Larvicidal and Repellent Activity of Mentha arvensis L. Essential Oil against Aedes aegypti
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential oil Extraction
2.2. GC/MS
2.3. Mosquito Rearing
2.4. Larvicidal Assay
2.5. Repellent Test
2.6. Data Analysis
3. Results and Discussion
3.1. Yields and Chemical Constituents of the Essential Oil
3.2. Larvicidal Activity
3.3. Repellent Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martinez, E.; et al. Dengue: A continuing global threat. Nat. Rev. Genet. 2010, 8, S7–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, C.P.; Farrar, J.J.; Chau, N.V.V.; Wills, B. Dengue. New Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Khasnis, A.A.; Nettleman, M.D. Global Warming and Infectious Disease. Arch. Med. Res. 2005, 36, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Zaim, M.; Guillet, P. Alternative insecticides: An urgent need. Trends Parasitol. 2002, 18, 161–163. [Google Scholar] [CrossRef]
- Norris, E.J.; Coats, J.R. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control. Int. J. Environ. Res. Public Health 2017, 14, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawada, H.; Higa, Y.; Nguyen, Y.T.; Tran, S.H.; Nguyen, H.T.; Takagi, M. Nationwide Investigation of the Pyrethroid Susceptibility of Mosquito Larvae Collected from Used Tires in Vietnam. PLOS Negl. Trop. Dis. 2009, 3, e391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koureas, M.; Tsakalof, A.; Tsatsakis, A.; Hadjichristodoulou, C. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol. Lett. 2012, 210, 155–168. [Google Scholar] [CrossRef]
- Roy, D.N.; Goswami, R.; Pal, A. The insect repellents: A silent environmental chemical toxicant to the health. Environ. Toxicol. Pharmacol. 2017, 50, 91–102. [Google Scholar] [CrossRef]
- Menon, K.S.; Brown, A.E. Exposure of children to deet and other topically applied insect repellents. Am. J. Ind. Med. 2004, 47, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Goodyer, L.; Behrens, R.H. Short report: The safety and toxicity of insect repellents. Am. J. Trop. Med. Hyg. 1998, 59, 323–324. [Google Scholar] [CrossRef]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 2011, 10, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, J.; Ali, A.; Khan, I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoter 2014, 95, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.P.; Loye, J. PMD, a registered botanical mosquito repellent with deet-like efficacy. J. Am. Mosq. Control Assoc. 2006, 22, 507–514. [Google Scholar] [CrossRef]
- Manh, H.D.; Huong, D.N.X.; Hanh, L.T.H.; Duong, N.T.T. Rearing of Aedes aegypti Mosquitoes in the laboratory and assessing the larvicide of lemongrass oil (Cymbopogon citratus) and lemon eucalyptus oil (Corymbia citriodora) against Aedes aegypti larvae. J. Sci. Lac Hong Univ. 2019, 7, 057–061. [Google Scholar]
- Manh, H.D.; Hue, D.T.; Hieu, N.T.T.; Tuyen, D.T.T.; Tuyet, O.T.; Manh, H.D. The Mosquito Larvicidal Activity of Essential Oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects 2020, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005; pp. 1–41. Available online: https://apps.who.int/iris/handle/10665/69101 (accessed on 12 May 2018).
- World Health Organization. Guidelines for Efficacy Testing of Mosquito Repellents for Human Skin; World Health Organization: Geneva, Switzerland, 2009; pp. 1–6. Available online: https://apps.who.int/iris/handle/10665/70072 (accessed on 12 May 2018).
