Transcriptomic Analysis Following Artificial Selection for Grasshopper Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. The Insect
2.3. The Artificial Selection Experiment
2.4. RNA Extraction and Sequencing
2.5. Bioinformatics Analyses
2.6. Accession Number(s)
3. Results
3.1. Adult Pronotum Length
3.2. Unigenes and Magnitude of Expression Differences
3.3. Functional Annotation of Unigenes
3.4. Functional Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DEGs | Differentially Expressed Genes |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
SC | Small colony |
LG | Large colony |
NR | NCBI nonredundant protein sequences |
Pfam | Protein family |
KOG | Keeper of the Grove database |
KO | KEGG Ortholog database |
Nt | NCBI nonredundant nucleotide sequences |
Swiss-Prot | Manually annotated and reviewed protein sequence database |
CAMs | Cell adhesion molecules |
cDNA | Complementary DNA |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
NCBI | National Center for Biotechnology Information |
References
- Fuller, R.C.; Baer, C.F.; Travis, J. How and when selection experiments might actually be useful. Integr. Comp. Biol. 2005, 45, 391–404. [Google Scholar] [CrossRef]
- Swallow, J.G.; Garland, T.J. Selection experiments as a stool in evolutionary and comparative physiology: Insights into complex traits—an introduction to the symposium. Integr. Comp. Biol. 2005, 45, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Frankino, W.A.; Emlen, D.J.; Shingleton, A.W. Experimental approaches to studying the evolution of animal form. In Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments; Garland, T., Rose, M.R., Eds.; U. California: Berkeley, CA, USA, 2009; pp. 419–478. [Google Scholar]
- Evans, L.T. Darwin’s use of the analogy between artificial and natural selection. J. Hist. Biol. 1984, 17, 113–140. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life; Milford, H., Ed.; Oxford University Press: Oxford, UK, 1859; pp. 1–194. [Google Scholar] [CrossRef] [Green Version]
- Conner, J.K. Artificial selection: A powerful tool of ecologists. Ecology 2003, 84, 1650–1660. [Google Scholar] [CrossRef] [Green Version]
- Garland, T.; Rose, M.R. Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments; U. California: Berkeley, CA, USA, 2009; Volume 60, p. 762. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.S. Early selection experiments. Annu. Rev. Genetics. 1992, 26, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Caballero, A. Artificial selection experiments. Annu. Rev. Ecol. Syst. 1992, 23, 287–310. [Google Scholar] [CrossRef]
- Bennett, A.F. Experimental evolution and the Krogh Principle: Generating biological novelty for functional and genetic analyses. Phys. Biol. Zool. 2003, 76, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hays, B.J.; Chamberlain, A.J.; Macaechern, S.; Savin, K.; McPartlan, H.; MacLeod, I.; Sethurman, L.; Goddard, M.E. A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Anim. Gen. 2009, 40, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Long, A.; Liti, G.; Luptak, A.; Tenaillon, O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat. Rev. Gen. 2015, 16, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Sonstegard, T.S.; Cole, J.B.; VanTassell, C.P.; Wiggans, G.R.; Crooker, B.A.; Tan, C.; Prakapenka, D.; Liu, G.E.; Da, Y. Genome changes due to artificial selection in U.S. Holstein cattle. BMC Genomics 2019, 20, 128. [Google Scholar] [CrossRef]
- Walsh, B.; Lynch, M. Evolution and Selection of Quantitative Traits; Oxford U. Press: Oxford, UK, 2018. [Google Scholar]
- Coile, D.C. Encyclopedia of Dog Breeds; Barron’s Educational Series; Simmon & Schuster: New York, NY, USA, 1998. [Google Scholar]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New. Phytologist. 2012, 196, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Zeder, M.A. The domestication of animals. J. Anthropol. Res. 2012, 68, 161–190. [Google Scholar] [CrossRef] [Green Version]
