A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes
Abstract
:1. Introduction
2. The Different Terminologies Used for Describing the Movements of Insects
3. Experimental Methods for Separating Residents from Dispersers in Wing-monomorphic or Wingless Insects under Controlled Conditions
3.1. Assessing Dispersal Polymorphism Under Controlled Conditions: Photos and Videos
3.2. Assessing Dispersal Polymorphism under Controlled Conditions: Experimentally Connected Patches in the Absence of Hostile Conditions
3.3. Assessing Dispersal Polymorphism Under Controlled Conditions: Experimental Systems Incorporating Hostile Conditions
3.4. Standardization of the Experimental Systems with an Emphasis of Some Important Parameters Affecting Dispersal Results
4. Main Morphological, Behavioral, Reproductive, and Fecundity Characteristics of Disperser and Resident Insects
4.1. Effects of Dispersal Polymorphism on the Phenotype of Disperser and Resident Insects
4.2. Effects of Dispersal Polymorphism on the Behaviour of Disperser and Resident Insects
4.3. Effects of Dispersal Polymorphism on the Reproduction and Fecundity of Disperser and Resident Insects
5. Range Expansion and Evolution of Insect Dispersal Traits
6. Perspectives
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Johnson, D.M.; Horvitz, C.C. Estimating postnatal dispersal: Tracking the unseen dispersers. Ecology 2005, 86, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Ruf, D.; Dorn, S.; Mazzi, D. Females leave home for sex: Natal dispersal in a parasitoid with complementary sex determination. Anim. Behav. 2011, 81, 1083–1089. [Google Scholar] [CrossRef]
- McCauley, S.J. Body size and social dominance influence breeding dispersal in male Pachydiplax longipennis (Odonata). Ecol. Entomol. 2010, 35, 377–385. [Google Scholar] [CrossRef]
- Ronce, O. How does it feel to be like a rolling stone? Ten Questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 231–253. [Google Scholar] [CrossRef]
- Matthysen, E. Multicausality of dispersal: A review. In Dispersal Ecology and Evolution; Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 3–18. [Google Scholar]
- Clobert, J.; Baguette, M.; Benton, T.G.; Bullock, J.M. Dispersal Ecology and Evolution; Oxford University Press: Oxford, UK, 2012; p. 496. [Google Scholar]
- Starrfelt, J.; Kokko, H. The theory of dispersal under multiple influences. In Dispersal Ecology and Evolution; Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 19–28. [Google Scholar]
- Fauvergue, X.; Vercken, E.; Malausa, T.; Hufbauer, R.A. The biology of small, introduced populations, with special reference to biological control. Evol. Appl. 2012, 5, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Poethke, H.J.; Pfenning, B.; Hovestadt, T. The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates. Evol. Ecol. Res. 2007, 9, 41–50. [Google Scholar]
- Wright, S. The Theory of Gene Frequencies; Chicago University Press: Chicago, IL, USA; London, UK, 1969; Volume 2, p. 5119. [Google Scholar]
- Brown, J.H.; Kodric-Brown, A. Turnover rates in insular biogeography: Effect of migration on extinction. Ecology 1977, 58, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, A.; Elias-Wolff, F.; Mehlig, B.; Manica, A. The emergence of the rescue effect from explicit within- and between-patch dynamics in a metapopulation. Proc. R. Soc. B 2014, 281, 20133127. [Google Scholar] [CrossRef] [Green Version]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Pateman, R.M.; Thomas, C.D.; Hayward, S.A.; Hill, J.K. Macro- and microclimatic interactions can drive variation in species’ habitat associations. Glob. Chang. Biol. 2016, 22, 556–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norberg, J.; Urban, M.C.; Vellend, M.; Klausmeier, C.A.; Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Chang. 2012, 2, 747–751. [Google Scholar] [CrossRef]
- Rumpf, S.B.; Hülber, K.; Klonner, G.; Moser, D.; Schütz, M.; Wessely, J.; Willner, W.; Zimmermann, N.E.; Dullinger, S. Range dynamics of mountain plants decrease with elevation. Proc. Nat. Acad. Sci. USA 2018, 115, 1848–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, M.P.; Kiers, E.T.; Driessen, G.; Van Der Heijden, M.; Kooi, B.W.; Kuenen, F.; Liefting, M.; Verhoef, H.A.; Ellers, J. Adapt or disperse: Understanding species persistence in a changing world. Glob. Chang. Biol. 2010, 16, 587–598. [Google Scholar] [CrossRef]
- Årevall, J.; Early, R.; Estrada, A.; Wennergren, U.; Eklöf, A.C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 2018, 24, 1598–1611. [Google Scholar] [CrossRef] [Green Version]
- Céré, J.; Vickery, W.L.; Dickman, C.R. Refugia and dispersal promote population persistence under variable arid conditions: A spatio-temporal simulation model. Ecosphere 2015, 6, 225. [Google Scholar]
- Armsworth, P.R.; Roughgarden, J.E. Disturbance induces the contrasting evolution of reinforcement and dispersiveness in directed and random movers. Evolution 2005, 10, 2083–2096. [Google Scholar]
- Bowler, D.E.; Benton, T.G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 2005, 80, 205–225. [Google Scholar] [CrossRef] [Green Version]
- Entling, M.H.; Stämpfli, K.; Ovaskainen, O. Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. Oikos 2011, 120, 1099–1109. [Google Scholar] [CrossRef]
- Edelaar, P.; Bolnick, D.I. Non-random gene flow: An underappreciated force in evolution and ecology. Trends Ecol. Evol. 2012, 27, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.J.; Sappington, T.W. Role of dispersal in resistance evolution and spread. Curr. Opin. Insect Sci. 2017, 21, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wotton, K.R.; Gao, B.; Menz, M.H.M.; Morris, R.K.A.; Ball, S.G.; Lim, K.S.; Reynolds, D.R.; Hu, G.; Chapman, J.W. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 2019, 29, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.; Holderegger, R. Damselflies use different movement strategies for short- and long-distance dispersal. Insect Conserv. Divers. 2013, 6, 590–597. [Google Scholar] [CrossRef]