- Fitney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971. [Google Scholar]
- Pino, J.A.; Rosado, A.; Fuentes, V. Chemical Composition of the Essential Oil of Mentha arvensis L. var. piperascens Malinv from Cuba. J. Essent. Oil Res. 1996, 8, 685–686. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef]
- Rao, B.R.R.; Kaul, P.N.; Mallavarapu, G.R.; Ramesh, S. Comparative Composition of Whole Herb, Flowers, Leaves and Stem Oils of Cornmint (Mentha arvensis L.f. piperascens Malinvaud ex Holmes). J. Essent. Oil Res. 2000, 12, 357–359. [Google Scholar]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Kumar, S.; Wahab, N.; Warikoo, R. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac. J. Trop. Biomed. 2011, 1, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Lima, T.C.; Da Silva, T.K.M.; Silva, F.; Barbosa-Filho, J.M.; Marques, M.O.M.; Santos, R.L.C.; Cavalcanti, S.C.D.H.; De Sousa, D.P. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere 2014, 104, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Sivakumar, R.; Rajeswari, M.; Yogalakshmi, K. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol. Res. 2011, 110, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Ren, Y.; Howes, M.-J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181. [Google Scholar] [CrossRef] [PubMed]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Priestley, C.M.; Williamson, E.; A Wafford, K.; Sattelle, D.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 2003, 140, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Hummelbrunner, L.A.; Isman, M. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef]
- Osanloo, M.; Sedaghat, M.M.; Esmaeili, F.; Amani, A. Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. J. Arthropod-Borne Dis. 2018, 12, 361–369. [Google Scholar]
- Santos, S.R.; Melo, M.A.; Cardoso, A.V.; Santos, R.L.; De Sousa, D.P.; Cavalcanti, S.C.H. Structure–activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 2011, 84, 150–153. [Google Scholar] [CrossRef]
- Campbell, C.; Gries, R.; Gries, G. Forty-two compounds in eleven essential oils elicit antennal responses from Aedes aegypti. Èntomol. Exp. Appl. 2010, 138, 21–32. [Google Scholar] [CrossRef]
- Raji, J.; DeGennaro, M. Genetic Analysis of Mosquito Detection of Humans. Curr. Opin. Insect Sci. 2017, 20, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Dickens, J.C.; Bohbot, J. Mini review: Mode of action of mosquito repellents. Pestic. Biochem. Physiol. 2013, 106, 149–155. [Google Scholar] [CrossRef]
- Barnard, D.R. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J. Med. Èntomol. 1999, 36, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Maibach, H.I.; Skidmore, D.L. Addition of Vanillin to Mosquito Repellents to Increase Protection Time. Mosq. News 1975, 35, 223–225. [Google Scholar]
- Tawatsin, A.; Wratten, S.D.; Scott, R.R.; Thavara, U.; Techadamrongsin, Y. Repellency of volatile oils from plants against three mosquito vectors. J. Vector Ecol. 2001, 26, 76–82. [Google Scholar]
- Songkro, S.; Jenboonlap, M.; Boonprasertpon, M.; Maneenuan, D.; Bouking, K.; Kaewnopparat, N. Effects of glucam P-20, vanillin, and fixolide on mosquito repellency of citronella oil lotions. J. Med. Èntomol. 2012, 49, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Choochote, W.; Chaithong, U.; Kamsuk, K.; Jitpakdi, A.; Tippawangkosol, P.; Tuetun, B.; Champakaew, D.; Pitasawat, B. Repellent activity of selected essential oils against. Fitoter 2007, 78, 359–364. [Google Scholar] [CrossRef]
- Auysawasdi, N.; Chuntranuluck, S.; Phasomkusolsil, S.; Keeratinijakal, V. Improving the effectiveness of three essential oils against (Linn.) and Anopheles dirus (Peyton and Harrison). Parasitol. Res. 2015, 115, 99–106. [Google Scholar] [CrossRef]
- Kim, S.-I.; Yoon, J.-S.; Baeck, S.-J.; Lee, S.-H.; Ahn, Y.-J.; Kwon, H.W. Toxicity and synergic repellency of plant essential oil mixtures with vanillin against (Diptera: Culicidae). J. Med. Èntomol. 2012, 49, 876–885. [Google Scholar] [CrossRef]
- Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U.R. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U.R. In Vitro Characterization and Mosquito () Repellent Activity of Essential-Oils-Loaded Nanoemulsions. AAPS PharmSciTech 2009, 10, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
No | RT (min) | Formula | Mass | Compound | Percentage (%) | Terpenoid Group |
---|---|---|---|---|---|---|
1 | 7.4 | C10H16 | 136 | α-Pinene | 0.34 | hydrocarbon monoterpenes |
2 | 9.14 | C10H16 | 136 | Sabinene | 0.09 | hydrocarbon monoterpenes |
3 | 9.23 | C10H16 | 136 | β-Pinene | 0.39 | hydrocarbon monoterpenes |
4 | 11.93 | C10H16 | 136 | Limonene | 2.04 | hydrocarbon monoterpenes |
5 | 19.22 | C10H18O | 154 | Menthone | 2.51 | oxygenated monoterpenes |
6 | 19.73 | C10H18O | 154 | Isomenthone | 1.45 | oxygenated monoterpenes |
7 | 19.83 | C10H20O | 156 | neo-Menthol | 1.89 | oxygenated monoterpenes |
8 | 20.48 | C10H20O | 156 | Menthol | 66.04 | oxygenated monoterpenes |
9 | 20.75 | C10H20O | 156 | Isomenthol | 0.2 | oxygenated monoterpenes |
10 | 23.69 | C10H16O | 152 | Piperitone | 1.47 | oxygenated monoterpenes |
11 | 25.26 | C10H22O2 | 204 | Menthyl acetate | 22.19 | oxygenated monoterpenes |
12 | 29.15 | C15H24 | 204 | Caryophyllene | 0.59 | hydrocarbon sesquiterpenes |
13 | 33.32 | C15H24O | 220 | Caryophyllene oxide | 0.31 | oxygenated sesquiterpenes |
Concentration (ppm) | Mortality (%) ± SD | Slope (± SE) | LC50 ppm (CL 95%) | LC90 ppm (CL 95%) | χ2 (df) |
---|---|---|---|---|---|
0 (control) | 0 | ||||
45 | 10.7 ± 4.6 | ||||
60 | 18.7 ± 4.6 | 6.201 | 78.1 | 125.7 | 24.9 |
75 | 45.3 ± 20.5 | (± 0.630) | (72.0–85.4) | (109.4–160.5) | (13) |
90 | 58.7 ± 16.7 | ||||
105 | 85.3 ± 8.3 | ||||
120 | 100 |
Essential Oils | Volume/Oil Concentration | Vanillin Concentration | Test Method | Area/Part Treated | Protection Time (Without—With Vanillin) | Ref. |
---|---|---|---|---|---|---|
Mentha arvensis | 0.1 mL of 25% in ethanol | 5% | Arm-in- Cage | 30 cm2/forearm | 45–120 (min) | This study |
Tumeric | 0.1 mL of 25% in ethanol | 5% | Arm-in- Cage | 30 cm2/forearm | 1.0–4.0 (h) | [39] |
Kaffir lime | 0.1 mL of 25% in ethanol | 5% | Arm-in- Cage | 30 cm2/forearm | 1.0–3.5 (h) | [39] |
Citronella | 0.1 mL of 25% in ethanol | 5% | Arm-in- Cage | 30 cm2/forearm | 3.0–6.5 (h) | [39] |
Hairy basil | 0.1 mL of 25% in ethanol | 5% | Arm-in- Cage | 30 cm2/forearm | 3.0–6.5 (h) | [39] |
Zanthoxylum piperitum | 0.1 mL of pure oil | 10% | Arm-in- Cage | 30 cm2/forearm | 1.0–2.5 (h) | [41] |
Curcuma longa | 0.1 mL of 25% in coconut oil | 5% | Arm-in- Cage | 30 cm2/forearm | 1.5–2.5 (h) | [42] |
Eucalyptus globulus | 0.1 mL of 25% in coconut oil | 5% | Arm-in- Cage | 30 cm2/forearm | 66–144 (min) | [42] |
Citrus aurantium | 0.1 mL of 25% in coconut oil | 5% | Arm-in- Cage | 30 cm2/forearm | 66–120 (min) | [42] |
Cassia oil | 0.1 mL of 5% in ethanol | 5% | Arm-in- Cage | 24 cm2/forearm | 75–135 (min) | [43] |
Rosemary | 0.1 mL of 5% in ethanol | 5% | Arm-in- Cage | 24 cm2/forearm | 0–52 (min) | [43] |
Lemon eucalyptus | 0.1 mL of 5% in ethanol | 5% | Arm-in- Cage | 24 cm2/forearm | 22.5–60.0 (min) | [43] |
Xanthoxylum | 0.1 mL of 5% in ethanol | 5% | Arm-in- Cage | 24 cm2/forearm | 30–60 (min) | [43] |
Lemongrass | 0.1 mL of 5% in ethanol | 5% | Arm-in- Cage | 24 cm2/forearm | 30–105 (min) | [43] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manh, H.D.; Tuyet, O.T. Larvicidal and Repellent Activity of Mentha arvensis L. Essential Oil against Aedes aegypti. Insects 2020, 11, 198. https://doi.org/10.3390/insects11030198
Manh HD, Tuyet OT. Larvicidal and Repellent Activity of Mentha arvensis L. Essential Oil against Aedes aegypti. Insects. 2020; 11(3):198. https://doi.org/10.3390/insects11030198
Chicago/Turabian StyleManh, Ho Dung, and Ong Thi Tuyet. 2020. "Larvicidal and Repellent Activity of Mentha arvensis L. Essential Oil against Aedes aegypti" Insects 11, no. 3: 198. https://doi.org/10.3390/insects11030198
APA StyleManh, H. D., & Tuyet, O. T. (2020). Larvicidal and Repellent Activity of Mentha arvensis L. Essential Oil against Aedes aegypti. Insects, 11(3), 198. https://doi.org/10.3390/insects11030198