- Holthorp, H.E. Tricotyledony. Nature 1944, 153, 13–14. [Google Scholar] [CrossRef]
- Partridge, L.; Fowler, K. Responses and correlated responses to artificial selection on thorax length in Drosophila melanogaster. Evolution 1993, 47, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Fellowes, M.D.E.; Kraaijeveld, A.R.; Godfray, H.C.J. Cross-resistance following artificial selection for increased defense against parasitoids in Drosophila melanogaster. Evolution 1999, 53, 966–972. [Google Scholar] [CrossRef]
- Sauvage, C.; Derôme, N.; Normandeau, E.; Cyr, J.S.; Audet, C.; Bernatchez, L. Fast transcriptional responses to domestication in the brook charr Salvelinus fontinalis. Genetics 2010, 185, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Barrett, R.D.H.; Paccard, A.; Healy, T.M.; Bergek, S.; Schulte, P.M.; Schluter, D.; Rogers, S.M. Rapid evolution of cold tolerance in stickleback. Proc. R. Soc. B. Biol. Sci. 2011, 278, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Saavedra-Rodriguez, K.; Suarez, A.F.; Salas, I.F.; Strode, C.; Ranson, H.; Hemingway, J.; Black, W.C. Transcription of detoxification genes following permethrin selection in the mosquito Aedes aegypti. Insect. Mol. Biol. 2012, 21, 61–77. [Google Scholar] [CrossRef]
- Zu, P.; Blanckenhorn, W.U.; Schiestl, F.P. Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa. New. Phytol. 2016, 209, 1208–1219. [Google Scholar] [CrossRef]
- Zu, P.; Schiestl, F.P. The effects of becoming taller: Direct and pleiotropic effects of artificial selection on plant height in Brassica rapa. Plant. J. 2017, 89, 1009–1019. [Google Scholar] [CrossRef]
- Powell, J.R. Progress and Prospects in Evolutionary Biology: The Drosophila Model; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Arias, A.M. Drosophila melanogaster and the development of biology in the 20th century. In Drosophila methods and protocols; Dahmann, C., Ed.; Humana: Louisville, NJ, USA, 2008; pp. 1–25. [Google Scholar] [CrossRef]
- Wheeler, M.A. Studies in Genetics, V2: Research Reports on Drosophila Genetics, Taxonomy and Evolution. Literary Licensing; LLC: Whitefish, MT, USA, 2013; p. 566. [Google Scholar]
- Singh, P. Evolutionary Population Genetics of Drosophila ananassae; Springer: New Delhi, India, 2015; pp. 1–117. [Google Scholar] [CrossRef]
- Dahmann, C. Drosophila: Methods and Protocols; Humana: Louisville, NJ, USA, 2016. [Google Scholar]
- Cai, J.; Zu, P.; Schiestl, F.P. The molecular bases of floral scent evolution under artificial selection: Insights from a transcriptome analysis in Brassica rapa. Sci. Rep. 2016, 6, 36966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, J.G. Mans’s new best friend? A forgotten Russian experiment in fox domestication. Scientific American Guest Blog. 2010. Available online: https://blogs.scientificamerican.com/guest-blog/mans-new-best-friend-a-forgotten-russian-experiment-in-fox-domestication/ (accessed on 16 September 2010).
- Dugatkin, L.A.; Trut, L.; Trut, L.N. How to Tame a Fox (and build a dog): Visionary Scientists and a Siberian Tale of Jump-Started Evolution; University of Chicago Press: Chicago, IL, USA, 2017. [Google Scholar]
- Conner, J.K.; Hartl, D.L. A Primer of Ecological Genetics; Sinauer Associates: Sunderland, MA, USA, 2004. [Google Scholar]
- Lu, X.; Fu, X.; Wang, D.; Wang, J.; Chen, X.; Hao, M.; Wang, J.; Gervers, K.A.; Guo, L.; Wang, S.; et al. Resequencing of cv CRI-12 family reveals haplotype block inheritance and recombination of agronomically important genes in artificial selection. Plant. Biotec. J. 2019, 17, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Whitman, D.W. The significance of body size in the Orthoptera: A review. J. Orthoptera. Res. 2008, 17, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Whitman, D.W.; Vincent, S. Body size in Orthoptera. J. Orthoptera. Res. 2008, 17, 113–375. [Google Scholar] [CrossRef]
