Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Site
2.3. Manual Sampling
2.4. Palynological Analyses
2.5. Video Observations
2.6. Video Analysis and Behavioral Observations
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Michez, D.; Rasmont, P.; Terzo, M.; Vereecken, N.J. Bees of Europe; Overview Bees; N.A.P. Editions: Verrières-le-Buisson, France, 2019; pp. 62–130. [Google Scholar]
- Larson, B.M.H.; Kevan, P.G.; Inouye, D.W. Flies and flowers: Taxonomic diversity of anthophiles and pollinators. Can. Entomol. 2001, 133, 439–465. [Google Scholar] [CrossRef] [Green Version]
- Abrol, D.P. Pollination Biology; Non bee pollinators-plant interaction; Springer: Dordrecht, Germany, 2012; pp. 265–310. [Google Scholar]
- Wardhaugh, C.W. How many species of arthropods visit flowers? Arthropod Plant Interact. 2015, 9, 547–565. [Google Scholar] [CrossRef]
- Vasconcellos-Neto, J.; Messas, Y.F.; Da Silva, H.S.; Villanueva-Bonila, G.A.; Romero, G.Q. Spider-plant interactions: An ecological approach. In Behavior and Ecology of Spiders; Viera, C., Gonzaga, M.O., Eds.; Springer: Cham, Switzerland, 2017; pp. 165–214. [Google Scholar]
- Fontaine, C.; Dajoz, I.; Meriguet, J.; Loreau, M. Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 2006, 4, e1. [Google Scholar] [CrossRef] [PubMed]
- Weisser, W.W.; Siemann, E. The various effects of insects on ecosystem functioning. In Insects and Ecosystem Function; Weisser, W.W., Siemann, E., Eds.; Springer: Berlin, Germany, 2008; pp. 3–24. [Google Scholar]
- Brodie, J.F.; Aslan, C.E.; Rogers, H.S.; Redford, K.H.; Maron, J.L.; Bronstein, J.L.; Groves, C.R. Secondary extinctions of biodiversity. Trends Ecol. Evol. 2014, 29, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Dong, Y.; Tian, X.; Xu, H.; Zhou, Q.; Niklas, K.J.; Sun, S. Domestic honeybees affect the performance of pre-dispersal seed predators in an alpine meadow. Oecologia 2018, 187, 113–122. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Nicholson, C.C.; Egan, P.A. Natural hazard threats to pollinators and pollination. Glob. Chang. Biol. 2020, 26, 380–391. [Google Scholar] [CrossRef]
- Memmott, J.; Craze, P.G.; Waser, N.M.; Price, M.V. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 2007, 10, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Hegland, S.J.; Nielsen, A.; Lázaro, A.; Bjerknes, A.L.; Totland, Ø. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 2009, 12, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Forrest, J.R.K. Insect pollinators and climate change. In Global Climate Change and Terrestrial Invertebrates; Johnson, S.N., Jones, T.H., Eds.; Wiley: Chichester, UK, 2016; pp. 69–91. [Google Scholar]
- Renner, S.S.; Zohner, C.M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Syst. 2018, 49, 165–182. [Google Scholar] [CrossRef]
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 2020, 4, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Settele, J.; Bishop, J.; Potts, S.G. Climate change impacts on pollination. Nat. Plants 2016, 2, 1–3. [Google Scholar] [CrossRef]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Fernández Calzado, M.R.; et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Morton, E.M.; Rafferty, N.E. Plant-pollinator interactions under climate change: The use of spatial and temporal transplants. Appl. Plant Sci. 2017, 5, 1600133. [Google Scholar] [CrossRef]
- Kettenbach, J.A.; Miller-Struttmann, N.; Moffett, Z.; Galen, C. How shrub encroachment under climate change could threaten pollination services for alpine wildflowers: A case study using the alpine skypilot. Polemonium Viscosum. Ecol. Evol. 2017, 7, 6963–6971. [Google Scholar] [CrossRef]
- Kudo, G.; Cooper, E.J. When spring ephemerals fail to meet pollinators: Mechanism of phenological mismatch and its impact on plant reproduction. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190573. [Google Scholar] [CrossRef] [Green Version]
- Adedoja, O.; Kehinde, T.; Samways, M.J. Asynchrony among insect pollinator groups and flowering plants with elevation. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Inouye, D.W. Effects of climate change on alpine plants and their pollinators. Ann. N. Y. Acad. Sci. 2020, 1469, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Ohler, L.M.; Lechleitner, M.; Junker, R.R. Microclimatic effects on alpine plant communities and flower-visitor interactions. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Dillon, M.E.; Hotaling, S.; Woods, H.A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 2020, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, N.E.; Diez, J.M.; Bertelsen, C.D. Changing climate drives divergent and nonlinear shifts in flowering phenology across elevations. Curr. Biol. 2020, 30, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, S.K.; Levine, J.M.; Stefan, L.; Johnson, C.A. Asynchronous range shifts drive alpine plant-pollinator interactions and reduce plant fitness. Glob. Chang. Biol. 2020, 26, 3052–3064. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, V.; Villemant, C.; Fontaine, C.; Daugeron, C. Altitudinal, temporal and trophic partitioning of flower-visitors in Alpine communities. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Müller, H. The fertilisers of alpine flowers. Nature 1880, 21, 275. [Google Scholar] [CrossRef] [Green Version]
