Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Detection and Quantification of JH from Insect Samples
3. Approaches to Modulate Endogenous JH Titers
4. Next-Generation Tools to Modulate JH Homeostasis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodman, W.G.; Cusson, M. The Juvenile Hormones. In Insect Endocrinology; Gilbert, L.I., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 310–365. [Google Scholar]
- Zhu, J.; Noriega, F.G. The role of juvenile hormone in mosquito development and reproduction. In Advances in Insect Physiology; Progress in Mosquito Research; Raikhel, A., Ed.; Elsevier: Oxford, UK, 2016; Volume 51, pp. 93–113. [Google Scholar]
- Rivera-Pérez, C.; Clifton, M.E.; Noriega, F.G.; Jindra, M. Juvenile hormone regulation and action. In Advances in Invertebrate (Neuro) Endocrinology; Saleuddin, S., Lange, A.B., Orchard, I., Eds.; Apple Academic Press, Inc.: Oakville, ON, Canada, 2020; Volume 2, pp. 1–76. [Google Scholar]
- Slama, K.; Romanuk, M.; Sorm, F. Insect Hormones and Bioanalogues; Springer: New York, NY, USA, 1974. [Google Scholar]
- Cusson, M.; Sen, S.E.; Shinoda, T. Juvenile hormone biosynthetic enzymes as targets for insecticide discovery. In Advanced Technologies for Managing Insect Pests; Ishayya, I., Palli, S.R., Horowitz, A.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 31–55. [Google Scholar]
- Jindra, M.; Bittova, L. The juvenile hormone receptor as a target of juvenoid “insect growth regulators”. Arch. Insect Biochem. Physiol. 2020, 103, e21615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Perez, C.; Nouzova, M.; Noriega, F.G. New approaches to study juvenile hormone biosynthesis in insects. Short Views Insect Biochem. Molec. Biol. 2014, 7, 185–216. [Google Scholar]
- Ramirez, C.E.; Nouzova, M.; Benigni, P.; Quirke, J.M.E.; Noriega, F.G.; Fernandez-Lima, F. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta 2016, 159, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergot, B.J.; Ratcliff, M.; Schooley, D.A. Method for quantitative determination of the four known juvenile hormones in insect tissue using gas chromatography-mass spectroscopy. J. Chromatogr. 1981, 204, 231–244. [Google Scholar] [CrossRef]
- Ramirez, C.E.; Nouzova, M.; Michalkova, V.; Fernandez-Lima, F.; Noriega, F.G. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Molec. Biol. 2020, 116, 103287. [Google Scholar] [CrossRef] [PubMed]
- Wigglesworth, V.B. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q. J. Microsc. Sci. 1934, 77, 191–222. [Google Scholar]
- Villalobos-Sambucaro, M.J.; Nouzova, M.; Ramirez, C.E.; Alzugaray, M.E.; Fernandez-Lima, F.; Ronderos, J.R.; Noriega, F.G. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci. Rep. 2020, 10, 3091. [Google Scholar] [CrossRef] [Green Version]
- Dhadialla, T.S.; Retnakaran, A.; Smagghe, G. Insect growth and development disrupting insecticides. In Comprehensive Insect Molecular Science; Gilbert, L.I., Iatrou, K., Gill, S., Eds.; Elsevier/Pergamon: New York, NY, USA, 2005; Volume 6, pp. 55–116. [Google Scholar]
- Jindra, M.; Palli, S.R.; Riddiford, L.M. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 2013, 58, 181–204. [Google Scholar] [CrossRef]
- Staal, G.B. Anti juvenile hormone agents. Annu. Rev. Entomol. 1986, 31, 391–429. [Google Scholar] [CrossRef]
- Charles, J.-P.; Iwema, T.; Epa, V.C.; Takaki, K.; Rynes, J.; Jindra, M. Ligand-binding properties of a juvenile hormone receptor, methoprene-tolerant. Proc. Natl. Acad. Sci. USA 2011, 108, 21128–21133. [Google Scholar] [CrossRef] [Green Version]
- Bittova, L.; Jedlicka, P.; Dracinsky, M.; Kirubakaran, P.; Vondrasek, J.; Hanus, R.; Jindra, M. Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 2019, 294, 410–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindra, M.; Uhlirova, M.; Charles, J.-P.; Smykal, V.; Hill, R.J. Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet 2015, 11, e1005394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, M.E.; Noriega, F.G. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J. Insect Physiol. 2011, 57, 1274–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, M.E.; Noriega, F.G. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J. Insect Physiol. 2012, 58, 1007–1019. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Harrington, L.C.; Scott, J.G. Evaluation of novel insecticides for control of the dengue vector Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2006, 43, 55–60. [Google Scholar] [CrossRef]
