Assessment of the Synergic Effect between Lysinibacillus sphaericus S-Layer Protein and Glyphosate in the Lethality of the Invasive Arboviral Vector Aedes albopictus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lysinibacillus sphaericus and Aedes albopictus Strains
2.2. S-Layer Protein Extraction, Purification, and Quantification
2.3. Glyphosate, Phosphate and Glycine Solutions
2.4. Aedes Mosquito Maintenance and Bioassays of the S-Layer Protein, Glyphosate, Phosphate and Glycine against Aedes albopictus Larvae
2.5. Statistical Analysis
3. Results
3.1. S-Layer Protein Extraction, Purification, and Quantification
3.2. Glyphosate, Glyphosate Derivates and S-Layer Protein Induced Mortality in Ae. albopictus Mortality
3.3. Synergy between Glyphosate and Glyphosate Derivates with Bacteria S-Layer Protein in Ae. albopictus Mortality
4. Discussion
4.1. S-Layer Protein Extraction, Purification, and Quantification
4.2. Glyphosate, Glyphosate Derivates and S-Layer Protein Induced Mortality in Ae. albopictus Mortality
4.3. Synergy between Glyphosate and Glyphosate Derivates with Bacteria S-Layer Protein in Ae. albopictus Mortality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gillezeau, C.; Van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grube, A.; Donaldson, D.; Kiely, T.; Wu, L. Pesticides Industry Sales and Usage. United States Environmental Protection Agency Report. 2011. Available online: http://www.panna.org/sites/default/files/EPA%20market_estimates2007.pdf (accessed on 21 April 2020).
- Roberts, C.W.; Roberts, F.; Lyons, R.E.; Kirisits, M.J.; Mui, E.J.; Finnerty, J.; Johnson, J.J.; Ferguson, D.J.P.; Coggins, J.R.; Krell, T.; et al. The Shikimate Pathway and Its Branches in Apicomplexan Parasites. J. Infect. Dis. 2002, 185, S25–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sribanditmongkol, P.; Jutavijittum, P.; Pongraveevongsa, P.; Wunnapuk, K.; Durongkadech, P. Pathological and Toxicological Findings in Glyphosate-Surfactant Herbicide Fatality. Am. J. Forensic Med. Pathol. 2012, 33, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Gros, P.; Ahmed, A.A.; Kühn, O.; Leinweber, P. Glyphosate binding in soil as revealed by sorption experiments and quantum-chemical modeling. Sci. Total Environ. 2017, 586, 527–535. [Google Scholar] [CrossRef]
- Panzacchi, S.; Mandrioli, D.; Manservisi, F.; Bua, L.; Falcioni, L.; Spinaci, M.; Galeati, G.; Dinelli, G.; Miglio, R.; Mantovani, A.; et al. The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: Study design and first in-life endpoints evaluation. Environ. Health 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Rincón-Ruiz, A.; Kallis, G. Caught in the middle, Colombia’s war on drugs and its effects on forest and people. Geoforum 2013, 46, 60–78. [Google Scholar] [CrossRef]
- Bernal, L.; Dussán, J. Synergistic effect of Lysinibacillus sphaericus and glyphosate on temephos-resistant larvae of Aedes aegypti. Parasites Vectors 2020, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.M.; Hyne, R.V.; Choung, C.B.; Wilson, S.P. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environ. Pollut. 2009, 157, 2903–2927. [Google Scholar] [CrossRef]
- Saunders, L.E.; Pezeshki, R. Glyphosate in Runoff Waters and in the Root-Zone: A Review. Toxics 2015, 3, 462–480. [Google Scholar] [CrossRef] [Green Version]
- Daouk, S.; De Alencastro, L.F.; Pfeifer, H.-R. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: Proof of widespread export to surface waters. Part II: The role of infiltration and surface runoff. J. Environ. Sci. Health Part B 2013, 48, 725–736. [Google Scholar] [CrossRef]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Vélez, I.D.; Quiñones, M.L.; Suárez, M.; Olano, V.A.; Murcia, L.M.; Correa, E.; Arevalo, C.; Pérez, L.; Brochero, H.; Morales, A. Presencia de Aedes albopictus en Leticia, Amazonas, Colombia. Biomédica 1998, 18, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Grisales, N.; Poupardin, R.; Gomez, S.; Fonseca-Gonzalez, I.; Ranson, H.; Lenhart, A. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control. PLoS Negl. Trop. Dis. 2013, 7, e2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connell, D.W.; Lam, P.; Richardson, B.; Wu, R. Introduction to Ecotoxicology; John Wiley and Sons: Hoboken, NJ, USA, 2009; pp. 50–65. [Google Scholar]