- Bonte, D.; Van Dyck, H.; Bullock, J.M.; Coulon, A.; Delgado, M.; Gibbs, M.; Lehouck, V.; Matthysen, E.; Mustin, K.; Saastamoinen, M.; et al. Costs of dispersal. Biol. Rev. 2012, 87, 290–312. [Google Scholar] [CrossRef]
- Hamilton, W.D.; May, R.M. Dispersal in stable habitats. Nature 1977, 269, 578–581. [Google Scholar] [CrossRef]
- Thomas, C.D.; Bodsworth, E.J.; Wilson, R.J.; Simmons, A.D.; Davies, Z.G.; Musche, M.; Conradt, L. Ecological and evolutionary processes at expanding range margins. Nature 2001, 411, 577–581. [Google Scholar] [CrossRef]
- Hughes, C.L.; Dytham, C.; Hill, J.K. Modelling and analysing evolution of dispersal in populations at expanding range boundaries. Ecol. Entomol. 2007, 32, 437–445. [Google Scholar] [CrossRef]
- Roff, D.A. Dispersal in Dipterans: Its costs and consequences. J. Anim. Ecol. 1977, 46, 443–456. [Google Scholar] [CrossRef]
- Harrison, R.G. Dispersal polymorphism in insects. Ann. Rev. Ecol. Syst. 1980, 11, 95–118. [Google Scholar] [CrossRef]
- Socha, R.; Zemek, R. Wing morph-related differences in the walking pattern and dispersal in a flightless bug, Pyrrhocoris apterus (Heteroptera). Oikos 2003, 100, 35–42. [Google Scholar] [CrossRef]
- Arnold, P.A.; Cassey, P.; White, C.R. Functional traits in red flour beetles: The dispersal phenotype is associated with leg length but not body size nor metabolic rate. Funct. Ecol. 2017, 31, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Stevens, V.M.; Turlure, C.; Baguette, M. A meta-analysis of dispersal in butterflies. Biol. Rev. 2010, 85, 625–642. [Google Scholar] [CrossRef] [PubMed]
- Zera, A.J. The biochemical basis of life history adaptation: Gryllus studies lead the way. In The Cricket as a Model Organism; Horch, H., Mito, T., Popadić, A., Ohuchi, H., Noji, S., Eds.; Springer: Tokyo, Japan, 2017; pp. 229–243. [Google Scholar]
- Tigreros, N.; Davidowitz, G. Chapter One—Flight-fecundity tradeoffs in wing-monomorphic insects. Adv. Insect Physiol. 2019, 56, 1–41. [Google Scholar]
- Osborne, J.L.; Loxdale, H.D.; Woiwod, I.P. Monitoring insect dispersal. In Dispersal Ecology; Bullock, J.M., Kenward, R., Hails, R., Eds.; Blackwell Science: Oxford, UK, 2002; pp. 24–49. [Google Scholar]
- Renault, D.; Laparie, M.; McCauley, S.J.; Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 2018, 63, 345–368. [Google Scholar] [CrossRef]
- Holyoak, M.; Casagrandi, R.; Nathan, R.; Revilla, E.; Spiegel, O. Trends and missing parts in the study of movement ecology. Proc. Nat. Acad. Sci. USA 2008, 105, 19060–19065. [Google Scholar] [CrossRef] [Green Version]
- Pervez, A.; Yadaz, M. Foraging behaviour of predaceous ladybird beetles: A review. Eur. J. Environ. Sci. 2018, 8, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Anreiter, I.; Sokolowski, M.B. The foraging gene and its behavioral effects: Pleiotropy and plasticity. Annu. Rev. Genet. 2019, 53, 373–392. [Google Scholar] [CrossRef]
- Waiker, P.; Baral, S.; Kennedy, A.; Bhatia, S.; Rueppell, A.; Le, K.; Amiri, E.; Tsuruda, J.; Rueppell, O. Foraging and homing behavior of honey bees (Apis mellifera) during a total solar eclipse. Sci. Nat. 2019, 106, 4. [Google Scholar] [CrossRef]
- Dolný, A.; Harabiš, F.; Mižičová, H. Home range, movement, and distribution patterns of the threatened dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): A thousand times greater territory to protect? PLoS ONE 2014, 9, e100408. [Google Scholar] [CrossRef]
- Teitelbaum, C.S.; Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 2019, 34, 569–581. [Google Scholar] [CrossRef]
- van Dyck, H.; Baguette, M. Dispersal behaviour in fragmented landscapes: Routine or special movements? Basic Appl. Ecol. 2005, 9, 535–545. [Google Scholar]
- Bell, W.J. Searching behavior patterns in insects. Annu. Rev. Entomol. 1990, 35, 447–467. [Google Scholar] [CrossRef]
- Singh, N.J.; Börger, L.; Dettki, H.; Bunnefeld, N.; Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 2012, 22, 2007–2020. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.S. Migration, behavioural and ecological. In Migration: Mechanisms and Adaptive Significance; Contributions in Marine Science; Rankin, M.A., Ed.; Marine Science Institute, University of Texas: Austin, TX, USA, 1985; Volume 27, pp. 5–26. [Google Scholar]
- Dingle, H.; Drake, V.A. What is migration? BioScience 2007, 7, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Slager, B.H.; Malcolm, S.B. Evidence for partial migration in the southern monarch butterfly, Danaus erippus, in Bolivia and Argentina. Biotropica 2015, 47, 355–362. [Google Scholar] [CrossRef]
- Dällenbach, L.J.; Glauser, A.; Lim, K.S.; Chapman, J.W.; Menz, M.H.M. Higher flight activity in the offspring of migrants compared to residents in a migratory insect. Proc. R. Soc. B 2018, 285, 20172829. [Google Scholar] [CrossRef] [Green Version]
- Menz, M.H.M.; Reynolds, D.R.; Gao, B.; Hu, G.; Chapman, J.W.; Wotton, K.R. Mechanisms and consequences of partial migration in insects. Front. Ecol. Evol. 2019, 7, 403. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.R.U.; Dormontt, E.E.; Prentis, P.J.; Lowe, A.J.; Richardson, D.M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 2009, 24, 136–144. [Google Scholar] [CrossRef]
- Andrewartha, G.G.; Birch, L.C. The Distribution and Abundance of Animals; University of Chicago Press: Chicago, IL, USA, 1954; p. 793. [Google Scholar]
- Southwood, T.R.E. Migration of terrestrial arthropods in relation to habitats. Biol. Rev. 1962, 37, 171–214. [Google Scholar] [CrossRef]
- Southwood, T.R.E. Ecological aspects of insect migration. In Animal Migration; Aidley, D.J., Ed.; Cambridge University Press: London, UK, 1981; pp. 197–208. [Google Scholar]
- Dingle, H. Migration: The Biology of Life on the Move, 2nd ed.; Oxford University Press: Oxford, UK, 2014; p. 352. [Google Scholar]
- Clobert, J.; Le Galliard, J.-F.; Cote, J.; Meylan, S.; Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 2009, 12, 197–209. [Google Scholar] [CrossRef]
