
Chlorfenvinphos | 6 | Hexachlorobenzene (HCB) | 1 | Simazine | 50 |
Chlorferone | 50 | Hydroprene | 20 | Spinosad | 50 |
Chlorpropham (CIPC) | 40 | Imazalil | 20 | Spirodiclofen | 2 |
Clofentezine | 100 | Imidacloprid 5-hydroxy | 25 | Spiromesifen | 10 |
Clothianidin | 1 | Imidacloprid | 1 | Tebuconazole | 8 |
Cyfluthrin | 4 | Imidacloprid olefin | 10 | Tebufenozide | 10 |
Cypermethrin | 4 | Indoxacarb | 3 | Tebuthiuron | 2 |
Cyphenothrin | 20 | Iprodione | 50 | Tefluthrin | 1 |
Cyprodinil | 1 | Lindane | 4 | Tetrachlorvinphos | 4 |
DDD p,p’ | 4 | Linuron | 20 | Tetraconazole | 6 |
DDE p,p’ | 2 | Malathion | 4 | Tetradifon | 1 |
DDT p,p’ | 4 | Methamidophos | 4 | Tetramethrin | 10 |
Deltamethrin | 50 | Methidathion | 10 | Thiabendazole | 1 |
Diazinon | 5 | Methomyl | 10 | Thiacloprid | 1 |
Dichlorvos (DDVP) | 50 | Methoxyfenozide | 10 | Thiamethoxam | 1 |
Dicloran | 1 | MGK-264 | 50 | THPI | 50 |
Dicofol | 1 | MGK-326 | 10 | Triadimefon | 2 |
Dieldrin | 10 | Myclobutanil | 15 | Triadimenol | 45 |
Difenoconazole | 10 | Norflurazon | 6 | Triflumizole | 50 |
Diflubenzuron | 10 | Oxamyl | 5 | Triticonazole | 10 |
Dimethenamid | 10 | Oxyfluorfen | 1 | ||
Dimethomorph | 20 | Paradichlorobenzene | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawislak, J.; Adamczyk, J.; Johnson, D.R.; Lorenz, G.; Black, J.; Hornsby, Q.; Stewart, S.D.; Joshi, N. Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies. Insects 2019, 10, 280. https://doi.org/10.3390/insects10090280
Zawislak J, Adamczyk J, Johnson DR, Lorenz G, Black J, Hornsby Q, Stewart SD, Joshi N. Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies. Insects. 2019; 10(9):280. https://doi.org/10.3390/insects10090280
Chicago/Turabian StyleZawislak, Jon, John Adamczyk, Donald R. Johnson, Gus Lorenz, Joe Black, Quinton Hornsby, Scott D. Stewart, and Neelendra Joshi. 2019. "Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies" Insects 10, no. 9: 280. https://doi.org/10.3390/insects10090280
APA StyleZawislak, J., Adamczyk, J., Johnson, D. R., Lorenz, G., Black, J., Hornsby, Q., Stewart, S. D., & Joshi, N. (2019). Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies. Insects, 10(9), 280. https://doi.org/10.3390/insects10090280