- Jones, G.; Jones, D.; Li, X.; Tang, L.; Ye, L.; Teal, P.; Riddiford, L.; Sandifer, C.; Borovsky, D.; Martin, J.-R. Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster. J. Insect Physiol. 2010, 56, 1456–1464. [Google Scholar] [CrossRef]
- Bowers, W.S.; Ohta, T.; Cleere, J.S.; Marsella, P.A. Discovery of insect anti-juvenile hormone in plants. Science 1976, 193, 542–547. [Google Scholar] [CrossRef]
- Bowers, W.S.; Martinez-Pardo, R. Antiallatotropins: Inhibition of corpus allatum development. Science 1977, 197, 1369–1371. [Google Scholar] [CrossRef]
- Pratt, G.E.; Jennings, R.C.; Hamnett, A.F.; Brooks, G.T. Lethal metabolism of precocene-1 to a reactive epoxide by locust corpora allata. Nature 1980, 284, 320–323. [Google Scholar] [CrossRef]
- Tan, A.; Tanaka, H.; Tamura, T.; Shiotsuki, T. Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc. Natl. Acad. Sci. USA 2005, 102, 11751–11756. [Google Scholar] [CrossRef] [Green Version]
- Philpott, M.L.; Hammock, B.D. Juvenile hormone esterase is a biochemical anti-juvenile hormone agent. Insect Biochem. 1990, 20, 451–459. [Google Scholar] [CrossRef]
- Bonning, B.C.; Loher, W.; Hammock, B.D. Recombinant juvenile hormone esterase as a biochemical anti-juvenile hormone agent: Effects on ovarian development in Acheta domesticus. Arch. Insect Biochem. Physiol. 1997, 34, 359–368. [Google Scholar] [CrossRef]
- Edgar, K.; Noriega, F.G.; Bonning, B.C.; Wells, M.A. Recombinant juvenile hormone esterase, an effective tool to modify juvenile hormone-dependent expression of the early trypsin gene in mosquitoes. Insect Molec. Biol. 2000, 9, 27–31. [Google Scholar] [CrossRef]
- Kuwano, E.; Takeya, R.; Eto, M. Terpenoid imidazoles: New anti-juvenile hormones. Agric. Biol. Chem. 1983, 47, 921–923. [Google Scholar]
- Helvig, C.; Koener, J.F.; Unnithan, G.C.; Feyereisen, R. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc. Natl. Acad. Sci. USA 2004, 101, 4024–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kuwano, E.; Noriega, F.G. 1,5-disubstituted imidazoles inhibit juvenile hormone biosynthesis by the corpora allata of the mosquito Aedes aegypti. J. Insect Physiol. 2003, 49, 1005–1011. [Google Scholar] [CrossRef]
- Shinoda, T.; Itoyama, K. Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. USA 2003, 100, 11986–11991. [Google Scholar] [CrossRef] [Green Version]
- Nouzova, M.; Michalkova, V.; Ramirez, C.E.; Fernandez-Lima, F.; Noriega, F.G. Inhibition of juvenile hormone synthesis in mosquitoes by the methylation inhibitor 3-deazaneplanocin A (DZNep). Insect Biochem. Molec. Biol. 2019, 113, 103183. [Google Scholar] [CrossRef]
- Ramos, F.O.; Leyria, J.; Nouzova, M.; Fruttero, L.L.; Noriega, F.G.; Canavoso, L.E. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. Insect Biochem. Mol. Biol. 2020, 103499. [Google Scholar] [CrossRef]
- Belles, X. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu. Rev. Entomol. 2010, 55, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Whitten, M.M.A. Novel RNAi delivery systems in the control of medical and veterinary pests. Curr. Opin. Insect Sci. 2019, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Meiselman, M.; Lee, S.S.; Tran, R.T.; Dai, H.; Ding, Y.; Rivera-Perez, C.; Wijesekera, T.P.; Dauwalder, B.; Noriega, F.G.; Adams, M.E. An endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2017, 114, E3849–E3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.S.; Ding, Y.; Karapetians, N.; Rivera-Perez, C.; Noriega, F.G.; Adams, M.E. Hormonal signaling cascade during an early adult critical period required for courtship memory retention in Drosophila. Curr. Biol. 2017, 227, 2798–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopova, B.; Jindra, M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. USA 2007, 104, 10488–10493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minakuchi, C.; Namiki, T.; Shinoda, T. Kruppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 2009, 325, 341–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopova, B.; Smykal, V.; Jindra, M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS ONE 2011, 6, e28728. [Google Scholar] [CrossRef] [Green Version]