- Hanski, I.; Saastamoinen, M.; Ovaskainen, O. Dispersal-related life-history trade-offs in a butterfly metapopulation. J. Anim. Ecol. 2006, 75, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.A. Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: A meta-analysis. Biol. Rev. 2011, 86, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Feldhaar, H.; Schauer, B. Dispersal of saproxylic insects. In Saproxylic Insects, Diversity, Ecology and Conservation; Ulyshen, M.D., Ed.; Springer: Heidelberg, Germany, 2018; pp. 515–546. [Google Scholar]
- Suchan, T.; Talavera, G.; Sáez, L.; Ronikier, M.; Vila, R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol. Ecol. Res. 2019, 19, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minter, M.; Pearson, A.; Lim, K.S.; Wilson, K.; Chapman, J.W.; Jones, C.M. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecol. Entomol. 2018, 43, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, S.E. Assessing insect flight behavior in the laboratory: A primer on flight mill methodology and what can be learned. Ann. Entomol. Soc. Am. 2019, 112, 182–199. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H.; Nielsen, A.L.; Leskey, T.C. Dispersal capacity and behavior of nymphal stages of Halyomorpha halys (Hemiptera: Pentatomidae) evaluated under laboratory and field conditions. J. Insect Behav. 2014, 27, 639–651. [Google Scholar] [CrossRef]
- Matsumura, K.; Miyatake, T. Costs of walking: Differences in egg size and starvation resistance of females between strains of the red flour beetle (Tribolium castaneum) artificially selected for walking ability. J. Evol. Biol. 2018, 31, 1632–1637. [Google Scholar] [CrossRef]
- Prus, T. Search for methods to investigate mobility in Tribolium. Ecology 1963, 44, 801–803. [Google Scholar] [CrossRef]
- Ritte, U.; Lavie, B. The genetic basis of dispersal behavior in the flour beetle, Tribolium castaneum. Canad. J. Genet. Cytol. 1977, 19, 717–722. [Google Scholar] [CrossRef]
- Mulder, G.D. An ecological study of a natural population of Tribolium brevicornis Le Conte (Coleoptera, Tenebrionidae). Theses Digit. Proj. 1978, 180, 32. [Google Scholar]
- Arnold, P.A.; Rafter, M.A.; Malekpour, R.; Cassey, P.; Walter, G.H.; White, C.R. Investigating movement in the laboratory: Dispersal apparatus designs and the red flour beetle, Tribolium castaneum. Entomol. Exp. Appl. 2017, 163, 93–100. [Google Scholar] [CrossRef]
- Matsumura, K.; Miyatake, T. Lines selected for different durations of tonic immobility have different leg lengths in the red flour beetle Tribolium castaneum. Behaviour 2019, 157, 17–31. [Google Scholar] [CrossRef]
- Drury, D.W.; Whitesell, M.E.; Wade, M.J. The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium Castaneum. Entomol. Exp. Appl. 2016, 158, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łomnicki, A. Population regulation by dispersal under selection pressure for and against dispersal: An experimental test with beetles, Tribolium confusum. Evol. Ecol. Res. 2006, 8, 63–73. [Google Scholar]
- Edelsparre, A.H.; Vesterberg, A.; Lim, J.H.; Anwari, M.; Fitzpatrick, M.J. Alleles underlying larval foraging behaviour influence adult dispersal in nature. Ecol. Lett. 2014, 17, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Tung, S.; Mishra, A.; Shreenidhi, P.M.; Sadiq, M.A.; Joshi, S.; Sruti, V.R.S.; Dey, S. Simultaneous evolution of multiple dispersal components and kernel. Oikos 2018, 127, 34–44. [Google Scholar] [CrossRef]
- Fronhofer, E.A.; Legrand, D.; Altermatt, F.; Ansart, A.; Blanchet, S.; Bonte, D.; Chaine, A.; Dahirel, M.; De Laender, F.; De Raedt, J.; et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evol. 2018, 2, 1859–1863. [Google Scholar] [CrossRef]
- Morrison, W.R.; Wilkins, R.V.; Gerken, A.R.; Scheff, D.S.; Zhu, K.Y.; Arthur, F.H.; Campbell, J.F. Mobility of Adult Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) after exposure to long-lasting insecticide-incorporated netting. J. Econ. Entomol. 2018, 111, 2443–2453. [Google Scholar] [CrossRef]
- Ducatez, S.; Legrand, D.; Chaput-Bardy, A.; Stevens, V.M.; Fréville, H.; Baguette, M. Inter-individual variation in movement: Is there a mobility syndrome in the large white butterfly Pieris brassicae? Ecol. Entomol. 2012, 37, 377–385. [Google Scholar] [CrossRef]
- Larranaga, N.; Baguette, M.; Calvez, O.; Legrand, D. Mobility affects copulation and oviposition dynamics in Pieris brassicae in seminatural cages. Insect Sci. 2019, 26, 743–752. [Google Scholar] [CrossRef]
- Legrand, D.; Trochet, A.; Moulherat, S.; Calvez, O.; Stevens, V.M.; Ducatez, S.; Clobert, J.; Baguette, M. Ranking the ecological causes of dispersal in a butterfly. Ecography 2015, 38, 822–831. [Google Scholar] [CrossRef]
- Jacob, S.; Laurent, E.; Morel-Journel, T.; Schtickzelle, N. Fragmentation and the context-dependence of dispersal syndromes: Matrix harshness modifies resident-disperser phenotypic differences in microcosms. Oikos 2019, 129, 158–169. [Google Scholar] [CrossRef]
- Stevens, V.M.; Trochet, A.; Blanchet, S.; Moulherat, S.; Clobert, J.; Baguette, M. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 2013, 6, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Trochet, A.; Legrand, D.; Larranaga, N.; Ducatez, S.; Calvez, O.; Cote, J.; Clobert, J.; Baguette, M. Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J. Anim. Ecol. 2013, 82, 946–955. [Google Scholar] [CrossRef]
- Nowicki, P.; Vravec, V. Evidence for positive density-dependent emigration in butterfly metapopulations. Oecologia 2011, 167, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Bitume, E.V.; Bonte, D.; Ronce, O.; Bach, F.; Flaven, E.; Olivieri, I.; Nieberding, C.M. Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecol. Lett. 2013, 16, 430–437. [Google Scholar] [CrossRef]
- Bellamy, D.E.; Byrne, D.N. Effects of gender and mating status on self-directed dispersal by the whitefly parasitoid Eretmocerus eremicus. Ecol. Entomol. 2001, 26, 571–577. [Google Scholar] [CrossRef]
- Simon, J.C.; Dickson, W.B.; Dickinson, M.H. Prior Mating experience modulates the dispersal of Drosophila in males more than in females. Behav. Genet. 2011, 41, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Bowler, D.E.; Benton, T.G. Variation in dispersal mortality and dispersal propensity among individuals: The Effects of age, sex and resource availability. J. Anim. Ecol. 2009, 78, 1234–1241. [Google Scholar] [CrossRef]
