Allometry and Fighting Behaviour of a Dimorphic Stag Beetle Cyclommatus mniszechi (Coleoptera: Lucanidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Organism
2.2. Insect Rearing
2.3. Morphological Measurements
2.4. Allometry Analyses
2.5. Male–Male Contests
2.6. Sequential Analyses of Fighting Behaviour
2.7. Statistical Analyses
3. Results
3.1. Allometry
3.2. Behavioural Sequences of Fighting Contests
3.3. Male Morph and Contest Aggression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emlen, D.J. The evolution of animal weapons. Ann. Rev. Ecol. Evol. Syst. 2008, 39, 387–413. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C. The Descent of Man, and Selection in Relation to Sex; John Murray: London, UK, 1871. [Google Scholar]
- Andersson, M.B. Sexual Selection; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Emlen, D.J.; Nijhout, H.F. The development and evolution of exaggerated morphologies in insects. Ann. Rev. Entomol. 2000, 45, 661–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, A.; Hasegawa, E. Effect of morph types, body size and prior residence on food-site holding by males of the male-dimorphic stag beetle Prosopocoilus inclinatus (Coleoptera: Lucanidae). J. Ethol. 2012, 31, 55–60. [Google Scholar] [CrossRef]
- Goyens, J.; Dirckx, J.; Aerts, P. Stag beetle battle behavior and its associated anatomical adaptations. J. Insect Behav. 2015, 28, 227–244. [Google Scholar] [CrossRef]
- Songvorawit, N.; Butcher, B.A.; Chaisuekul, C. Resource holding potential and the outcome of aggressive interactions between paired male Aegus chelifer chelifer (Coleoptera: Lucanidae) stag beetles. J. Insect Behav. 2018, 31, 347–360. [Google Scholar] [CrossRef]
- Kuan, C.Y. To win “big”: Determining Factors and Sequential Analyses in Male-Male Combats of a Stag Beetle, Cyclommatus mniszechi (Coleoptera: Lucanidae). Master’s Thesis, Tunghai University, Taichung City, Taiwan, 2011. [Google Scholar]
- Mizunuma, T.; Nagai, S. The Lucanid Beetles of the World; Mushisha: Tokyo, Japan, 1994. [Google Scholar]
- Kawano, K. Genera and allometry in the stag beetle family Lucanidae, Coleoptera. Ann. Entomol. Soc. Am. 2000, 93, 198–207. [Google Scholar] [CrossRef]
- Shiokawa, T.; Iwahashi, O. Mandible dimorphism in males of a stag beetle, Prosopocoilus dissimilis okinawanus (Coleoptera: Lucanidae). Appl. Entomol. Zool. 2000, 35, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Rowland, J.M.; Emlen, D.J. Two thresholds, three male forms result in facultative male trimorphism in beetles. Science 2009, 323, 773–776. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, J.L.; Kotiaho, J.S.; LeBas, N.R. Matters of scale: Positive allometry and the evolution of male dimorphisms. Am. Nat. 2005, 165, 389–402. [Google Scholar] [CrossRef]
- Bonduriansky, R. Sexual selection and allometry: A critical reappraisal of the evidence and ideas. Evolution 2007, 61, 838–849. [Google Scholar] [CrossRef]
- Kojima, W.; Lin, C.-P. It takes two to tango: Functional roles, sexual selection and allometry of multiple male weapons in the flower beetle Dicronocephalus wallichii bourgoini. Biol. J. Linn. Soc. 2017, 121, 514–529. [Google Scholar] [CrossRef]
- Bonduriansky, R.; Day, T. The evolution of static allometry in sexually selected traits. Evolution 2003, 57, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Huxley, J.S. The relative size of antlers in deer. Proc. Zool. Soc. London 1931, 3, 819–864. [Google Scholar] [CrossRef]
- Clark, J. Aspects of variation in the stag beetle Lucanus cervus (L.) (Coleoptera: Lucanidae). Syst. Entomol. 1977, 2, 9–16. [Google Scholar] [CrossRef]
- Knell, R.J.; Pomfret, J.C.; Tomkins, J.L. The limits of elaboration: Curved allometries reveal the constraints on mandible size in stag beetles. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Romiti, F.; Tini, M.; Redolfi De Zan, L.; Chiari, S.; Zauli, A.; Carpaneto, G.M. Exaggerated allometric structures in relation to demographic and ecological parameters in Lucanus cervus (Coleoptera: Lucanidae). J. Morphol. 2015, 276, 1193–1204. [Google Scholar] [CrossRef]
- Nijhout, H.; Wheeler, D.E. Growth models of complex allometries in holometabolous insects. Am. Nat. 1996, 148, 40–56. [Google Scholar] [CrossRef]