- Rojas-Pinzón, P.A.; Dussán, J. Efficacy of the vegetative cells of Lysinibacillus sphaericus for biological control of insecticide-resistant Aedes aegypti. Parasites Vectors 2017, 10, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crans, W.J. A classification system for mosquito life cycles: Life cycle types for mosquitoes of the northeastern United States. J. Vector Ecol. 2004, 29, 1–10. [Google Scholar] [PubMed]
- Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef] [PubMed]
- Garzón, J.D.; Linares, D.R.A.; Ardila, L.C.L.; Moyano, S.D.P.V. Caracterización fisiológica y genética de cepas nativas de Bacillus sphaericus. Rev. Colomb. Biotecnol. 2002, 4, 89–99. [Google Scholar]
- Vega-Páez, J.D.; Rivas, R.E.; Dussán, J.; Páez, V.; Garzón, D. High Efficiency Mercury Sorption by Dead Biomass of Lysinibacillus sphaericus-New Insights into the Treatment of Contaminated Water. Materials 2019, 12, 1296. [Google Scholar] [CrossRef] [Green Version]
- Manchola, L.; Dussán, J. Lysinibacillus sphaericus and Geobacillus sp Biodegradation of Petroleum Hydrocarbons and Biosurfactant Production. Remediat. J. 2014, 25, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Martínez, S.A.; Dussán, J. Lysinibacillus sphaericus plant growth promoter bacteria and lead phytoremediation enhancer with Canavalia ensiformis. Environ. Prog. Sustain. Energy 2017, 37, 276–282. [Google Scholar] [CrossRef]
- Lozano, L.C.; Ayala, J.A.; Dussán, J. Lysinibacillus sphaericus S-layer protein toxicity against Culex quinquefasciatus. Biotechnol. Lett. 2011, 33, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 2012, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Thanabalu, T.; Porter, A.G. Efficient expression of a 100-kilodalton mosquitocidal toxin in protease-deficient recombinant Bacillus sphaericus. Appl. Environ. Microbiol. 1995, 61, 4031–4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, M.P.; Melo, C.; Jiménez, E.; Dussán, J. Glyphosate Bioremediation through the Sarcosine Oxidase Pathway Mediated by Lysinibacillus sphaericus in Soils Cultivated with Potatoes. Agriculture 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- González-Valenzuela, L.E.; Dussán, J. Molecular assessment of glyphosate-degradation pathway via sarcosine intermediate in Lysinibacillus sphaericus. Environ. Sci. Pollut. Res. 2018, 25, 22790–22796. [Google Scholar] [CrossRef]
- Weiser, J. A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from Northern Nigeria. Zent. Mikrobiol. 1984, 139, 57–60. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Hansen, B.M.; Yuan, Z. Phylogenetic Analysis and Heterologous Expression of Surface Layer Protein SlpC of Bacillus sphaericus C3-41. Biosci. Biotechnol. Biochem. 2008, 72, 1257–1263. [Google Scholar] [CrossRef]
- US Environmental Protection Agency Office of Pesticide Programs. Dipotassium Phosphate PC Code 176407. 2003. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-176407_23-Mar-03.pdf (accessed on 26 May 2020).
- Lozano, L.C.; Dussán, J. Synergistic Activity between S-Layer Protein and Spore–Crystal Preparations from Lysinibacillus sphaericus against Culex quinquefasciatus Larvae. Curr. Microbiol. 2017, 74, 371–376. [Google Scholar] [CrossRef]
- Santana-Martinez, J.; Silva, J.; Dussán, J. Efficacy of Lysinibacillus sphaericus against mixed-cultures of field-collected and laboratory larvae of Aedes aegypti and Culex quinquefasciatus. Bull. Entomol. Res. 2018, 109, 111–118. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3-900051-07-0. Available online: http://www.Rproject.org/ (accessed on 10 May 2020).