- Baines, C.B.; McCauley, S.; Rowe, L. The interactive effects of competition and predation risk on dispersal in an insect. Biol. Lett. 2014, 10, 20140287. [Google Scholar] [CrossRef] [Green Version]
- Baines, C.B.; McCauley, S.J.; Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecol Evol. 2015, 5, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, Y.; Tsurim, I.; Ovadia, O. Female mosquitoes disperse further when they develop under predation risk. Behav. Ecol. 2018, 29, 1402–1408. [Google Scholar] [CrossRef]
- Reim, E.; Baguette, M.; Gunter, F.; Fischer, K. Emigration propensity and flight performance are decoupled in a butterfly. Ecosphere 2018, 9, e02502. [Google Scholar] [CrossRef]
- Lebeau, J.; Wesselingh, R.A.; van Dyck, H. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes. Proc. R. Soc. B 2016, 283, 20160455. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.P.; Roitberg, B.D.; Henderson, D. The Effect of rearing temperature on flight initiation of Trichogramma sibericum Sorkina at ambient temperatures. Biol. Control. 1999, 16, 291–298. [Google Scholar] [CrossRef]
- Benard, M.F.; McCauley, S.J. Integrating across life-history stages: Consequences of natal habitat effects on dispersal. Am. Nat. 2008, 171, 553–567. [Google Scholar] [CrossRef]
- Baines, C.B.; McCauley, S.J. Natal habitat conditions have carryover effects on dispersal capacity and behaviour. Ecosphere 2018, 9, e02465. [Google Scholar] [CrossRef] [Green Version]
- Jourdan, J.; Baranov, V.; Wagner, R.; Plath, M.; Haase, P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J. Anim. Ecol. 2019, 88, 1498–1509. [Google Scholar] [CrossRef]
- Müller, C.B.; Williams, I.S.; Hardie, J. The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol. Entomol. 2001, 26, 330–340. [Google Scholar] [CrossRef]
- Eycott, A.E.; Stewart, G.B.; Buyung-Ali, L.M.; Bowler, D.E.; Watts, K.; Pullin, A.S. A meta-analysis on the impact of different matrix structures on species movement rates. Landsc. Ecol. 2012, 27, 1263–1278. [Google Scholar] [CrossRef]
- Schtickzelle, N.; Mennechez, G.; Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 2006, 87, 1057–1065. [Google Scholar] [CrossRef]
- Baguette, M.; Clobert, J.; Schtickzelle, N. Metapopulation dynamics of the bog fritillary butterfly: Experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 2011, 34, 170–176. [Google Scholar] [CrossRef]
- Legrand, D.; Larranaga, N.; Bertrand, R.; Ducatez, S.; Calvez, O.; Stevens, V.M.; Baguette, M. Evolution of a butterfly dispersal syndrome. Proc. R. Soc. B 2016, 283, 20161533. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.H.; Liebgold, E.B. Color-biased dispersal inferred by fine-scale genetic spatial autocorrelation in a color polymorphic salamander. J. Hered. 2017, 108, 588–593. [Google Scholar] [CrossRef]
- Camacho, C.; Martínez-Padilla, J.; Canal, D.; Potti, J. Long-term dynamics of phenotype-dependent dispersal within a wild bird population. Behav. Ecol. 2019, 30, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Pennekamp, F.; Clobert, J.; Schtickzelle, N. The interplay between movement, morphology and dispersal in Tetrahymena ciliates. PeerJ 2019, 7, e8197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cote, J.; Bestion, E.; Jacob, S.; Travis, J.; Legrand, D.; Baguette, M. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 2017, 40, 56–73. [Google Scholar] [CrossRef]
- Zera, A.J.; Denno, R.F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 1997, 42, 207–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zera, A.J.; Harshman, L.G.; Williams, T.D. Evolutionary endocrinology: The developing synthesis between endocrinology and evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 793–817. [Google Scholar] [CrossRef] [Green Version]
- Asplen, M.K. Dispersal strategies in terrestrial insects. Curr. Opin. Insect Sci. 2018, 27, 16–20. [Google Scholar] [CrossRef]
- Lin, X.; Lavine, L.C. Endocrine regulation of a dispersal polymorphism in winged insects: A short review. Curr. Opin. Insect Sci. 2018, 25, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-X.; Brisson, J.A.; Xu, H.-J. Molecular mechanisms of wing polymorphism in insects. Annu. Rev. Entomol. 2019, 64, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Réale, D.; Garant, D.; Humphries, M.M.; Bergeron, P.; Careau, V.; Montiglio, P.-O. Personality and the emergence of the pace-of-life syndrome concept at the population level. Phil. Trans. R. Soc. B 2010, 365, 4051–4063. [Google Scholar]
- Campos-Candela, A.; Palmer, M.; Balle, S.; Álvarez, A.; Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 2019, 22, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Heidinger, I.M.M.; Hein, S.; Feldhaar, H.; Poethke, H.-J. Biased dispersal of Metrioptera bicolor, a wing dimorphic bush-cricket. Insect Sci. 2018, 25, 297–308. [Google Scholar] [CrossRef]
- Brisson, J.A. Aphid wing dimorphisms: Linking environmental and genetic control of trait variation. Phil. Trans. R. Soc. B 2010, 365, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Steyn, V.M.; Mitchell, K.A.; Terblanche, J.S. Dispersal propensity, but not flight performance, explains variation in dispersal ability. Proc R Soc B 2016, 283, 20160905. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, J.; Downes, B.J. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia 2017, 184, 171–182. [Google Scholar] [CrossRef]
- Flockhart, D.T.T.; Fitz-gerald, B.; Brower, L.P.; Derbyshire, R.; Altizer, S.; Hobson, K.A.; Wassenaar, L.I.; Norris, D.R. Migration distance as a selective episode for wing morphology in a migratory insect. Mov. Ecol. 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Mathias, A.; Kisdi, E.; Olivieri, I. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 2001, 55, 246–259. [Google Scholar] [CrossRef]