- Whitman, D.W.; Vincent, S. Large size as an anti-predator defense in a grasshopper. J. Orthoptera. Res. 2008, 17, 253–371. [Google Scholar] [CrossRef] [Green Version]
- Whitman, D.W. Developmental thermal requirements for the grasshopper Taeniopoda eques (Orthoptera: Acrididae). Ann. Entomol. Soc. Amer. 1986, 79, 711–714. [Google Scholar] [CrossRef]
- Akman, O.; Gamage, J.; Juliano, S.; Thurman, A.; Whitman, D.W. A simple test for detection of length-biased sampling. JP J. Biostat. 2007, 1, 189–195. [Google Scholar]
- Akman, O.; Whitman, D.W. Analysis of body size and fecundity in a grasshopper. J. Orthoptera. Res. 2008, 17, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Fronstin, R.B.; Hatle, J.D. Interpopulation variation in the trade-off between body-mass gain and age at oviposition in the Eastern Lubber Grasshopper, Romalea microptera. J. Orthoptera. Res. 2008, 17, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Huizenga, K.M.; Shaidle, M.D.; Brinton, J.S.; Gore, L.N.A.; Ebo, M.A.; Solliday, A.J.; Buguey, P.J.; Whitman, D.W.; Juliano, S.A. Geographic differences in the body sizes of adult Romalea microptera. J. Orthoptera. Res. 2008, 17, 135–139. [Google Scholar] [CrossRef]
- Vincent, S.E.; Lailvaux, S.P. Does phenotypic integration constrain sexual size dimorphism in Eastern Lubber grasshoppers (Romalea microptera)? J. Orthoptera. Res. 2008, 17, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Weissman, D.B.; Judge, K.A.; Williams, S.C.; Whitman, D.W. Small-male mating advantage in a species of Jerusalem cricket (Orthoptera: Stenopelmatinae: Stenopelmatus). J Orthoptera. Res. 2008, 17, 321–332. [Google Scholar] [CrossRef]
- Whitman, D.W.; Agrawal, A.A. What is phenotypic plasticity ad why is it important? In Phenotypic Plasticity of Insects; Whitman, D.W., Ananthakrishnan, T.N., Eds.; Science Publishers: Concord, NH, USA, 2009; pp. 1–63. [Google Scholar]
- Cui, B.Y.; Huang, X.B.; Li, S.; Hao, K.; Chang, B.H.; Tu, X.B.; Pang, B.P.; Zhang, Z.H. Quercetin affects the growth and development of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). J. Econ. Ent. 2019, 112, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Jarwar, A.R.; Hao, K.; Bitume, E.V.; Ullah, H.; Cui, D.N.; Nong, X.Q.; Wang, G.J.; Tu, X.B.; Zhang, Z.H. Comparative transcriptomic analysis reveals molecular profiles of central nervous system in maternal diapause induction of Locusta migratoria. G3-Genes Genom. Genet. 2019, g3-400475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehn, J.A.G.; Grant, H.G. A review of the Romaleinae (Orthoptera: Acrididae) found in America north of Mexico. Proc. Acad. Nat. Sci. Phil. 1961, 111, 109–271. [Google Scholar]
- Capinera, J.L.; Scherer, C. Featured creatures: Eastern lubber grasshopper. University of Florida/IFAS Publication EENY-6, Florida. 2016. Available online: http://entnemdept.ufl.edu/creatures/orn/lubber.htm (accessed on 24 May 2016).
- Matusezek, J.V.; Whitman, D.W. Captive rearing of Eastern Lubber grasshoppers. In Conference Proceedings: Invertebrates in Captivity 2001; Sonoran Arthropod Studies Institute: Rio Rico, AZ, USA, 2002; pp. 56–63. [Google Scholar]
- Hao, K.; Wang, J.; Tu, X.B.; Whitman, D.W.; Zhang, Z.H. Transcriptomic and proteomic analysis of Locusta migratoria eggs at different embryonic stages: Comparison for diapause and non-diapause regimes. J. Integ. Agric. 2017, 16, 1777–1788. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic. Acids. Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [Green Version]