- Bezzi, M. Studi sulla Ditterofauna nivale delle Alpi italiane. Mem. Soc. Ent. Ital. 1918, 9, 1–164. [Google Scholar]
- Zoller, H.; Lenzin, H.; Erhardt, A. Pollination and breeding system of Eritrichium nanum (Boraginaceae). Plant Syst. Evol. 2002, 233, 1–14. [Google Scholar] [CrossRef]
- Rossi, M.; Fisogni, A.; Nepi, M.; Quaranta, M.; Galloni, M. Bouncy versus idles: On the different role of pollinators in the generalist Gentiana lutea L. Flora 2014, 209, 164–171. [Google Scholar] [CrossRef]
- Benadi, G.; Hovestadt, T.; Poethke, H.J.; Blüthgen, N. Specialization and phenological synchrony of plant-pollinator interactions along an altitudinal gradient. J. Anim. Ecol. 2014, 83, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, V.; Fontaine, C.; Villemant, C.; Daugeron, C. Are empidine dance flies major flower visitors in alpine environments? A case study in the Alps, France. Biol. Lett. 2014, 10, 20140742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losapio, G.; Gobbi, M.; Marano, G.; Avesani, D.; Boracchi, P.; Compostella, C.; Pavesi, M.; Schöb, C.; Seppi, R.; Sommaggio, D.; et al. Feedback effects between plant and flower-visiting insect communities along a primary succession gradient. Arthropod Plant Interact. 2016, 10, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.; Lechleitner, M.; Hosp, D. Pollen limitation is not the rule in nival plants: A study from the European Central Alps. Am. J. Bot. 2016, 103, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, M.; Avesani, D.; Parolo, G.; Scupola, A.; Zanetti, A.; Bonomi, C. Flower-visiting insects observed on the critically endangered alpine plant species Callianthemum kernerianum Freyn ex A. Kerner (Ranunculaceae). J. Insect Biodivers. 2017, 5, 1–4. [Google Scholar] [CrossRef]
- Lefebvre, V.; Daugeron, C.; Villemant, C.; Fontaine, C. Empidine dance flies pollinate the woodland geranium as effectively as bees. Biol. Lett. 2019, 15, 20190230. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.H.; Knott, B.; Eberlein, T.; Memmott, J. Sampling method influences the structure of plant-pollinator networks. Oikos 2011, 120, 822–831. [Google Scholar] [CrossRef]
- Tiedeken, E.J.; Stout, J.C. Insect-flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum. PLoS ONE 2015, 10, e0119733. [Google Scholar] [CrossRef] [Green Version]
- Roy, H.E.; Baxter, E.; Saunders, A.; Pocock, M.J. Focal plant observations as a standardised method for pollinator monitoring: Opportunities and limitations for mass participation citizen science. PLoS ONE 2016, 11, e0150794. [Google Scholar]
- Traveset, A.; Tur, C.; Trøjelsgaard, K.; Heleno, R.; Castro-Urgal, R.; Olesen, J.M. Global patterns of mainland and insular pollination networks. Glob. Ecol. Biogeogr. 2016, 25, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Adedoja, O.; Dormann, C.F.; Kehinde, T.; Samways, M.J. Refuges from fire maintain pollinator-plant interaction networks. Ecol. Evol. 2019, 9, 5777–5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, K.L.J.; Kingston, J.M.; Lee, A.; Holway, D.A.; Kohn, J.R. Non-native honey bees disproportionately dominate the most abundant floral resources in a biodiversity hotspot. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, K.P.; Vaughan, I.P.; Memmott, J. Plant species roles in pollination networks: An experimental approach. Oikos 2019, 128, 1446–1457. [Google Scholar] [CrossRef]
- Sakamoto, R.L.; Morinaga, S.I.; Ito, M.; Kawakubo, N. Fine-scale flower-visiting behavior revealed by using a high-speed camera. Behav. Ecol. Sociobiol. 2012, 66, 669–674. [Google Scholar] [CrossRef]
- Nakase, Y.; Suetsugu, K. Technique to detect flower-visiting insects in video monitoring and time-lapse photography data. Plant Species Biol. 2016, 31, 148–152. [Google Scholar] [CrossRef]
- Gilpin, A.M.; Denham, A.J.; Ayre, D.J. The use of digital video recorders in pollination biology. Ecol. Entomol. 2017, 42, 383–388. [Google Scholar]
- Steen, R. Diel activity, frequency and visit duration of pollinators in focal plants: In situ automatic camera monitoring and data processing. Methods Ecol. Evol. 2017, 8, 203–213. [Google Scholar] [CrossRef]
- Edwards, J.; Griffin, A.J.; Knoedler, M.R. Simultaneous recordings of insect visitors to flowers show spatial and temporal heterogeneity. Ann. Entomol. Soc. Am. 2019, 112, 93–98. [Google Scholar] [CrossRef]
- Mangili, F.; Tampucci, D.; Caccianiga, M. Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Androsace brevis (Hegetschw.) Ces. Inf. Bot. Ital. 2014, 46, 97–100. [Google Scholar]
- European Environment Agency. Biogeographical Regions in Europe. Available online: https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2 (accessed on 22 October 2020).