- Viljur, M.; Relve, A.; Gimbutas, M.; Kaasik, A.; Teder, T. Dispersal of open-habitat butterflies in managed forest landscapes: Are colonisers special? J. Insect Conserv. 2019, 23, 259–267. [Google Scholar] [CrossRef]
- Weisser, W.W.; Braendle, C.; Minoretti, N. Predator-induced morphological change in the pea aphid. Proc. R. Soc. Lond. B 1999, 266, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Sloggett, J.J.; Weisser, W.W. Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. Oikos 2002, 98, 323–333. [Google Scholar] [CrossRef]
- Tanaka, S.; Wolda, H. Seasonal wing length dimorphism in a tropical seed bug-ecological significance of the short-winged form. Oecologia 1987, 73, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Betzholtz, P.-E.; Forsman, A.; Franzén, M. Inter-individual variation in colour patterns in noctuid moths characterizes long-distance dispersers and agricultural pests. J. Appl. Entomol. 2019, 143, 992–999. [Google Scholar] [CrossRef]
- Forsman, A.; Betzholtz, P.-E.; Franzen, M. Variable coloration is associated with dampened population fluctuations in noctuid moths. Proc. R. Soc. B 2015, 282, 20142922. [Google Scholar] [CrossRef]
- Schtickzelle, N.; Joiris, A.; Van Dyck, H.; Baguette, M. Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. Bmc Evol. Biol. 2007, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.S.; Dytham, C.; Oxford, G.S. Landscape and fine-scale movements of a leaf beetle: The importance of boundary behaviour. Oecologia 2007, 154, 55–64. [Google Scholar] [CrossRef]
- Bonte, D.; Bossuyt, B.; Lens, L. Aerial dispersal plasticity under different wind velocities in a salt marsh wolf spider. Behav. Ecol. 2007, 18, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Nomura, Y.; Miyatake, T. Relations between allometry, male–male interactions and dispersal in a sap beetle, Librodor japonicus. Anim. Behav. 2007, 74, 749–755. [Google Scholar] [CrossRef]
- Okada, K.; Miyatake, T.; Nomura, Y.; Kuroda, K. Fighting, dispersing, and sneaking: Body-size dependent mating tactics by male Librodor japonicus beetles. Ecol. Entomol. 2008, 33, 269–275. [Google Scholar] [CrossRef]
- Yamane, T.; Okada, K.; Nakayama, S.; Miyatake, T. Dispersal and ejaculatory strategies associated with exaggeration of weapon in an armed beetle. Proc. R. Soc. B 2010, 277, 1705–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwyn, P.P.; Fujisaki, K. Sexual conflicts, loss of flight, and fitness gains in locomotion of polymorphic water striders. Entomol. Exp. Appl. 2007, 124, 249–259. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Denno, R.F.; Ott, J.R. A trade-off between flight capability and reproduction in males of a wing-dimorphic insect. Ecology 2000, 81, 865–875. [Google Scholar] [CrossRef]
- Gu, H.N.; Hughes, J.; Dorn, S. Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol. Entomol. 2006, 31, 68–74. [Google Scholar] [CrossRef]
- Saglam, I.K.; Roff, D.A.; Fairbairn, D.J. Male sand crickets tradeoff flight capability for reproductive potential. J. Evol. Biol. 2008, 21, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, L.; Sappington, T.W.; Jiang, X.; Zhang, L.; Frolov, A.N. Onset of oviposition triggers abrupt reduction in migratory flight behavior and flight muscle in the female beet webworm, Loxostege sticticalis. PLoS ONE 2016, 11, e0166859. [Google Scholar] [CrossRef]
- Yao, I.; Katagiri, C. Comparing wing loading, flight muscle and lipid content in ant-attended and nonattended Tuberculatus aphid species. Physiol. Entomol. 2011, 36, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Mole, S.; Zera, A.J. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 1993, 93, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Guerra, P.A.; Pollack, G.S. Flight behaviour attenuates the trade-off between flight capability and reproduction in a wing polymorphic cricket. Biol. Lett. 2008, 5, 229–231. [Google Scholar] [CrossRef] [Green Version]
- Steenman, A.; Lehmann, A.W.; Lehmann, G.U.C. Life-history trade-off between macroptery and reproduction in the wing-dimorphic pygmy grasshopper Tetrix subulata (Orthoptera Tetrigidae). Ethol. Ecol. Evol. 2015, 27, 93–100. [Google Scholar] [CrossRef]
- Legrand, D.; Guillaume, O.; Baguette, M.; Cote, J.; Trochet, A.; Calvez, O.; Zajitschek, S.; Zajitschek, F.; Lecomte, J.; Bénard, Q.; et al. The Metatron: An experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat. Methods 2012, 9, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.; van Dyck, H. Butterfly flight activity affects reproductive performance and longevity relative to landscape structure. Oecologia 2010, 163, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.F.; Luo, L.Z.; Sappington, T.W. Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. J. Insect Physiol. 2010, 56, 1631–1637. [Google Scholar] [CrossRef] [Green Version]
- Roff, D.A. The cost of being able to fly: A study of wing polymorphism in two species of crickets. Oecologia 1984, 63, 30–37. [Google Scholar] [CrossRef]
- Roff, D.A. Exaptation and the evolution of dealation in insects. J. Evol. Biol. 1989, 2, 109–123. [Google Scholar] [CrossRef]
- Khuhro, N.H.; Biondi, A.; Desneux, N.; Zhang, L.; Zhang, Y.; Chen, H. Trade-off between flight activity and life-history components in Chrysoperla sinica. BioControl 2014, 59, 219–227. [Google Scholar] [CrossRef]
- Elliot, C.G.; Evenden, M.L. The effect of flight on reproduction in an outbreaking forest lepidopteran. Physiol. Entomol. 2012, 37, 219–226. [Google Scholar] [CrossRef]
- Matsumura, K.; Archer, C.R.; Hosken, D.J.; Miyatakea, T. Artificial selection on walking distance suggests a mobility-sperm competitiveness trade-off. Behav. Ecol. 2019, 30, 1522–1529. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, K.; Miyatake, T. Differences in attack avoidance and mating success between strains artificially selected for dispersal distance in Tribolium castaneum. PLoS ONE 2015, 10, e0127042. [Google Scholar] [CrossRef]
- Matsumura, K.; Miyatake, T. Effects of artificial selection for walking movement on reproductive traits in the red flour beetle, Tribolium castaneum. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 712–714. [Google Scholar]