- Knell, R.J. On the analysis of non-linear allometries. Ecol. Entomol. 2009, 34, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.B.T. A Review of the family-group names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification. Coleopt. Bull. 2006, 60, 144–204. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Hongo, Y. Interspecific contests between males of two Japanese stag beetle species, Lucanus maculifemoratus and Prosopocoilus inclinatus: What overcomes a body size disadvantage? Behaviour 2013, 150, 39–59. [Google Scholar] [CrossRef]
- Kotiaho, J.S.; Tomkins, J.L. The discrimination of alternative male morphologies. Behav. Ecol. 2001, 12, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y. Taiwanese Stag Beetles; Kissnature Publisher: Taipei, Taiwan, 2004. [Google Scholar]
- Kojima, W. Mechanism of synchronous metamorphosis: Larvae of a rhinoceros beetle alter the timing of pupation depending on maturity of their neighbours. Behav. Ecol. Sociobiol. 2014, 69, 415–424. [Google Scholar] [CrossRef]
- Kojima, W.; Ishikawa, Y.; Takanashi, T. Chemically mediated group formation in soil-dwelling larvae and pupae of the beetle Trypoxylus dichotomus. Naturwissenschaften 2014, 101, 687–695. [Google Scholar] [CrossRef]
- Goyens, J.; Dirckx, J.; Aerts, P. Jaw morphology and fighting forces in stag beetles. J. Exp. Biol. 2016, 219, 2955–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Songvorawit, N.; Butcher, B.A.; Chaisuekul, C. Different allometric intercepts in major Aegus chelifer chelifer stag beetle males from urban and forest habitats. J. Asia Pac. Entomol. 2017, 20, 835–839. [Google Scholar] [CrossRef]
- Eberhard, W.G.; Gutiérrez, E.E. Male dimorphisms in beetles and earwigs and the question of developmental constraints. Evolution 1991, 45, 18–28. [Google Scholar] [CrossRef]
- Sugiura, S.; Yamaura, Y.; Makihara, H. Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae). Zool. Sci. 2007, 24, 1082–1085. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M.; Fitzjohn, R. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Igraph-The Network Analysis Package. Available online: https://igraph.org (accessed on 1 April 2019).
- Green, P.A.; Patek, S.N. Mutual assessment during ritualized fighting in mantis shrimp (Stomatopoda). Proc. R. Soc. Lond. Ser. B Biol. Sci. 2018, 285, 1871. [Google Scholar] [CrossRef] [Green Version]
- Bakeman, R.; Robinson, B.F.; Quera, V. Testing sequential association: Estimating exact p values using sampled permutations. Psychol. Methods 1996, 1, 4–15. [Google Scholar] [CrossRef]
- Hongo, Y. Evolution of male dimorphic allometry in a population of the Japanese horned beetle Trypoxylus dichotomus septentrionalis. Behav. Ecol. Sociobiol. 2007, 62, 245–253. [Google Scholar] [CrossRef]
- McCullough, E.L.; Ledger, K.J.; O’Brien, D.M.; Emlen, D.J. Variation in the allometry of exaggerated rhinoceros beetle horns. Anim. Behav. 2015, 109, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Emlen, D.J. Costs and the diversification of exaggerated animal structures. Science 2001, 291, 1534–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, L.W.; Emlen, D.J. Evolutionary trade-off between weapons and testes. Proc. Natl. Acad. Sci. USA 2006, 103, 16346–16351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyens, J.; Dirckx, J.; Aerts, P.; Davidowitz, G. Costly sexual dimorphism in Cyclommatus metallifer stag beetles. Funct. Ecol. 2015, 29, 35–43. [Google Scholar] [CrossRef]
- Kojima, W.; Sugiura, S.; Makihara, H.; Ishikawa, Y.; Takanashi, T. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators. Zool. Sci. 2014, 31, 109–115. [Google Scholar] [CrossRef]
- Eberhard, W.G.; Rodríguez, R.L.; Huber, B.A.; Speck, B.; Miller, H.; Buzatto, B.A.; Machado, G. Sexual selection and static allometry: The importance of function. Q. Rev. Biol. 2018, 93, 207–250. [Google Scholar] [CrossRef] [Green Version]
- Dennenmoser, S.; Christy, J.H. The design of a beautiful weapon: Compensation for opposing sexual selection on a trait with two functions. Evolution 2013, 67, 1181–1188. [Google Scholar] [CrossRef]