- Villalobos Sambucaro, M.J.; Riccillo, F.L.; Calderón-Fernández, G.M.; Sterkel, M.; Diambra, L.A.; Ronderos, J.R. Genomic and functional characterization of a methoprene-tolerant gene in the kissing-bug Rhodnius prolixus. Gen. Comp. Endocrinol. 2015, 216, 1–8. [Google Scholar] [CrossRef]
- Saha, T.T.; Roy, S.; Pei, G.; Dou, W.; Zou, Z.; Raikhel, A.S. Synergistic action of the transcription factors Kruppel homolog 1 and Hairy in juvenile hormone/Methoprene-tolerant-mediated gene-repression in the mosquito Aedes aegypti. PLoS Genet. 2019, 15, e1008443. [Google Scholar] [CrossRef]
- Noriega, F.G.; Shaa, D.; Wells, M.A. Juvenile Hormone controls early trypsin gene expression in the midgut of Aedes aegypti. Insect Molec. Biol. 1997, 6, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Mead, E.A.; Zhu, J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. USA 2011, 108, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Hou, Y.; Wang, J.; Kokoza, V.A.; Saha, T.T.; Wang, X.-L.; Lin, L.; Zou, Z.; Raikhel, A.S. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 2016, 77, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, L.A.; Holderbaum, L.; Tao, R.; Hu, Y.; Sopko, R.; McCall, K.; Yang-Zhou, D.; Flockhart, I.; Binari, R.; Shim, H.-S.; et al. The transgenic RNAi project at Harvard medical school: Resources and validation. Genetics 2015, 201, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Guo, Z.; Liu, Y.; Zhang, Y. Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front. Physiol. 2017, 8, 608. [Google Scholar] [CrossRef]
- Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Huynh, N.; Wang, S.; King-Jones, K. Spatial and temporal control of gene manipulation in Drosophila via drug-activated Cas9 nucleases. Insect Biochem. Mol. Biol. 2020, 120, 103336. [Google Scholar] [CrossRef]
- Daimon, T.; Uchibori, M.; Nakao, H.; Sezutsu, H.; Shinoda, T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl Acad. Sci. USA 2015, 112, E4226–E4235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, X.; Shiotsuki, T.; Wang, Z.; Xu, X.; Huang, Y.; Tan, A. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori. Insect Biochem. Mol. Biol. 2017, 81, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Rivera-Perez, C.; Abdou, M.; Jia, Q.; He, Q.; Zyaan, O.; Bendena, W.B.; Tobe, S.S.; Noriega, F.G.; Palli, S.R.; et al. Methyl farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genet. 2015, 11, e1005038. [Google Scholar] [CrossRef]
- Guan-Heng Zhu, G.-H.; Jiao, Y.; Chereddy, S.C.R.R.; Noh, M.Y.; Palli, S.R. Knockout of juvenile hormone receptor, Methoprene tolerant, induces black larval phenotype in the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 2019, 116, 21501–21507. [Google Scholar]
- Kim, I.H.; Castillo, J.C.; Aryan, A.; Martin-Martin, I.; Nouzova, M.; Noriega, F.G.; Barletta, A.B.F.; Calvo, E.; Adelman, Z.N.; Ribeiro, J.M.; et al. A mosquito juvenile hormone binding protein (mJHBP) regulates the activation of innate immune defenses and hemocyte development. PLoS Pathog. 2020, 16, e1008288. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noriega, F.G.; Nouzova, M. Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology. Insects 2020, 11, 858. https://doi.org/10.3390/insects11120858
Noriega FG, Nouzova M. Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology. Insects. 2020; 11(12):858. https://doi.org/10.3390/insects11120858
Chicago/Turabian StyleNoriega, Fernando G., and Marcela Nouzova. 2020. "Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology" Insects 11, no. 12: 858. https://doi.org/10.3390/insects11120858
APA StyleNoriega, F. G., & Nouzova, M. (2020). Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology. Insects, 11(12), 858. https://doi.org/10.3390/insects11120858