- Asplen, M.K. Proximate drivers of migration and dispersal in wing-monomorphic insects. Insects 2020, 11, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niitepõld, K.; Boggs, C.L. Effects of increased flight on the energetics and life history of the butterfly Speyeria mormonia. PLoS ONE 2015, 10, e0140104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A.; Tung, S.; Shreenidhi, P.M.; Aamir Sadiq, M.; Shree Sruti, V.R.; Chakraborty, P.P.; Dey, S. Sex differences in dispersal syndrome are modulated by environment and evolution. Phil. Trans. R. Soc. B 2018, 373, 20170428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovnyak, A.M.; Burks, C.; Gassmann, A.J.; Sappington, T.W. Interrelation of mating, flight, and fecundity in navel orangeworm females. Entomol. Exp. Appl. 2018, 166, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Solbreck, C.; Sillentullberg, B. Population-dynamics of a seed feeding bug, Lygaeus equestris.1. Habitat patch structure and spatial dynamics. Oikos 1990, 58, 199–209. [Google Scholar] [CrossRef]
- Crnokrak, P.; Roff, D.A. Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus Firmus. Anim. Behav. 1995, 50, 1475–1481. [Google Scholar] [CrossRef]
- Roff, D.A.; Crnokrak, P.; Fairbairn, D.J. The evolution of trade-offs: Geographic variation in call duration and flight ability in the sand cricket, Gryllus firmus. J. Evol. Biol. 2003, 16, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Zhu, D.-H. Trade-off between flight capability and reproduction in male Velarifictorus asperses crickets. Ecol. Entomol. 2012, 37, 244–251. [Google Scholar] [CrossRef]
- Zhao, L.; Chai, H.; Zhu, D. Potential reproductive advantage of short-over long-winged adult males of the cricket Velarifictorus ornatus. Evol. Biol. 2017, 44, 91–99. [Google Scholar] [CrossRef]
- Crespi, B.J. Territoriality and fighting in a colonial thrips, Hoplothrips pedicularius, and sexual dimorphism in Thysanoptera. Ecol. Entomol. 1986, 11, 119–130. [Google Scholar] [CrossRef]
- Kaitala, A.; Dingle, H. Wing dimorphism, territoriality and mating frequency of the waterstrider Aquarius remigis (Say). Ann. Zool. Fenn. 1993, 30, 163–168. [Google Scholar]
- Fujisaki, K. A male fitness advantage to wing reduction in the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae). Res. Popul. Ecol. 1992, 34, 173–183. [Google Scholar] [CrossRef]
- Utida, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). J. Stored Prod. Res. 1972, 8, 111–126. [Google Scholar] [CrossRef]
- Taylor, V.A. A winged elite in a subcortical beetle as a model for a prototermite. Nature 1978, 276, 73–75. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, A.L.; Eckert, C.G. Climate change and species range shifts. Evolution of dispersal and mating systems along geographic gradients: Implications for shifting ranges. Funct. Ecol. 2014, 28, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Ochocki, B.M.; Miller, T.E.X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Comm. 2017, 8, 14315. [Google Scholar] [CrossRef] [Green Version]
- Chabrerie, O.; Massol, F.; Facon, B.; Thevenoux, R.; Hess, M.; Ulmer, R.; Pantel, J.H.; Braschi, J.; Amsellem, L.; Baltora-Rosset, S.; et al. Biological invasion theories: Merging perspectives from population, community and ecosystem scales. Preprints 2019. [Google Scholar] [CrossRef]
- Hemptinne, J.; Magro, A.; Evans, E.W.; Dixon, A.F.G. Body size and the rate of spread of invasive ladybird beetles in North America. Biol. Invasions 2012, 14, 595–605. [Google Scholar] [CrossRef]
- Laparie, M.; Renault, D.; Lebouvier, M.; Delattre, T. Is dispersal promoted at the invasion front? Morphological analysis of a ground beetle invading the Kerguelen Islands, Merizodus soledadinus (Coleoptera, Carabidae). Biol. Invasions 2013, 15, 1641–1648. [Google Scholar] [CrossRef]
- Srygley, R.B. Experimental manipulation of dispersal ability in a neotropical butterfly Anartia fatima (Lepidoptera: Nymphalidae). Insects 2018, 9, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laparie, M.; Lebouvier, M.; Lalouette, L.; Renault, D. Variation of morphometric traits in populations of an invasive carabid predator (Merizodus soledadinus) within a sub-Antarctic island. Biol. Invasions 2010, 12, 3405–3417. [Google Scholar] [CrossRef]
- Hill, J.K.; Thomas, C.D.; Blakeley, D.S. Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 1999, 121, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Abril, S.; Díaz, M.; Enríquez, M.L.; Gómez, C. More and bigger queens: A clue to the invasive success of the Argentine ant (Hymenoptera: Formicidae) in natural habitats. Myrmecol. News 2013, 18, 19–24. [Google Scholar]
- Conradt, L.; Roper, T.J. Nonrandom movement behavior at habitat boundaries in two butterfly species: Implications for dispersal. Ecology 2006, 87, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delattre, T.; Burel, F.; Humeau, A.; Stevens, V.M.; Vernon, P.; Baguette, M. Dispersal mood revealed by shifts from routine to direct flights in the meadow brown butterfly Maniola jurtina. Oikos 2010, 119, 1900–1908. [Google Scholar] [CrossRef]
- Ouisse, T. Phenotypic and Genetic Characterisation of the Carabid Beetle Merizodus soledadinus along Its Invasion Gradient at the Subantarctic Kerguelen Islands. Ph.D. Thesis, University of Rennes 1, Rennes, France, 19 December 2016. [Google Scholar]
- Weiss-Lehman, C.; Hufbauer, R.A.; Melbourne, B.A. Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat. Commun. 2017, 8, 14303. [Google Scholar] [CrossRef] [Green Version]
- Poniatowski, D.; Heinze, S.; Fartmann, T. The role of macropters during range expansion of a wing-dimorphic insect species. Evol. Ecol. 2012, 26, 759–770. [Google Scholar] [CrossRef]
- Chuang, A.; Peterson, C.R. Expanding population edges: Theories, traits, and trade-offs. Glob. Chang. Biol. 2016, 22, 494–512. [Google Scholar] [CrossRef]
- Shine, R.; Brown, G.P.; Phillips, B.L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl. Acad. Sci. USA 2011, 108, 5708–5711. [Google Scholar] [CrossRef] [Green Version]