- Tu, X.B.; Wang, J.; Hao, K.; Whitman, D.W.; Fan, Y.; Cao, G.C.; Zhang, Z.H. Transcriptomic and proteomic analysis of pre-diapause and non-diapause eggs of migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea). Sci. Rep. 2015, 5, 11402. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, P.; Jiang, F.; Wei, Y.; Ma, Z.; Kang, L. de novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS ONE 2010, 5, e15633. [Google Scholar] [CrossRef]
- Little, J.B. Rapid evolution changes species in real time. Discover Magazine Issue 2 March, 2 March 2015. [Google Scholar]
- Hendry, A.P. Eco-Evolutionary Dynamics; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Andrade, G.M.; da Silveira, J.C.; Perrini, C.; Del Collado, M.; Gebremedhn, S.; Tesfaye, D.; Meirelles, F.V.; Perecin, F. The role of the PI3K-Akt signaling pathway in the developmental competence of bovine oocytes. PLoS ONE 2017, 12, e0185045. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J. What holds us together? Why do some of us fall apart? What can we do about it? Soci. Matrix. Biol. 1998, 16, 519–528. [Google Scholar] [CrossRef]
- Prockop, D.J.; Kivirikko, K.I. Collagens: Molecular biology, diseases, and potentials for therapy. Ann. Rev. Biochem. 1995, 64, 403–434. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, I.L. Cuticle collagen genes: Expression in Caenorhabditis elegans. Trends Genet. 2000, 16, 21–27. [Google Scholar] [CrossRef]
- Madaan, U.; Yzeira, E.; Meade, M.; Clark, J.F.; Rushlow, C.A.; Savage-Dunn, C. BMP Signaling Determines Body Size via Transcriptional Regulation of Collagen Genes in Caenorhabditis elegans. Genetics 2018, 210, 1355–1367. [Google Scholar] [CrossRef] [Green Version]
- Lepage, M.; Seltana, A.; Thibault, M.P.; Tremblay, É.; Beaulieu, J.F. Knockdown of laminin α5 stimulates intestinal cell differentiation. Biochem. Biophys. Res. Comm. 2018, 495, 1510–1515. [Google Scholar] [CrossRef]
- Chang, B.H.; Cui, B.Y.; Ullah, H.; Li, S.; Kun, H.; Tu, X.B.; Wang, G.J.; Nong, X.Q.; McNeill, M.R.; Huang, X.B.; et al. Role of PTP/PTK trans activated insulin-like signalling pathway in regulation of grasshopper (Oedaleus asiaticus) development. Environ. Sci. Pollut. Res. 2019, 26, 8312–8324. [Google Scholar] [CrossRef]
- Tartaglia, L.A.; Dembski, M.; Weng, X.; Deng, N.; Culpepper, J.; Devos, R.; Richards, G.J.; Campfield, L.A.; Clark, F.T.; Deeds, J.; et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995, 83, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Couturier, C.; Sarkis, C.; Séron, K.; Belouzard, S.; Chen, P.; Lenain, A.; Corset, L.; Dam, J.; Vauthier, V.; Dubart, A.; et al. Silencing of OB-RGRP in mouse hypothalamic arcuate nucleus increases leptin receptor signaling and prevents diet-induced obesity. Proc. Natl. Acad. Sci. 2007, 104, 19476–19481. [Google Scholar] [CrossRef] [Green Version]
- Touvier, T.; Conte-Auriol, F.; Briand, O.; Cudejko, C.; Paumelle, R.; Caron, S.; Baugé, E.; Rouillé, Y.; Salles, J.P.; Staels, B.; et al. LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. J. Clin. Invest. 2009, 119, 3830–3838. [Google Scholar] [CrossRef]
- Woo, W.M.; Berry, E.C.; Hudson, M.L.; Swale, R.E.; Goncharov, A.; Chisholm, A.D. The C. elegans F-spondin family protein SPON-1 maintains cell adhesion in neural and non-neural tissues. Development 2008, 135, 2747–2756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Dong, T.; Ma, X.; Zhang, T.; Chen, Z.; Yang, Z.; Zhang, Y. Spondin 1 promotes metastatic progression through Fak and Src dependent pathway in human osteosarcoma. Biochem. Biophys. Res. Comm. 2015, 464, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.D.; Huang, M.X.; Zhang, Y.L.; Wang, X.C.; Du, J.; Li, B.; Chen, Y.H.; Xu, Y.X.; Wei, Z.G. Expression analysis and RNA interference of BmCarE-10 gene from Bombyx mori. Mol. Biol. Rep. 2014, 41, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