- Erdtman, G. The acetolysis method—A revised description. Sven. Bot. Tidskr. 1960, 54, 561–564. [Google Scholar]
- Moore, P.D.; Webb, J.A.; Collison, M.E. Pollen Analysis, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1991. [Google Scholar]
- Beug, H.J. Leitfaden der Pollenbestimmung für Mitteleuropa und Angrenzende Gebiete; Verlag Dr. Friedrich Pfeil: Munich, Germany, 2004. [Google Scholar]
- Xu, Y.; Hu, C.M.; Hao, G. Pollen morphology of Androsace (Primulaceae) and its systematic implications. J. Syst. Evol. 2016, 54, 48–64. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Klinkhamer, P.G.; De Jong, T.J. Attractiveness to pollinators: A plant’s dilemma. Oikos 1993, 66, 180–184. [Google Scholar] [CrossRef]
- Ohara, M.; Higashi, S. Effects of inflorescence size on visits from pollinators and seed set of Corydalis ambigua (Papaveraceae). Oecologia 1994, 98, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Conner, J.K.; Rush, S. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 1996, 105, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Yahara, T. Effects of variation in flower number on pollinator visits in Cirsium purpuratum (Asteraceae). Am. J. Bot. 1998, 85, 219–224. [Google Scholar] [CrossRef] [PubMed]
- De Jong, Y.; Verbeek, M.; Michelsen, V.; De Place, P.B.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European animal species on the web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J. DNA barcoding a nightmare taxon: Assessing barcode index numbers and barcode gaps for sweat bees. Genome 2018, 61, 21–31. [Google Scholar] [CrossRef]
- Alarcón, R. Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos 2010, 119, 35–44. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Lázaro, A.; Ren, Z.X.; Zhou, W.; Li, H.D.; Tao, Z.B.; Xu, K.; Wu, Z.K.; Wolfe, L.M.; Li, D.Z.; et al. The topological differences between visitation and pollen transport networks: A comparison in species rich communities of the Himalaya-Hengduan Mountains. Oikos 2019, 128, 551–562. [Google Scholar] [CrossRef]
- Woldemelak, W.A. The major biological approaches in the integrated pest management of onion thrips, Thrips tabaci (Thysanoptera: Thripidae): A review. J. Hortic. Res. 2020, 28, 13–20. [Google Scholar] [CrossRef]
Manual Sampling | ||||
---|---|---|---|---|
Day | Time Window | Plant | N Flowers at Anthesis | N Sampling Sessions |
8 June 2019 | 10:00–11:00 | M1 M2 | 30 28 | 4 4 |
12:00–13:00 | ||||
14:00–15:00 | ||||
15:30–16:30 | ||||
15 June 2019 | 15:00–16:00 | M3 M4 | 5 10 | 3 3 |
16:00–17:00 | ||||
17:00–18:00 | ||||
16 June 2019 | 10:00–11:00 | M5 M6 | 8 14 | 2 2 |
12:00–13:00 |
Video Observations | |||||
---|---|---|---|---|---|
Day | Time Window | Plant | N Flowers at Anthesis | N Videos | Camera |
V1 | 14 | 23 | Olympus Tough TG-5 | ||
8 June 2019 | 10:00–18:00 | V2 | 24 | 23 | Olympus Tough TG-4 |
V3 | 29 | 20 | Olympus OM-D E-M5 | ||
V4 | 8 | 9 | Olympus Tough TG-5 | ||
15 June 2019 | 15:00–18:00 | V5 | 11 | 9 | Olympus Tough TG-4 |
V6 | 14 | 9 | Olympus OM-D E-M5 | ||
V7 | 28 | 10 | Olympus Tough TG-5 | ||
16 June 2019 | 10:00–13:00 | V8 | 5 | 10 | Olympus Tough TG-4 |