- Merwin, A.C. Flight capacity increases then declines from the core to the margins of an invasive species’ range. Biol. Lett. 2019, 15, 20190496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinet, C.; Lance, D.R.; Thorpe, K.W.; Onufrieva, K.S.; Tobin, P.C.; Liebhold, A.M. Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. J. Anim. Ecol. 2008, 77, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Contarini, M.; Onufrieva, K.S.; Thorpe, K.W.; Raffa, K.F.; Tobin, P.C. Mate-finding failure as an important cause of Allee effects along the leading edge of an invading insect population. Entomol. Exp. Appl. 2009, 133, 307–314. [Google Scholar] [CrossRef]
- Hudina, S.; Hock, K.; Žganec, K. The role of aggression in range expansion and biological Invasions. Curr. Zool. 2014, 60, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Therry, L.; Zawal, A.; Bonte, D.; Stoks, R. What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range? Biol. J. Linn. Soc. 2014, 112, 556–568. [Google Scholar] [CrossRef] [Green Version]
- Rehage, J.S.; Cote, J.; Sih, A. The role of dispersal behaviour and personality in post-establishment spread. In Biological Invasions and Animal Behaviour; Weis, J.S., Sol, D., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 96–115. [Google Scholar]
- Labaude, S.; O’Donnell, N.; Griffin, C.T. Description of a personality syndrome in a common and invasive ground beetle (Coleoptera: Carabidae). Sci. Rep. 2018, 8, 17479. [Google Scholar] [CrossRef]
- Tremmel, M.; Müller, C. Insect personality depends on environmental conditions. Behav. Ecol. 2013, 24, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Kralj-Fiser, S.; Schuett, W. Studying personality variation in invertebrates: Why bother? Anim. Behav. 2014, 91, 41–52. [Google Scholar] [CrossRef]
- Spiegel, O.; Leu, S.T.; Bull, C.M.; Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 2017, 20, 3–18. [Google Scholar] [CrossRef]
- Dahirel, M.; Vong, A.; Ansart, A.; Madec, L. Individual boldness is life stage-dependent and linked to dispersal in a hermaphrodite land snail. Ecol. Res. 2017, 32, 751–755. [Google Scholar] [CrossRef]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 2015, 60, 123–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombaert, E.; Estoup, A.; Facon, B.; Joubard, B.; Grégoire, J.-C.; Jannin, A.; Blin, A.; Guillemaud, T. Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia Axyridis. J. Evol. Biol. 2014, 27, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Therry, L.; Bonte, D.; Stoks, R. Higher investment in flight morphology does not trade off with fecundity estimates in a poleward range-expanding damselfly. Ecol. Entomol. 2015, 40, 133–142. [Google Scholar] [CrossRef]
- Karisto, P.; Kisdi, E. Joint evolution of dispersal and connectivity. Evolution 2019, 73, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
Source Container • Diameter; Height; or Volume • Type of Medium | Destination Container • Diameter; Height; or Volume • Type of Medium | Tube • Type • Inner Diameter [ID] • Length | Environmental Conditions • Temperature (°C) • RH (%) Photoperiod | Assessment of Dispersal | Additional Comments | Hostile Matrix | References |
---|---|---|---|---|---|---|---|
• Ø; Ø • 95% wheat flour and 5% yeast | • Ø; Ø • absence of medium | • Plastic • ID 4.5 mm • L Ø | • 29 °C • 75% | Every 24 h over a 10-day period | • Biological model: Red flour beetle, Tribolium castaneum | No | [69] |
• Ø; Ø • 8000 mg of unsifted flour | • Ø; Ø • 4000 mg of unsifted flour | • Ø • Ø • Ø | • 28 °C • Ø • Constant light | After 15 days | • Biological model: Flour beetle Tribolium brevicornis | No | [71] |
• 50 mm; 80 mm • 20 g of 95% wheat flour and 5% yeast or absence of medium (depending on the experiment) | • 30 mm; 70 mm • absence of medium | • Glass • ID 4 mm • L Ø | • 29 °C • 70% | After 5 weeks (the time necessary to obtain imagoes that could disperse) | • Biological model: Red flour beetle, Tribolium castaneum • Suite of 5 connected containers | No | [75] |
• 50 mL • 2 mL of rearing media or agar | • 50 mL • 2 mL of rearing media or agar | • Plastic (1 mL pipette tip) • ID Ø • L 70 mm | • 24 ± 2 °C • 70 ± 5% | After 6 h in 32 5- to 7-day-old flies for each assay | • Biological model: Fruit fly, Drosophila melanogaster | No | [76] |
• 11 mm; 16 mm • Empty or with 20 mL banana-jaggery medium in the source | • 11 mm; 16 mm • Wet cotton (for moisture) | • Plastic • ID 1 mm • L 2 m (but increased regularly during the experiment up to 10 m) | • 25 °C • Ø | After 6 h | • Biological model: Fruit fly, Drosophila melanogaster | No | [77] |
• 57 mm; 44 mm • 15 g of flour | • 57 mm; 44 mm • 15 g of flour | • Plastic • ID 4 mm • L from 70 to 620 mm | • 29.5 ± 1 °C • 40%–60% • L12:D12 | Twice a day over four days | • Biological model: Red flour beetle, Tribolium castaneum. • Suite of 3 connected containers (filter paper only as the medium in the intermediate container) | • Distance among the containers (70, 120, 165, 310, and 620 mm) • Angle of 4, 8, 16, 24 and 55° for the tube connecting the containers | [72] |
• 200 m3 • Vegetation of low high height • Presence of a water pond (25 L plastic container, 60 × 39 × 16 cm) • Absence of food supply or 2 feeding flowerpots and host plant (fresh cabbages) | • 200 m3 • Vegetation of low eight • Presence of a water pond (25 L plastic container, 60 × 39 × 16 cm) | • Ø • Ø • L 19 m | • Ø • Ø • Ø | Dispersal assessed after 4 days, with daily observations | • Biological model: Large white butterfly Pieris brassicae | • Narrow S-shaped dispersal corridor, dark and warm • Resource limitation • Predatory cue (visual and olfactory = toads; olfactory cue = 2 crushed butterflies in a tube) | [78] |
• 200 m3 • Vegetation of low eight • Presence of a water pond (25 L plastic container, 60 × 39 × 16 cm) • Low (cage with natural insect community) or high (adding of approx. 100 fruit flies and a fruit mixture with approx. 200 pupae) resources treatment. treatment. | • 200 m3 • Vegetation of high eight • Presence of a water pond (25 L plastic container, 60 × 39 × 16 cm) | • Ø • Ø • L 19 m | • Ø • Ø • Ø | Dispersal assessed after 5 days, with daily observations | • Biological model: White-legged damselfly Platycnemis pennipes | • Narrow S-shaped dispersal corridor, dark and warm • Resource limitation • Predatory cue (visual, auditive and olfactory = frogs) | [78] |