- Suhr, M.; Lederer, F.L.; Günther, T.J.; Raff, J.; Pollmann, K. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins. PLoS ONE 2016, 11, e0156785. [Google Scholar] [CrossRef]
- Gómez-Garzón, C.; Hernández-Santana, A.; Dussán, J. A genome-scale metabolic reconstruction of Lysinibacillus sphaericus unveils unexploited biotechnological potentials. PLoS ONE 2017, 12, e0179666. [Google Scholar] [CrossRef]
- Mesnage, S.; Tosi-Couture, E.; Gounon, P.; Mock, M.; Fouet, A. The Capsule and S-Layer: Two Independent and Yet Compatible Macromolecular Structures in Bacillus anthracis. J. Bacteriol. 1998, 180, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.I.; Sánchez, N.; Pineda, S.; Chi, H.; Ronco, A. Impact of glyphosate on the development, fertility and demography of Chrysoperla externa (Neuroptera: Chrysopidae): Ecological approach. Chemosphere 2009, 76, 1451–1455. [Google Scholar] [CrossRef]
- Domínguez, A.; Brown, G.G.; Sautter, K.D.; De Oliveira, C.M.R.; De Vasconcelos, E.C.; Niva, C.C.; Bartz, M.L.C.; Bedano, J.C. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Sci. Rep. 2016, 6, 19731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 4th ed.; Freeman, W.H., Ed.; McGraw-Hill Book: New York, NY, USA, 2005; Volume 127, pp. 675–677. [Google Scholar]
- Shibui, Y.; Miwa, T.; Yamashita, M.; Chin, K.; Kodama, T. A 4-week Repeated Dose Toxicity Study of Glycine in Rats by Gavage Administration. J. Toxicol. Pathol. 2013, 26, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Visanuvimol, L.; Bertram, S.M. How Dietary Phosphorus Availability during Development Influences Condition and Life History Traits of the Cricket, Acheta domesticas. J. Insect Sci. 2011, 11, 1–17. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Ostrakhovitch, E.; Semenikhin, O. The role of redox environment in neurogenic development. Arch. Biochem. Biophys. 2013, 534, 44–54. [Google Scholar] [CrossRef]
- Rojas-Pinzón, P.A.; Dussán, J. Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J. Microbiol. Biotechnol. 2017, 33, 181–190. [Google Scholar] [CrossRef]
- Harold, H. Origin of the Word ‘Protein’. Nature 1951, 168, 244. [Google Scholar]
- Tanford, C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Protein Fold. Cell. 1970, 24, 1–95. [Google Scholar]
- Lighezan, L.; Georgieva, R.; Neagu, A. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius. Phys. Scr. 2012, 86, 35801. [Google Scholar] [CrossRef]
- Justice, S.S.; Hunstad, D.A.; Cegelski, L.; Hultgren, S.J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Genet. 2008, 6, 162–168. [Google Scholar] [CrossRef]
- Yap, H.-H. Field Trials of Bacillus sphaericus for Mosquito Control. In Bacterial Control of Mosquitoes & Black Flies; Springer Science and Business Media LLC: Berlin, Germany, 1990; pp. 307–320. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dániel-Gómez, M.; Dussán, J. Assessment of the Synergic Effect between Lysinibacillus sphaericus S-Layer Protein and Glyphosate in the Lethality of the Invasive Arboviral Vector Aedes albopictus. Insects 2020, 11, 793. https://doi.org/10.3390/insects11110793
Dániel-Gómez M, Dussán J. Assessment of the Synergic Effect between Lysinibacillus sphaericus S-Layer Protein and Glyphosate in the Lethality of the Invasive Arboviral Vector Aedes albopictus. Insects. 2020; 11(11):793. https://doi.org/10.3390/insects11110793
Chicago/Turabian StyleDániel-Gómez, Mario, and Jenny Dussán. 2020. "Assessment of the Synergic Effect between Lysinibacillus sphaericus S-Layer Protein and Glyphosate in the Lethality of the Invasive Arboviral Vector Aedes albopictus" Insects 11, no. 11: 793. https://doi.org/10.3390/insects11110793
APA StyleDániel-Gómez, M., & Dussán, J. (2020). Assessment of the Synergic Effect between Lysinibacillus sphaericus S-Layer Protein and Glyphosate in the Lethality of the Invasive Arboviral Vector Aedes albopictus. Insects, 11(11), 793. https://doi.org/10.3390/insects11110793