- O’Brien, D.M.; Boisseau, R.P.; Duell, M.; McCullough, E.; Powell, E.C.; Somjee, U.; Solie, S.; Hickey, A.J.; Holwell, G.I.; Painting, C.J.; et al. Muscle mass drives cost in sexually selected arthropod weapons. Proc. R. Soc. B 2019, 286, 20191063. [Google Scholar] [CrossRef] [Green Version]
Behavioural Elements | Description | Phase |
---|---|---|
Touch | One of the contestants touches its opponent’s body with mandibles, antenna or legs. | 1 |
Defensive posture | One of the contestants keeps its mandibles open and raises its head. | 2 |
Body raising | Two contestants face each other and raise their bodies, thoraxes and mandibles with rapid movement of antennas and forelegs and move towards each other. | 2 |
Attack | One of the contestants uses its mandibles to bite its opponent. | 2 |
Push | One of the contestants raises its mandibles and knocks its opponent. | 2 |
Tussle | Two contestants interlock each other’s mandibles and push each other. | 3 |
Clamp 1 | One of the contestants uses its mandibles to clamp onto the head of its opponent. | 3 |
Clamp 2 | One of the contestants uses its mandibles to clamp onto the body (thorax or abdomen) of its opponent. | 3 |
Retreat | One of the contestants moves backwards and away from the other male. | 4 |
Parameter | Estimate | SE | p | AIC | ΔAIC | BIC | ΔBIC |
---|---|---|---|---|---|---|---|
Linear model | |||||||
β0 | −4.333 | 0.131 | <0.001 | −471.06 | 503.32 | −460.73 | 499.69 |
β1 | 2.591 | 0.049 | <0.001 | ||||
Quadratic model | |||||||
β0 | −20.250 | 2.297 | <0.001 | −513 | 461.38 | −499.56 | 460.86 |
β1 | 14.698 | 1.745 | <0.001 | ||||
β2 | −2.298 | 0.331 | <0.001 | ||||
Eberhard and Gutierrez continuous piecewise | |||||||
β0 | −5.372 | 0.165 | <0.001 | −535.14 | 439.24 | −521.35 | 439.07 |
β1 | 2.997 | 0.063 | <0.001 | ||||
β2 | −1.627 | 0.187 | <0.001 | ||||
Eberhard and Gutierrez discontinuous piecewise | |||||||
β0 | −5.367 | 0.188 | <0.001 | −533.14 | 441.24 | −515.91 | 444.51 |
β1 | 2.994 | 0.073 | <0.001 | ||||
β2 | −1.633 | −1.633 | <0.001 | ||||
β3 | 0.001 | 0.019 | 0.95 | ||||
Kotiaho and Tomkins linear | |||||||
β0 | 1.747 | 0.017 | <0.001 | −931.40 | 42.98 | −921.06 | 39.36 |
β1 | 0.356 | 0.007 | <0.001 | ||||
Kotiaho and Tomkins quadratic | |||||||
β0 | 2.359 | 0.114 | <0.001 | −957.69 | 16.69 | −943.91 | 16.51 |
β1 | −0.156 | 0.094 | 0.0987 | ||||
β2 | 0.105 | 0.019 | <0.001 | ||||
Kotiaho and Tomkins continuous piecewise | |||||||
β0 | 1.860 | 0.023 | <0.001 | −974.21 | 0.17 | −960.42 | 0 |
β1 | 0.305 | 0.010 | <0.001 | ||||
β2 | 0.202 | 0.029 | <0.001 | ||||
Kotiaho and Tomkins discontinuous piecewise | |||||||
β0 | 1.877 | 0.025 | <0.001 | −974.38 | 0 | −957.15 | 3.27 |
β1 | 0.297 | 0.011 | <0.001 | ||||
β2 | 0.179 | 0.033 | <0.001 | ||||
β3 | 0.011 | 0.007 | 0.144 |
Morph | Traits | Coefficients | Estimate ± SE | 95% Lower Limit | 95% Upper Limit | p |
---|---|---|---|---|---|---|
Major | ML | 1.43 ± 0.10 | 1.24 | 1.62 | <0.001 * | |
lna | −1.13 ± 0.27 | −1.66 | −0.60 | |||
HW | 1.30 ± 0.07 | 1.17 | 1.44 | 0.001 * | ||
lna | −0.94 ± 0.18 | −1.30 | −0.57 | |||
Minor | ML | 2.89 ± 0.10 | 2.69 | 3.10 | <0.001 * | |
lna | −5.12 ± 0.27 | −5.65 | −4.58 | |||
HW | 1.97 ± 0.06 | 1.86 | 2.08 | 0.001 * | ||
lna | −2.77 ± 0.14 | −3.06 | −2.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.-Y.; Hsu, Y.; Lin, C.-P. Allometry and Fighting Behaviour of a Dimorphic Stag Beetle Cyclommatus mniszechi (Coleoptera: Lucanidae). Insects 2020, 11, 81. https://doi.org/10.3390/insects11020081
Chen Z-Y, Hsu Y, Lin C-P. Allometry and Fighting Behaviour of a Dimorphic Stag Beetle Cyclommatus mniszechi (Coleoptera: Lucanidae). Insects. 2020; 11(2):81. https://doi.org/10.3390/insects11020081
Chicago/Turabian StyleChen, Zhen-Yi, Yuying Hsu, and Chung-Ping Lin. 2020. "Allometry and Fighting Behaviour of a Dimorphic Stag Beetle Cyclommatus mniszechi (Coleoptera: Lucanidae)" Insects 11, no. 2: 81. https://doi.org/10.3390/insects11020081
APA StyleChen, Z.-Y., Hsu, Y., & Lin, C.-P. (2020). Allometry and Fighting Behaviour of a Dimorphic Stag Beetle Cyclommatus mniszechi (Coleoptera: Lucanidae). Insects, 11(2), 81. https://doi.org/10.3390/insects11020081