• 130 L • Thin layer of soil and soil litter • Low (small piece of vegetable and 2 pieces of grass) or high food resources (half of a potato, half of a carrot, half of an apple and a handle of grass) | • 130 L • Thin layer of soil | • Plastic • ID 100 mm • L 4.4 m | • 16 to 25 °C • Ø • Ø | Dispersal assessed after 5 days, with daily observations every day | • Biological model: marsh cricket Pteronemobius heydenii | • Thin layer of soil in the container • Resource limitation • Predatory cue (olfactory cue = lizards) | [78] |
• 50 mm; 65 mm; • no food material | • 50 mm; 65 mm; • 20 g of unbleached organic flour or rice | • Plastic • ID 5 mm • L from 250 to 1750 mm | • 30 °C • 65% • 14:10 (L:D) | Dispersal assessed after 48 h | • Biological models: Red flour beetle Tribolium castaneum and lesser grain borer Rhyzopertha dominica | • Distance among the containers (250, 750 and 1750 mm) | [79] |
• 60 mm; 40 mm • wheat bran and one piece of carrot | • 60 mm; 40 mm • 0.5 cm of sand at the bottom of the container | • Plastic • ID 13 mm • L 1.6 m or 2.4 m | • 18 or 25 °C • 50% • 14:10 (L:D) | Dispersal assessed after 8 h and 24 h | • Biological model: Lesser mealworm Alphitobius diaperinus | • Angle of 15° for the tube connecting the containers • Resource limitation | This study |
Variable of Interest | For the Insect, the Variable Has an Effect on | Expected Effects on Dispersal |
---|---|---|
Manipulation of the social environment | ||
Sex ratio in the initial container (patch) | Likelihood to find a mate, likelihood of sexual reproduction | Effects on dispersal propensity and emigration rate [85] |
Number of insects in the initial container (patch), population density | Level of intraspecific competition | Effects on dispersal propensity and emigration rate (density-dependent dispersal) [86]; Increased dispersal distance [87] |
Reproductive status, age of the insects | Motivation to find a mate, behavior of males and females, deterioration of the physiological condition with aging | Effects on dispersal distances [88], effects on emigration rate (but also depends on the availability of trophic resources) [89], effects on successful immigration [80] |
Level of relatedness, consanguinity | Kin competition, inbreeding avoidance | Increased dispersal distance [4,87] |
Manipulation of the biotic environment | ||
Presence of predatory cues (chemical, visual, olfactive) | Behavior, personality | Effects on dispersal propensity and emigration rate (but may depend on the population density and body condition) [90,91,92]; Increased dispersal distance [93] |
Quality of the trophic resources in the initial container (patch) | Fecundity, longevity, resistance to environmental stress | Effects on dispersal propensity and emigration rate [94] Effects on dispersal (flight) performance [95] |
Manipulation of the abiotic environment | ||
Rearing temperature of the insects (Natal habitat effect) | Development, growth, and body size of the adult (smaller size of the dispersal appendices, lower amount of body reserves) | Effects on mobility; Lower temperatures may increase dispersal propensity (temperature gives information of the thermal environment that would be encountered by the adult) [96] |
Resource quality when rearing the strain (Natal habitat effect) | Development growth, body size and physiological condition of the adult | Decreased dispersal distances and decreased immigration success as insects are more susceptible to dispersal mortality [97]; Decreased emigration rate [98]; Condition-dependent dispersal [60] |
Temperature of the dispersal assay | Aerobic metabolism (energy production) | Depending on the temperature, increased or decreased dispersal speed [99] |
Manipulation of the dispersal system | ||
Size of the containers | Increased likelihood of tactile stimulation when using containers of small size | Increases dispersal propensity [100] |
Nature of the hostile matrix (shaded, dark, slippery, colder/warmer than the patch, S-shaped, angle) (can also be referred to as “matrix permeability”) | Increases dispersal cost and difficulty → selects insect with specific behavioral, morphological, and physiological features allowing to overcome the hostility of the matrix | Increases dispersal difficulty during the transience phase [72,77,101]; Effects on dispersal capacity and success [77] |
Length of the dispersal corridor (tubes connecting the containers), simulates fragmentation of available patches | Increases dispersal cost → selection of insects having the physiological features allowing to cover the inter-patch distance; Over time, progressive increased reluctance of individuals to disperse | Effects on dispersal capacity and success (emigration and mortality during transience should be higher when the length of the dispersal path is increased) [90,102] |
Duration of the dispersal assay | Less mobile and foraging insects which may reach the destination container | Effects on amount of individuals that emigrate [72,77] |
Habitat quality (Presence of oviposition sites in the initial container (patch), nature of the medium, etc.) | Poor reproductive values | Effects on emigration rate [103] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renault, D. A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. Insects 2020, 11, 214. https://doi.org/10.3390/insects11040214
Renault D. A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. Insects. 2020; 11(4):214. https://doi.org/10.3390/insects11040214
Chicago/Turabian StyleRenault, David. 2020. "A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes" Insects 11, no. 4: 214. https://doi.org/10.3390/insects11040214
APA StyleRenault, D. (2020). A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. Insects, 11(4), 214. https://doi.org/10.3390/insects11040214