V9 | 6 | 10 | Olympus OM-D E-M5 |
Day | Time Window | Plant | Class | Order | Family | Genus | Species |
---|---|---|---|---|---|---|---|
8 June 2019 | 10:00–11:00 | M1 | |||||
M2 | Insecta | Hemiptera | Aphididae | Cinara | na | ||
Insecta | Diptera | Sphaeroceridae | Leptocera | caenosa | |||
12:00–13:00 | M1 | Entognatha | Entomobryomorpha (Collembola) | Entomobryidae | Orchesella | arcuata | |
Insecta | Diptera | Drosophilidae | Scaptomyza | pallida | |||
Entognatha | Poduromorpha (Collembola) | Tullbergiidae | na | na | |||
M2 | Insecta | Diptera | Phoridae | Megaselia | na | ||
Arachnida | Araneae | Linyphiidae | na | na | |||
14:00–15:00 | M1 | Insecta | Hymenoptera | Eulophidae | na | na | |
Insecta | Hemiptera | Aphididae | Rhopalosiphum | maidis | |||
M2 | |||||||
15:30–16:30 | M1 | Entognatha | Poduromorpha (Collembola) | Onychiuridae | na | na | |
M2 | |||||||
15 June 2019 | 15:00–16:00 | M3 | |||||
M4 | |||||||
16:00–17:00 | M3 | ||||||
M4 | |||||||
17:00–18:00 | M3 | ||||||
M4 | |||||||
16 June 2019 | 10:00–11:00 | M5 | Insecta | Thysanoptera | Thripidae | Thrips | vulgatissimus |
M6 | |||||||
12:00–13:00 | M5 | ||||||
M6 | Insecta | Hymenoptera | Halictidae | Lasioglossum * | na |
Taxa | Percentage of Entering Subjects | Percentage of Flowers Entered | ||
---|---|---|---|---|
p Value | Difference | p Value | Difference | |
Other Hymenoptera—Diptera Brachycera | 0.018 | −0.33 | <0.001 | −0.08 |
Hymenoptera Apoidea—Diptera Brachycera | 0.970 | 0.08 | <0.001 | 0.13 |
Undetermined—Diptera Brachycera | 0.001 | −0.42 | <0.001 | −0.11 |
Thripidae—Diptera Brachycera | 0.658 | −0.11 | <0.001 | −0.08 |
Hymenoptera Apoidea—Other Hymenoptera | 0.007 | 0.41 | <0.001 | 0.21 |
Undetermined—Other Hymenoptera | 0.916 | −0.09 | 0.781 | −0.02 |
Thripidae—Other Hymenoptera | 0.034 | 0.22 | 0.992 | 0.01 |
Undetermined—Hymenoptera Apoidea | 0.001 | −0.50 | <0.001 | −0.23 |
Thripidae—Hymenoptera Apoidea | 0.318 | −0.18 | <0.001 | −0.20 |
Thripidae—Undetermined | 0.001 | 0.32 | 0.290 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonelli, M.; Melotto, A.; Minici, A.; Eustacchio, E.; Gianfranceschi, L.; Gobbi, M.; Casartelli, M.; Caccianiga, M. Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments. Insects 2020, 11, 881. https://doi.org/10.3390/insects11120881
Bonelli M, Melotto A, Minici A, Eustacchio E, Gianfranceschi L, Gobbi M, Casartelli M, Caccianiga M. Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments. Insects. 2020; 11(12):881. https://doi.org/10.3390/insects11120881
Chicago/Turabian StyleBonelli, Marco, Andrea Melotto, Alessio Minici, Elena Eustacchio, Luca Gianfranceschi, Mauro Gobbi, Morena Casartelli, and Marco Caccianiga. 2020. "Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments" Insects 11, no. 12: 881. https://doi.org/10.3390/insects11120881
APA StyleBonelli, M., Melotto, A., Minici, A., Eustacchio, E., Gianfranceschi, L., Gobbi, M., Casartelli, M., & Caccianiga, M. (2020). Manual Sampling and Video Observations: An Integrated Approach to Studying Flower-Visiting Arthropods in High-Mountain Environments. Insects, 11(12), 881. https://doi.org/10.3390/insects11120881