Population | Year | Male | Female | ||
---|---|---|---|---|---|
n | Pronotum Length (mm) Mean ± SD | n | Pronotum Length (mm) Mean ± SD | ||
Wild | 2005 | 20 | 17.8 ± 1.09 | 20 | 21.1 ± 2.10 |
Parent (Lab) | 2006 | 50 | 18.2 ± 0.97 | 50 | 21.2 ± 1.33 |
Large Colony Generation 11 | 2014 | 41 | 20.9 ± 1.17 | 46 | 23.7 ± 1.39 |
Small Colony Generation 11 | 2014 | 31 | 12.5 ± 0.75 | 26 | 14.2 ± 0.70 |
Log2 (Fold Change) | 1–2 | 2–3 | 3–4 | 4–5 | >5 | Total | |
---|---|---|---|---|---|---|---|
LG vs. SG | Downregulated | 40 | 52 | 42 | 40 | 133 | 307 |
Upregulated | 24 | 63 | 46 | 51 | 202 | 386 | |
Total | 64 | 115 | 88 | 91 | 335 | 693 |
Term type | Description | p-Value | DEGs Number | Percentage (%) |
---|---|---|---|---|
Biological process | DNA integration | 0.0107 | 16 | 8.38 |
Biological process | DNA metabolic process | 0.00174 | 49 | 25.65 |
Biological process | RNA-dependent DNA replication | 0.00435 | 27 | 14.14 |
Biological process | DNA replication | 0.0195 | 31 | 16.23 |
Molecular function | DNA polymerase activity | 0.00174 | 30 | 15.71 |
Molecular function | RNA-directed DNA polymerase activity | 0.00435 | 27 | 14.14 |
Molecular function | Nucleotidyltransferase activity | 0.0216 | 32 | 16.75 |
S. No. | Pathway Term | p-Value | Gene Number |
---|---|---|---|
1 | Huntington’s disease | 0.0180808 | 2 |
2 | Phenylalanine metabolism | 0.0188286 | 1 |
3 | Other glycan degradation | 0.0198644 | 1 |
4 | Histidine metabolism | 0.026057 | 1 |
5 | Tyrosine metabolism | 0.037311 | 1 |
6 | Alanine, aspartate, and glutamate metabolism | 0.037311 | 1 |
7 | Tryptophan metabolism | 0.0423843 | 1 |
8 | Glycine, serine, and threonine metabolism | 0.0423843 | 1 |
9 | Cysteine and methionine metabolism | 0.0474316 | 1 |
10 | Hedgehog signaling pathway | 0.0494433 | 1 |
S. No. | Pathway Term | p-Value | Gene Number |
---|---|---|---|
1 | Fat digestion and absorption | 0.00031 | 2 |
2 | Glycerolipid metabolism | 0.000625 | 2 |
3 | Metabolic pathways | 0.000779 | 5 |
4 | ECM–receptor interaction | 0.00118 | 2 |
5 | Small cell lung cancer | 0.001293 | 2 |
6 | Amoebiasis | 0.001732 | 2 |
7 | Cell adhesion molecules (CAMs) | 0.003595 | 2 |
8 | mTOR signaling pathway | 0.003984 | 2 |
9 | Focal adhesion | 0.006768 | 2 |
10 | Pantothenate and CoA biosynthesis | 0.011402 | 1 |
11 | Steroid biosynthesis | 0.012595 | 1 |
12 | PI3K-Akt signaling pathway | 0.018149 | 2 |
13 | Galactose metabolism | 0.019132 | 1 |
14 | beta-Alanine metabolism | 0.019132 | 1 |
15 | Pathways in cancer | 0.023941 | 2 |
16 | ABC transporters | 0.027392 | 1 |
17 | Drug metabolism—other enzymes | 0.027979 | 1 |
18 | Carbohydrate digestion and absorption | 0.027979 | 1 |
19 | Retinol metabolism | 0.039076 | 1 |
20 | Bile secretion | 0.042555 | 1 |
21 | Complement and coagulation cascades | 0.047174 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Cui, D.-N.; Ullah, H.; Chen, J.; Liu, S.-F.; Whitman, D.W.; Zhang, Z.-H.; Tu, X.-B. Transcriptomic Analysis Following Artificial Selection for Grasshopper Size. Insects 2020, 11, 176. https://doi.org/10.3390/insects11030176
Li S, Cui D-N, Ullah H, Chen J, Liu S-F, Whitman DW, Zhang Z-H, Tu X-B. Transcriptomic Analysis Following Artificial Selection for Grasshopper Size. Insects. 2020; 11(3):176. https://doi.org/10.3390/insects11030176
Chicago/Turabian StyleLi, Shuang, Dong-Nan Cui, Hidayat Ullah, Jun Chen, Shao-Fang Liu, Douglas W. Whitman, Ze-Hua Zhang, and Xiong-Bing Tu. 2020. "Transcriptomic Analysis Following Artificial Selection for Grasshopper Size" Insects 11, no. 3: 176. https://doi.org/10.3390/insects11030176
APA StyleLi, S., Cui, D.-N., Ullah, H., Chen, J., Liu, S.-F., Whitman, D. W., Zhang, Z.-H., & Tu, X.-B. (2020). Transcriptomic Analysis Following Artificial Selection for Grasshopper Size. Insects, 11(3), 176. https://doi.org/10.3390/insects11030176